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Preface

Scheduled transportation networks give rise to very complex and large-scale net-
work optimization problems requiring innovative solution techniques and ideas
from mathematical optimization and theoretical computer science. Examples of
scheduled transportation include bus, ferry, airline, and railway networks, with
the latter being a prime application domain that provides a fair amount of the
most complex and largest instances of such optimization problems. Scheduled
transport optimization deals with planning and scheduling problems over several
time horizons, and quite some progress has been made for strategic planning and
scheduling problems in all transportation domains.

In this volume, we focus on two important facets of scheduled transporta-
tion planning that pose even harder optimization questions: robust planning
and online (real-time) planning. These two, tightly coupled, facets constitute a
proactive and a reactive approach, respectively, to deal with disruptions to the
normal operation. Robust planning is concerned with the development of an a
priori plan that allows the absorption of disruptions to the best possible extent.
Online planning is concerned with real-time decision making when, typically
unpredictable, disruptions in daily operations occur, and before the entire se-
quence of disruptions is known. Since railway systems provide the largest, most
complex and hence most challenging problems, we have put a special emphasis
in this volume on robust and online railway optimization.

The papers appearing in the volume have been selected after an open call
for contributions asking for either research papers or state-of-the-art survey ar-
ticles. We received 24 submissions that underwent two rounds of the standard
peer-review process, out of which 18 were finally accepted for publication.

The selected papers cover several aspects of robust and online large-scale
optimization. With respect to the former, they cover issues of robust timetabling
and route planning, as well as robust planning under scarce resources. With
respect to the latter, they cover issues of delay and disruption management.
Moreover, a fair amount of papers introduce new concepts of robustness and
recoverability (to the normal operation) that turn out to be particularly useful
when dealing with problems in railway optimization. The volume is organized
in four parts reflecting the above areas.

The first part, Robustness and Recoverability: New Concepts, consists
of five papers that introduce new concepts of robustness and recoverability and
exemplify their usefulness on various applications. More specifically:

– In The Concept of Recoverable Robustness, Linear Programming Recovery,
and Railway Applications, Christian Liebchen, Marco Lübbecke, Rolf Möhring,
and Sebastian Stiller introduce a new concept of robustness that does not
only help to achieve robust plans but also allows recovery to a feasible solu-
tion under certain circumstances. The new concept is exemplified in the
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railway optimization problems of delay resistant, periodic and aperiodic
timetabling, and train platforming.

– In Recoverable Robustness in Shunting and Timetabling, Serafino Cicerone,
Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra,
Michael Schachtebeck, and Anita Schöebel apply the concept of recoverable
robustness to the shunting problem and also extend the concept to situations
where multiple stages of recovery are required.

– In Light Robustness, Matteo Fischetti and Michele Monaci introduce the
concept of light robustness, which couples robust optimization with a sim-
plified two-stage stochastic programming approach, and constitutes a flexible
counterpart of (classical) robust models.

– In Incentive-Compatible Robust Line Planning, Apostolos Bessas, Spyros
Kontogiannis, and Christos Zaroliagis introduce the concept of incentive-
compatible robustness and demonstrate its application on robust line plan-
ning when several competing operators demand line frequencies over a trans-
portation network.

– In A Bicriteria Approach for Robust Timetabling, Anita Schöbel and Al-
brecht Kratz introduce a bicriteria approach for studying the trade-off be-
tween an optimal and a robust solution, by adding the robustness of the
problem’s solution as an additional objective function. They demonstrate
their approach on the aperiodic timetabling problem in which a timetable is
sought that is robust against delays.

The second part, Robust Timetabling and Route Planning, consists of five
papers that present new approaches for robust timetabling, route planning, route
re-planning, and timetable information updating in case of delays. More specif-
ically:

– In Meta-Heuristic and Constraint-Based Approaches for Singe-Line Rail-
way Timetabling, Federico Barber, Laura Ingolotti, Antonio Lova, Pilar Tor-
mos, and Miguel A. Salido study the single-line railway timetabling prob-
lem (which is NP-hard) under several heuristic approaches, which are based
on constraint techniques (distributed constraint satisfaction and topological
constraint optimization) and on meta-heuristic techniques (GRASP-based
variable ordering and genetic algorithms).

– In Engineering Time-Expanded Graphs for Faster Timetable Information,
Daniel Delling, Thomas Pajor, and Dorothea Wagner present an extension
of the time-expanded model for computing timetable information that results
in faster query times using less space than the original one. They also show
how known query speed-up techniques can be adapted to the extended model
in order to gain further performance speed-up.

– In Time-Dependent Route Planning, Daniel Delling and Dorothea Wag-
ner survey query speed-up techniques for route planning under the time-
dependent model, and identify the most important ingredients along with
their augmentations that make some techniques superior to others.

– In The Exact Subgraph Recoverable Robust Shortest Path Problem, Christina
Büsing presents approximate approaches for route re-planning on a small
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subnetwork when delays occur, and demonstrates that the achieved approx-
imation ratio is the best possible.

– In Efficient Timetable Information in the Presence of Delays, Matthias
Müller-Hannemann and Mathias Schnee present an efficient method for up-
dating timetable information when a stream of delay information and sched-
ule changes arise, and demonstrate its applicability on a real-world scenario.

The third part, Robust Planning Under Scarce Resources, consists of four
papers that deal with several problems that demand scarce resources. More
specifically:

– In Integrating Robust Network Design and Line Planning Under Failures,
Angel Marin, Juan A. Mesa, and Federico Perea present a heuristic approach
for robust network design and line planning that integrates these two phases,
and consider two new notions for measuring robustness.

– In Effective Allocation of Fleet Frequencies by Reducing Intermediate Stops
and Short Turning in Transit Systems, Juan A. Mesa, Francisco A. Ortega,
and Miguel A. Pozo develop an effective model for allocating rolling-stock
frequencies at stops along a line, and develop a heuristic approach for its
solution.

– In Shunting for Dummies: An Introductory Survey with an Algorithmic Fo-
cus, Michael Gatto, Jens Maue, Matus Mihalak, and Peter Widmayer survey
several commonly used as well as new train classification (or shunting) meth-
ods from an algorithmic perspective.

– In Integrated Gate and Bus Assignment at Amsterdam Airport Schiphol,
Guido Diepen, Marjan van den Akker, and Han Hoogeveen present a column
generation approach for achieving a robust model that integrates the phases
of gate and bus assignment at an airport, and show that it is acceptable in
practice.

The fourth part, Online Planning: Delay and Disruption Management,
consists of four papers that deal with several aspects of delay and disruption
management including detection of delay dependencies and conflict resolution
among complex train routes. More specifically:

– In Mining Railway Delay Dependencies in Large-Scale Real-World Delay
Data, Holger Flier, Rati Gelashvili, Thomas Graffagnino, and Marc Nunkesser
present efficient algorithms to detect important types of systematic delay
dependencies (that are one of the main sources of delay propagation), and
demonstrate their practical applicability on real-world data.

– In Rescheduling Dense Train Traffic over Complex Station Interlocking Ar-
eas, Francesco Corman, Rob M.P. Goverde, and Andrea D’Ariano present
two graph-theoretic approaches for modeling multiple conflicting train routes
in busy stations along with their solution methods and their experimental
comparison.

– In Online Train Disposition: To Wait or not to Wait?, Luzi Anderegg, Paolo
Penna, and Peter Widmayer present deterministic polynomial-time optimal
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algorithms and matching lower bounds for several variants of an online delay
management problem, where the delay is unknown and the vehicle can only
wait in a station so as to minimize the passengers waiting time.

– In Disruption Management in Passenger Railway Transportation, J. Jespersen-
Groth, D. Potthoff, J. Clausen, D. Huisman, L. Kroon, G. Maroti, and
M.N. Nielsen give a comprehensive description of the problems arising in rail-
way disruption management (timetable adjustment, rolling stock and crew
rescheduling) along with the actors involved, and also describe the challenges
confronted by railway companies in order to improve their operational per-
formance.

Overall, the volume comprises a blend of state-of-the-art surveys and original
research contributions. It is addressed to students, researchers, and practitioners
who are interested in robust and online optimization of large-scale systems. We
hope that they will find it useful.

We would like to thank all those who submitted papers for consideration, as
well as the referees for their invaluable contribution. We also thank Apostolos
Bessas for helping with several technical issues during the whole process of this
volume production.

We gracefully acknowledge the support of the Future and Emerging Technolo-
gies Unit of the European Commission, under contract no. FP6-021235-2 (FP6
IST/FET Open/Project ARRIVAL). The ARRIVAL project not only supported
part of the work presented in this volume, but most importantly it provided the
means to stimulate a new line of research on robust and online railway optimiza-
tion and also to create a critical mass of researchers, who are now able to deal
with challenging problems in this area.

July 2009 Ravindra K. Ahuja
Rolf H. Möhring

Christos D. Zaroliagis
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Universidad Politécnica de Valencia
Spain
lingolotti@dsic.upv.es

Julie Jespersen-Groth
DSB S-tog, Denmark
and
Department of Informatics
and Mathematical Modelling
Technical University of Denmark
2800 Kongens Lyngby
Denmark
jjespersen@s-tog.dsb.dk

Spyros Kontogiannis
Computer Science Department
University of Ioannina
45110 Ioannina
Greece
and
R.A. Computer Technology Institute
N. Kazantzaki Str.
Patras University Campus
26504 Patras
Greece
kontog@cs.uoi.gr

Albrecht Kratz
Institut für Numerische
und Angewandte Mathematik
Georg-August Universität Göttingen
Germany
Albrecht.Kratz@gmx.de

Leo Kroon
Rotterdam School of Management
Erasmus University Rotterdam
P.O. Box 1738,
3000 DR Rotterdam
The Netherlands
and
Erasmus Center for Optimization
in Public Transport (ECOPT)
and
Department of Logistics
Netherlands Railways
P.O. Box 2025,
3500 HA Utrecht
The Netherlands
LKroon@rsm.nl

Christian Liebchen
Institut für Mathematik
Technische Univeristät Berlin
Strasse des 17 Juni 136
10623 Berlin
Germany
liebchen@math.tu-berlin.de

Antonio Lova
Instituto de Automática
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Marco Lübbecke
Institut für Mathematik
Technische Univeristät Berlin
Strasse des 17 Juni 136
10623 Berlin
Germany
m.luebbecke@math.tu-berlin.de

Angel Maŕın
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Institut für Numerische
und Angewandte Mathematik
Georg-August Universität Göttingen
37083 Göttingen
Germany
schoebel@math.uni-goettingen.de

Sebastian Stiller
Institut für Mathematik
Technische Univeristät Berlin
Strasse des 17 Juni 136
10623 Berlin
Germany
stiller@math.tu-berlin.de

Pilar Tormos
Instituto de Automática
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The Concept of Recoverable Robustness,
Linear Programming Recovery,

and Railway Applications�

Christian Liebchen, Marco Lübbecke, Rolf Möhring, and Sebastian Stiller

Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany
{liebchen,m.luebbecke,moehring,stiller}@math.tu-berlin.de

Abstract. We present a new concept for optimization under uncer-
tainty: recoverable robustness. A solution is recovery robust if it can be
recovered by limited means in all likely scenarios. Specializing the general
concept to linear programming we can show that recoverable robustness
combines the flexibility of stochastic programming with the tractability
and performances guarantee of the classical robust approach. We exem-
plify recoverable robustness in delay resistant, periodic and aperiodic
timetabling problems, and train platforming.

1 Introduction

Solutions for real-world problems found by mathematical optimization can
hardly enter into praxis unless they possess a certain robustness. In applications
robustness is not an additional feature but a conditio sine qua non. Usually, ro-
bustness is achieved ex post or by rules of thumb, i.e., heuristically. As systems
work closer to capacity shortcomings of these suboptimal approaches become
apparent. The classical two exact methods to deal with uncertain or fluctuat-
ing data in linear programming and combinatorial optimization are (2-Stage)
Stochastic Programming and Robust Optimization.

A 2-stage stochastic program is a linear program, where part of the input data
are random variables of some distribution. The distribution is either known, or
partly known, or can at least be sampled. The decision variables split into first
stage decisions and second stage decisions. The first stage decisions must be
chosen fixed for all scenarios. The second stage variables can be chosen after the
actual value of the random variables is revealed, i.e., the second stage decision can
be different for each scenario. Thus, strictly speaking the second stage variables
form a vector of random variables. But it is natural to interpret this vector of
random variables as a large (deterministic) vector containing for each scenario
one copy of the second stage variables. To be feasible in each scenario first and
second stage variables together must form a feasible vector for the data realized
in the scenario. Usually, the objective function of a 2-stage stochastic program
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comprises a cost function for the first stage variables and the expected cost
of the second stage variables according to the given distribution. Assuming a
discretized scenario set there is an obvious way to interpret a 2-stage stochastic
linear program as a (very large) usual linear program: The random variables
in the original linear program are resolved by adding for each scenario a copy
of the original linear program. In this copy the random variable is replaced by
its realization in the scenario. This is called the scenario expansion of a 2-stage
stochastic program.

Classical robust optimization considers a quite similar situation, except that
one abstains from second stage actions. Again for a linear program a certain
part of the data is subject to uncertainty. But as the robust program features no
second stage variables, the variables—which are fixed before the actual data is
revealed—must form a feasible solution for every scenario. A robust solution fits
for all scenarios. Likewise, the objective function of a robust program contains
no expectation or other stochastic component. The objective is a deterministic,
linear function of the solution. Obviously, a robust model avoids the use of
probability distributions. It suffices to know the range, in which the uncertain
data can fluctuate. Usually, one models this range smaller than given in reality,
thus excluding extremely unlikely scenarios.

Both methods have their merits for different types of applications. Still, for
a number of applications none of the two provides a suitable method. One of
these applications is delay resistant timetabling, e.g., for a railway system. Here
instances are usually too large for stochastic programming approaches. Whereas
robust optimization appeals for two reasons: A robust solution comes with a
guarantee to be feasible in all scenarios of a certain restricted scenario set. We call
this the set of likely scenarios. In addition, robust optimization yields compact
mathematical models which are likely to be solvable on a scale relevant for prac-
tical purposes like delay resistant timetabling. But it turns out that the classical
robust approach [1,15]—which we call strict robustness and which is a special
case of the broader concept we present here—is necessarily over-conservative in
the context of timetabling. The strict robust model yields a timetable where each
train ride is scheduled to take its technically minimal travel time plus at least
the total time of disturbances that is likely in the whole network. Unfortunately,
this over-conservativism is intrinsic to the classical robust approach.

In practice, one often encounters a way of handling disturbances that is dif-
ferent from both methods mentioned above. First, the plan is furnished with
some slack that shall allow to compensate disturbances. Second, the plan can be
recovered during operations. Third, these recoveries are limited. The limits ap-
ply to the actions that can be taken and the computational means by which the
recovery is calculated. For example, changes to the plan may be restricted to be
local or to only affect a certain subset of the planning variables. It is a promising,
practical concept that the plan has to be recoverable by limited means in every
likely scenario. Still, in practice the plans, their slack and the simple means of
recovery are currently not optimized together.
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Related work. The concept of recoverable robustness has first been formalized
together with concepts for the price of robustness in [11]. In the meantime it
has attracted several applications to optimization problems particularly in the
railway context. In [5,7] the concept has successfully been applied to shunting
problems. Specific cases of recoverable robust timetabling are treated in [4,6,7].
In particular, they can identify some types of scenario sets for which finding
a recoverable robust timetable becomes NP-hard and other types of scenario
sets for which an efficient algorithm exists. In [9] the concept of recoverable
robustness is spelled out specifically for the case of multi-stage recovery. Dynamic
algorithms for this case have been proposed in [8]. In case the recovery is a
linear program [16] provides for efficient algorithms and a stochastic analysis
of quality for recovery robust solutions both for the case of right-hand side
disturbances and for the case of matrix disturbances. The first application of
recoverable robustness in a study on real-world data was carried out in [3]. It
uses the techniques developed in this work and will be described in some detail
in Section 5.

Our contribution and Outline. In this work we present the concept of Recoverable
Robustness. The goal of recoverable robustness is to jointly optimize the plan and
the strategy for limited recovery. This will combine the flexibility of stochastic
programming with the performance guarantee and the compactness of models
found in robust optimization.

In Section 2 we develop the concept of recoverable robustness formally and in
full generality. As delay resistant timetabling has sparked its development, we ex-
emplify the modeling power of recoverable robustness by the case of timetabling
in Section 3. To solve recovery robust models we specify to Linear Recovery Ro-
bust Programs in Section 4, for which we provide an efficient algorithm. Finally,
we demonstrate the power of this method by citing a real-world application of
the method to the train platforming problem (Section 5).

2 The Concept of Recoverable Robustness

We are looking for solutions to an optimization problem which in a limited set
of scenarios can be made feasible, or recovered, by a limited effort. Therefore, we
need to define

– the original optimization problem (Step O),
– the imperfection of information, that is, the scenarios (Step S), and
– the limited recovery possibilities (Step R).

For Step O and Step S a large toolbox for modeling can be borrowed from
classical approaches to optimization respectively optimization with imperfect
information. Step R is a little less obvious, and we choose to formalize it via a
class A of admissible recovery algorithms.
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A solution x for the optimization problem defined in Step O is recovery-
robust

– against the imperfection of information (Step S) and
– for the recovery possibilities (Step R),

if in all situations that may occur according to Step S, we can recover
from x a feasible solution by means of one of the algorithms given in
Step R.

Computations in recovery-robust optimization naturally decompose into a
planning phase and a recovery phase. In the planning phase,

– we compute a solution x which may become infeasible in the realized
scenario,

– and we choose A ∈ A, i.e., one of the admissible recovery algorithms.

Such a pair (x, A) hedges for data uncertainty in the sense that in the recovery
phase

– algorithm A is used to turn x into a feasible solution in the realized scenario.

The output (x, A) of the planning phase is more than a solution, it is a precaution.
It does not only state that recovery is possible for x, but explicitly specifies how
this recovery can be found, namely by the algorithm A.

The formal definition of recoverable robustness [11] we give next is very broad.
The theorems in this paper only apply to strong specializations of that concept.

We introduce some terminology. Let F denote the original optimization prob-
lem. An instance O = (P, f) of F consists of a set P of feasible solutions, and
an objective function f : P → R which is to be minimized.

By R = RF we denote a model of imperfect information for F in the sense
that for every instance O we specify a set S = SO ∈ RF of possible scenarios.
Let Ps denote the set of feasible solutions in scenario s ∈ S.

We denote by A a class of algorithms called admissible recovery algorithms.
A recovery algorithm A ∈ A solves the recovery problem, which is a feasibility
problem. Its input is x ∈ P and s ∈ S. In case of a feasible recovery, A(x, s) ∈ Ps.

Definition 1. The triple (F ,R,A) is called a recovery robust optimization
problem, abbreviated RROP.

Definition 2. A pair (x, A) ∈ P × A consisting of a planning solution x and
an admissible algorithm A is called a precaution.

Definition 3. A precaution is recovery robust, iff for every scenario s ∈ S the
recovery algorithm A finds a feasible solution to the recovery problem, i.e., for
all s ∈ S we have A(x, s) ∈ Ps.

Definition 4. An optimal precaution is a recovery robust precaution (x, A) for
which f(x) is minimal.
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Thus, we can quite compactly write an RROP instance as

inf
(x,A)∈P×A

f(x)

s.t. ∀s ∈ S : A(x, s) ∈ Ps .

The objective function value of an RROP is infinity, if no recovery is possible
for some scenario with the algorithms given in the class A of admissible recovery
algorithms.

It is a distinguished feature of this notion that the planning solution is explic-
itly accompanied by the recovery algorithm. In some specializations the choice
of the algorithm is self-understood. For example, for linear recovery robust pro-
grams, to which we will devote our main attention, the algorithm is some solver
of a linear program or a simpler algorithm that solves the specific type of linear
program that arises as the recovery problem of the specific RROP. Then we will
simply speak of the planning solution x, tacitly combining it with the obvious
algorithm to form a precaution.

2.1 Restricting the Recovery Algorithms

The class of admissible recovery algorithms serves as a very broad wildcard
for different modeling intentions. Here we summarize some important types of
restrictions that can be expressed by means of that class.

The definition of the algorithm class A also determines the computational bal-
ance between the planning and the recovery phase. For all practical purposes,
one must impose sensible limits on the recovery algorithms (otherwise, the en-
tire original optimization problem could be solved in the recovery phase, when
the realized scenario is known). In very bold term, these limits fall into two
categories:

– limits on the actions of recovery;
– limits on the computational power to find those actions of recovery.

We mention two important subclasses of the first category:

Strict Robustness. We can forbid recovery entirely by lettingA consist of the single
recovery algorithm A with A(x, s) = x for all s ∈ S. This is called strict robust-
ness. Note that by strict robustness the classical notion of robust programming is
contained in the definition of recoverable robustness.

Recovery Close to Planning. An important type of restrictions for the class
of admissible recovery algorithms is, that the recovery solution A(x, s) must
not deviate too far from the original solution x according to some measure of
distance defined for the specific problem. For some distance measures one can
define subsets Ps,x ⊆ Ps depending on the scenario s and the original solution x,
such that the restriction to the recovery algorithm that A(x, s) will not deviate
too far from x, can be expressed equivalently by requiring A(x, s) ∈ Ps,x. As
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an example, think of a railway timetable that must be recovered, such that the
difference between the actual and the planned arrival times is not too big, i.e.,
that the delay is limited.

2.2 Passing Information to the Recovery

If (as it ought to be) the recovery algorithms in A are allowed substantially
less computational power than the precaution algorithms in B, we may want to
pass some additional information z ∈ Z (for some set Z) about the instance
to the recovery algorithm. That is, we may compute an extended precaution
B(P, f, S) = (x, A, z), and in the recovery phase we require A(x, s, z) ∈ Ps.

As a simple example, consider a class of admissible recovery algorithms A
that is restricted to computational effort linear in the size of a certain finite set
of weights, which is part of the input of the RROP instance. Then it might be
helpful to pass an ordered list of those weights on to the recovery algorithm,
because the recovery algorithm will not have the means to calculate the ordered
list itself, but could make use of it.

In Section 3 we present another example, namely rule based delay manage-
ment policies, which shows that it is a perfectly natural idea to preprocess some
values depending on the instance, with which the recovery algorithm becomes a
very simple procedure.

2.3 Limited Recovery Cost

The recovery algorithm A solves a feasibility problem, and we did not consider
any cost incurred by the recovery so far. There are at least two ways to do so
in the framework of recoverable robustness. Let d(ys) be some (possibly vector
valued) function measuring the cost of recovery ys := A(x, s).

– Fixed Limit: Impose a fixed limit λ to d(ys) for all scenarios s.
– Planned Limit: Let λ be a (vector of) variable(s) and part of the planning

solution. Require λ ≥ d(ys) for every scenario s, and let λ ∈ Λ influence the
objective function by some function g : Λ → R.

In the second setting, the planned limit λ to the cost of recovery is a variable
chosen in the planning phase and then passed to the recovery algorithm A. It
is the task of A to respect the constraint λ ≥ d(y), and it is the task of the
planning phase to choose (x, A, λ), such that A will find a recovery for x with
cost less or equal to λ. Therefore, and to be consistent with previous notation
we formulate the cost bound slightly different. Let P ′

s denote the set of feasible
recoveries for scenario s. Then we define Ps by:

A(x, s, λ) ∈ Ps :⇔ d(A(x, s)) ≤ λ ∧ A(x, s) ∈ P ′
s

We obtain the following recovery robust optimization problem with recovery
cost:
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min
(x,A,λ)∈P×A×Λ

f(x) + g(λ)

s.t. ∀s ∈ S : A(x, s, λ) ∈ Ps .

Including the possibility to pass some extra information y ∈ Y to A we obtain:

min
(x,A,z,λ)∈P×A×Z×Λ

f(x) + g(λ)

s.t. ∀s ∈ S : A(x, s, z, λ) ∈ Ps .

These recovery cost aware variants allow for computing an optimal trade-off
between higher flexibility for recovery by a looser upper bound on the recovery
cost, against higher cost in the planning phase. This is conceptually close to
two-stage stochastic programming, however, we do not calculate an expectation
of the second stage cost, but adjust a common upper bound on the recovery
cost. This type of problem still has a purely deterministic objective. The linear
recovery robust programs discussed later are an example of this type of RROP.

3 Recovery Robust Timetabling

Punctual trains are probably the first thing a layman will expect from robust-
ness in railways. Reliable technology and well trained staff highly contribute to
increased punctuality. Nevertheless, modern railway systems still feature small
disturbances in every-day operations.

A typical example for a disturbance is a prolonged stop at a station because
of a jammed door. A disturbance is a seminal event in the sense that the dis-
turbance may cause several delays in the system but is not itself caused by
other delays. Informing passengers about the reason for a delay affecting them,
railway service providers sometimes do not distinguish between disturbances,
i.e., seminal events, and delays that are themselves consequences of some initial
disturbance. We will use the term disturbance exclusively for initial changes of
planning data. A delay is any difference between the planned point in time for
an event and the time the event actually takes place. We also speak of negative
delay, when an event takes place earlier than planned.

A good timetable is furnished with buffers to absorb small disturbances, such
that they do not affect the planned arrival times at all, or that they cause
only few delays in the whole system. Those buffer times come at the expense
of longer, planned travel times. Hence they must not be introduced excessively.
Delay resistant timetabling is about increasing the planned travel times as little
as possible, while guaranteeing the consequences of small disturbances to be
limited.

We will now show how delay resistant timetabling can be formulated as a
recovery robust optimization problem. We actually show that a robust version
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of timetabling is only reasonable, if it is understood as a recovery robust op-
timization problem. Moreover, we show how recoverable robustness integrates
timetabling and the so-called delay management. Delay management is the term
coined for the set of operational decisions reacting to concrete disturbances, i.e.,
the recovery actions. Its integration with timetabling is an important step for-
ward for delay resistant timetabling, which can be formalized by the notion of
recoverable robustness.

Step O. The original problem is the deterministic timetabling problem. It exists
in many versions that differ in the level of modeling detail, the objective function,
or whether periodic or aperiodic plans are desired. The virtues of recovery robust
timetables can already be shown for a simple version.

A Simple Timetabling Problem. The basic mathematical model that stands to
reason for timetabling problems is the so-called Event-Activity Model or Fea-
sible Differential Problem [13]. A timetable assigns points in time for certain
events, i.e., arrivals and departures of trains. This assignment is feasible, if the
differences in time between two related events are large enough, to allow for the
activities relating them. For example, the arrival of a train must be scheduled
sufficiently after its departure at the previous station. Likewise, transfers of pas-
sengers require the arrival of the feeder train and the departure of the transfer
train to take place in the right time order and with a time difference at least
large enough to allow for the passengers to change trains. We now describe a
basic version of this model.

The input for our version of timetabling is a directed graph G = (V, E)
together with a non-negative function t : E → R+ on the arc set. The nodes of
the graph V = VAR∪VDP model arrival events (VAR) and departure events (VDP)
of trains at stations. The arc set can be partitioned into three sets representing
traveling of a train from one station to the next, EDR, stopping of a train at a
station, EST, and transfers of passengers from one train to another at the same
station, ETF. For travel arcs e = (i, j) ∈ EDR we have i ∈ VDP and j ∈ VAR,
for the two other types e = (i, j) ∈ EST ∪ ETF the contrary holds: i ∈ VAR
and j ∈ VDP. The function t(e) expresses the minimum time required for the
action corresponding to e = (i, j), in other words the minimum time between
event i and event j. For example, for a travel arc e the value of the function t(e)
expresses the technical travel time between the two stations.

A feasible timetable is a non-negative vector π ∈ R
|V |
+ such that t(e) ≤ πj −πi

for all e = (i, j) ∈ E. W.l.o.g. we can assume that G is acyclic.
For the objective function we are given a non-negative weight function w :

E → R+, where we = w(e) states how many passengers travel along arc e, i.e.,
are in the train during the execution of that action, or change trains according
to that transfer arc. An optimal timetable is a feasible timetable that minimizes
the total planned (or nominal) travel time of the passengers:∑

e=(i,j)∈E

we(πj − πi).
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Thus the data for the original problem can be encoded in a triple (G, t, w),
containing the event-activity graph G, the arc length function t, and a cost
function on the arcs w. The original problem can formulated as a linear program:

min
∑

e=(i,j)∈E

wa(πj − πi)

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E

π ≥ 0

Step S. We assume uncertainty in the time needed for traveling and stopping.
Those actions typically produce small disturbances. For a scenario s we are
given a function ts : E → R+, with the properties ts(e) ≥ t(e) for all e ∈ E,
and ts(e) = t(e) for all e ∈ ETF. As we only want to consider scenarios with
small disturbances, we restrict to those scenarios where ts(e) − t(e) ≤ Δe, for
some small, scenario independent constant Δe. In a linear program one can
scale each row, i.e., multiply all matrix entries of the row and the corresponding
component of the right-hand side vector by a positive scalar, without changing
the set of feasible solutions. Therefore, we can assume w.l.o.g. Δe = Δ for all
e ∈ E. Additionally, we require that not too many disturbances occur at the
same time, i.e., in every scenario for all but k arcs e ∈ E we have ts(e) = t(e).

Of course, there are situations in practice where larger disturbances occur.
But it is not reasonable to prepare for such catastrophic events in the published
timetable.

Strict Robustness. The above restrictions to the scenario set can be very strong,
in particular, if we choose k = 1. But even for such a strongly limited scenario
set strict robustness leads to unacceptably conservative timetables. Namely, the
strict robust problem can be formulated as the following linear program:

min
∑

e=(i,j)∈E

we(πj − πi)

s.t. πj − πi ≥ t(e) + Δ ∀e = (i, j) ∈ E

π ≥ 0

In other words, even if we assume that in every scenario at most one arc takes
Δ time units longer, we have to construct a timetable as if all (traveling and
stopping) arcs were Δ time units longer. This phenomenon yields solutions so
conservative, that classical robust programming is ruled out for timetabling.
Indeed, delay resistant timetabling has so far been addressed by stochastic pro-
gramming [12,17] only. These approaches suffer from strong limitations to the
size of solvable problems.
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The real world expectation towards delay resistant timetables includes that
the timetable can be adjusted slightly during its operation. But a strict robust
program looks for timetables that can be operated unchanged despite distur-
bances. This makes the plans too conservative even for very restricted scenario
sets. Robust timetabling is naturally recovery robust timetabling as we defined
it. Naturally, a railway timetable has to be robust against small disturbances
and for limited recovery.

Step R. The recovery of a timetable is called delay management. The two central
means of delay management are delaying events and canceling transfers. Delaying
an event means to propagate the delay through the network. Canceling a transfer
means to inhibit this propagation at the expense of some passengers loosing their
connection.

Pure delay propagation seems not deserve the name recovery at all. But recall
that if delay propagation is not captured in the model, as in the strict robust
model, the solutions become necessarily over-conservative. Delay is a form of
recovery, and though it is a basic, it is a very important.

Actually, delay management has several other possibilities for recovery. For
example, one may cancel train trips, re-route the trains, or re-route the passen-
gers by advising them to use an alternative connection, or hope that they will
figure such a possibility themselves. Moreover, delay management has to pay
respect to several other aspects of the transportation system. For example, the
shifts of the on-board crews are affected by delays. These in turn may be subject
to subtile regulations by law or contracts and general terms of employment.

We initially adopt a quite simple perspective to delay management gradually
increasing the complexity of the model. First we concentrate on delay, later on
delay and broken transfers. The latter means plan with respect to delay manage-
ment decisions, i.e., decision whether a train shall wait for delayed transferring
passengers, or not in order to remain itself on time. Even basic delay manage-
ment decision lead to PSPACE-hard models.

Roughly speaking, for a PSPACE-hard problem we cannot even recognize an
optimal solution, when it is given to us, nor can we compare two solutions sug-
gested to us. (See below for details on the complexity class PSPACE.) Therefore,
we describe a variant that yields simpler models and is useful in railway practice.

Simple Recovery Robust Timetabling. First, we describe a model where the re-
covery can only delay the events but cannot cancel transfers. This is not a recov-
ery in the ordinary understanding of the word. The recovery is simply the delay
propagation. But this simple recovery already rids us from the conservatism trap
of strict robustness.

In the recovery phase, when the scenario s and its actual traveling and stop-
ping times ts are known, we construct a disposition timetable πs ∈ R

|V |
+ fulfilling

the following feasibility condition:

– The disposition timetable πs of scenario s must be feasible for ts, i.e.,

∀e = (i, j) ∈ E : πs
j − πs

i ≥ ts(e).
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These inequalities define the set (actually, the polytope) Ps of feasible
recoveries in scenario s.

If this was the complete set of restrictions to the recovery, every timetable would
be recoverable. We set up limits to the recovery algorithms:

TTC. The disposition timetable is bounded by the original timetable in a very
strict manner: Trains must not depart earlier than scheduled, i.e.,

∀e ∈ EDP : πs(e) ≥ π(e).

This is what we call the timetabling condition.
L1. We want the sum of the delays of all arrival events to be limited. Therefore

assume we are also given a weight function � : VAR → R+ that states how
many passengers reach their final destination by the arrival event i. We
fix a limit λ1 ≥ 0 and require:∑

i∈VAR

�(i) (πs
i − πi) ≤ λ1.

L2. One may additionally want to limit the delay for each arrival separately,
ensuring that no passenger will experience an extreme delay exceeding
some fixed λ2 ≥ 0, i.e.:

∀i ∈ VAR : πs
i − πi ≤ λ2.

In our model a recovery algorithm A ∈ A must respect all three limits. The
bounds λ1 and λ2 can be fixed a priori, or made part of the objective function.
In this way upper bounds on the recovery cost can be incorporated into the
optimization process. For a timetabling problem (G, t, w) and a function � :
VAR → R+ and constants g1, g2 ≥ 0 and an integer k we can describe the first
timetabling RROP by the following linear program:

min
∑

e=(i,j)∈E

we(πj − πi) + g1 · λ1 + g2 · λ2

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E (1)
πs

j − πs
i ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ E (2)
πs

i ≥ πi ∀s ∈ S, ∀i ∈ VDP (3)∑
i∈VAR

�(i) (πs
i − πi) ≤ λ1 ∀s ∈ S (4)

πs
i − πi ≤ λ2 ∀s ∈ S, ∀i ∈ VAR (5)

λ{1,2}, πs, π ≥ 0

The set of scenarios S in this description is defined via the set of all functions
ts : E → R+ which fulfill the following four conditions from Step S:

ts(e) ≥ t(e) ∀e ∈ E
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ts(e) ≤ t(e) + Δ ∀e ∈ E

ts(e) = t(e) ∀e ∈ ETF

|{e ∈ E : ts(e) �= t(e)}| ≤ k

In our terminology Inequality (1) defines P , Inequality (2) defines Ps, Inequalities
(3) to (5) express limits to the action of the algorithm, namely, that the recovery
may not deviate to much from the original solution. In detail (3) models the TTC,
(4) ensures condition L1 and (5) condition L2.

Here and in the remainder of the example we use mathematical programs
to express concisely the problems under consideration. These programs are not
necessarily the right approach to solve the problems. Note that the above linear
program is a scenario expansion and therefore too large to be solved for instances
of relevant scale. In Section 4, we will devise a general result that allows us to
reformulate such scenario expansions in a compact way. Thereby, the recovery
robust timetabling problem becomes efficiently solvable.

Breaking Connections. In practice delay management allows for a second kind
of recovery. It is possible to cancel transfers in order to stop the propagation of
delay through the network. We now include the possibility to cancel transfers
into the recovery of our model.

Again we consider a simple version for explanatory purposes. A transfer arc
e can be removed from the graph G at a fixed cost g3 ≥ 0 multiplied with the
weight we. With a sufficiently large constant M we obtain a mixed integer linear
program representing this model:

min
∑

e=(i,j)∈E

we(πj − πi) + g1 · λ1 + g2 · λ2 + g3 · λ3

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E (6)
πs

j − πs
i ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ EDR ∪ EST (7)

πs
j − πs

i + Mxs
e ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ ETF (8)
πs

i ≥ πi ∀s ∈ S, ∀i ∈ VDP (9)∑
i∈VAR

�(i) (πs
i − πi) ≤ λ1 ∀s ∈ S (10)

πs
i − πi ≤ λ2 ∀s ∈ S, ∀i ∈ VAR (11)∑

e∈ETF

wex
s
e ≤ λ3 ∀s ∈ S (12)

λ{1,2,3}, πs, π ≥ 0

xs ∈ {0, 1}|ETF|

In our terminology Inequality 6 defines P . Inequalities 7 and 8 define Ps for every
s. Again Inequalities 9 to 11 express limits to the actions that can be taken by the
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recovery algorithms. These are limits to the deviation of the recovered solution
πs from the original solution π.

3.1 Computationally Limited Recovery Algorithms

So far we imposed limits on the actions of the recovery algorithms. But delay
management is a real-time task. Decisions must be taken in very short time.
Thus it makes sense to impose further restrictions on the computational power
of the recovery algorithm. Note that in general such restrictions cannot be ex-
pressed by a mathematical program as above. We now give two examples for
computationally restricted classes of recovery algorithms.

The Online Character of Delay Management. In fact the above model has a fun-
damental weakness. It assumes that the recovered solution, i.e., the disposition
timetable πs = A(π, s) can be chosen after s is known completely. This is of
course not the case for real-world delay management: The disturbances evolve
over time, and delay management must take decisions before the whole scenario
is known. This means that the algorithms in A must be non-anticipative1.

PSPACE-hardness of Delay Management. The multistage structure of some de-
lay management models, namely that uncertain events and dispatching deci-
sions alternate, makes these problems extraordinarily hard. Even quite restricted
models have been shown to be PSPACE-hard [2].

The complexity class PSPACE contains those decision problems that can be
decided with the use of memory space limited by a polynomial in the input size.
The class NP is contained in PSPACE, because in polynomial time only poly-
nomial space can be used. It is widely assumed that NP is a proper subset of
PSPACE. Given this, one cannot decide in polynomial time that a given solution
to a PSPACE-hard problem is feasible, because else the solution would be a cer-
tificate and therefore the problem in NP. (Note, that the complexity terminology
is formulated for decision problems. Feasibility in this context means, that the
delay management solution is feasible in the usual sense and in addition has cost
less or equal to some constant.) Thereby it becomes even difficult to assess the
quality of a solution for delay management, or to compare the quality of two
competing delay management strategies.

Rule Based Delay Management. The previous observation is quite discouraging.
How shall one design a recovery robust timetable, if the recovery itself is already
PSPACE-hard? We now dicuss a special restriction to the delay management
1 Given a mapping of the random variables in the input and of the decision variables

to some partially ordered set (i.e., a timeline). Then a (deterministic) algorithm is
non-anticipative, if for any pair of scenarios s and s′ and every decision variable x,
the algorithm in both scenarios chooses the same value for x, whenever s and s′ are
equal in all data entries that are mapped to elements less or equal to the image of x.
This means that the algorithm can at no time anticipate and react to data revealed
later.
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that is motivated by the real-world railway application and turns each decision
whether to wait or not to wait into a constant time solvable question. The model
keeps the multistage character, but the resulting recovery robust timetabling
problem is solvable by a mixed integer program.

Delay management decisions must be taken very quickly. Moreover, as delay
management is a very sensitive topic for passengers’ satisfaction the transparency
of delay management decisions can be very valuable. A passenger might be more
willing to accept a decision, that is based on explicit rules, about how long,
e.g., a local train waits for a high-speed train, than to accept the outcome of
some non-transparent heuristic or optimization procedure. For these two reasons,
computational limits for real-time decisions and transparency for the passenger,
one may want to restrict the class A of admissible recovery algorithms to rule
based delay management. The idea is that trains will wait for at most a certain
time for the trains connecting to them. These maximal waiting times depend
on the type of involved trains. For example, a local train might wait 10 minutes
for a high-speed train, but vice versa the waiting time could be zero. Fixing the
maximal waiting times determines the delay management (within the assumed
modeling precision). But, which waiting times are best? Does the asymmetry in
the example make sense? We want to optimize the waiting rules, i.e., the delay
management together with the timetable.

Assume we distinguish between m types of trains in the system, i.e., we have
a mapping μ : V → {1, . . . , m} of the events onto the train types. A rule based
delay management policy A is specified by a matrix M = MA ∈ R

m×m
+ . The y-

th entry in the x-th row mxy is the maximum time a departure event of train type
y will be postponed in order to ensure transfer from a type x train. Formally, a
rule based delay management policy schedules a departure event j at the earliest
time πs

j satisfying

πs
j ≥ πs

i + ts(i, j) ∀(i, j) ∈ EST

πs
j ≥ min{πs

i + ts(i, j), πj + mμ(i)μ(j)} ∀(i, j) ∈ ETF

πs
j ≥ πj .

Arrival events are scheduled as early as possible respecting TTC and the trav-
eling times in scenario s:

πs
j = max({πj} ∪ {πs

i + ts(i, j)|(i, j) ∈ EDR}) ∀j ∈ VAR

Actually, the maximum is taken over two elements, as only one traveling arc
(i, j) leads to each arrival event j.

Moreover, for a transfer arc (i, j) ∈ ETF the canceling variable x(i,j) is set to
1 if and only if the result of the above rule gives πs

i + t(i, j) > πs
j .

It is easy to see that such a recovery algorithm gives a feasible recovery for
every (even non-restricted) scenario s and every solution π ∈ P . If we restrict
A to the class of rule based delay management policies, the RROP consists in
finding a m×m matrix M and a schedule π that minimizes an objective function
like those in the models we presented earlier:
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min
M,π,λ{1,2,3}

∑
e=(i,j)∈E

we(πj − πi) + g1 · λ1 + g2 · λ2 + g3 · λ3

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E (13)
∀s ∈ S, ∀j ∈ VDP : (14)

πs
j = max({πs

i + ts(i, j) |(i, j) ∈ EST}
∪ max{min{πs

i + ts(i, j), πj + mμ(i)μ(j)}|(i, j) ∈ ETF}
∪ {πj})

∀s ∈ S, ∀j ∈ VAR : (15)
πs

j = max({πj}
∪ {πs

i + ts(i, j)|(i, j) ∈ EDR}
πs

j − πs
i + Mxs

e ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ ETF (16)∑
i∈VAR

�(i) (πs
i − πi) ≤ λ1 ∀s ∈ S (17)

πs
i − πi ≤ λ2 ∀s ∈ S, ∀i ∈ VAR (18)∑

e∈ETF

wex
s
e ≤ λ3 ∀s ∈ S (19)

λ{1,2,3}, πs, π ≥ 0

xs ∈ {0, 1}|ETF|

The timetabling condition is ensured automatically by the rule based delay man-
agement described in Equations (14) and (15).

Rule based delay management algorithms are non-anticipative. The formula-
tion we give even enforces the following behavior: The departure πi of a train
A will be delayed for transferring passengers from train B (with arrival πj) for
the maximal waiting time mμ(i)μ(j), even if before time πi +mμ(i)μ(j) it becomes
known that train B will arrive too late for its passengers to reach train A at
time πi + mμ(i)μ(j). As formulated, a train will wait the due time, even if the
awaited train is hopelessly delayed. In practice, delay managers might handle
such a situation a little less short minded.

Rule based delay management is a good example for the idea of integrating
robust planning and simple recovery. Consider the following example of two local
trains, A and B, and one high-speed train C. Passengers transfer from A to B,
and from B to C. Assume local trains wait 7 minutes for each other, but high-
speed trains wait at most 2 minutes for local trains. Then train A being late
could force train B to loose its important connection to the high-speed train
C. Indeed, this could happen, if the timetable and the waiting times are not
attuned. In the planning, we might not be willing to increase the time a high-
speed train waits, but instead plan a sufficient buffer for the transfer from B to C.
This example illustrates that buffer times and waiting rules must be constructed
jointly in order to attain optimal delay resistance.
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4 Linear Programming Recovery

In this section we specialize to RROPs linear programs as recovery. We call such
an RROP a Linear Recovery Robust Problem (LRP). We show how LRPs can
be solved for certain scenario sets. This leads us to a special case, namely robust
network buffering, which entails the robust timetabling problem. Towards the
end of this section we turn to a variant of LRPs, where the planning problem is
an integer linear program.

4.1 Linear Recovery Robust Programs

Given a linear program (min c′x, s.t. A0x ≥ b0) with m rows and n variables. We
seek solutions to this problem that can be recovered by limited means in a certain
limited set of disturbance scenarios. The situation in a disturbance scenario s
is described by a set of linear inequalities, notably, by a matrix As and a right-
hand side bs. We slightly abuse notation when we say that the scenario set S
contains a scenario (As, bs), which, strictly speaking, is the image of scenario
s under the random variable (A, b). We will discuss later more precisely the
scenario sets considered in this analysis. For the linear programming case the
limited possibility to recover is defined via a recovery matrix Â, a recovery cost
d, and a recovery budget D. A vector x is recovery robust, if for all (As, bs) in
the scenario set S exists y such that Asx + Ây ≥ bs, and d′y ≤ D. Further, we
require that x is feasible for the original problem without recovery, i.e., A0x ≥ b0.
The problem then reads:

inf
x

c′x

s.t. A0x ≥ b0

∀(A, b) ∈ S ∃y ∈ Rn̂ :
Ax + Ây ≥ b

d′y ≤ D

When S is a closed set in the vector space R
(m×n+m) we know that either the

infimum is attained, or the problem is unbounded. This case constitutes the
principal object of our considerations, the Linear Recovery Robust Program:

Definition 5. Let A0 be an m × n-matrix called the nominal matrix, b0 be an
m-dimensional vector called the nominal right-hand side, c be an n-dimensional
vector called the nominal cost vector, Â be an m× n̂-matrix called the recovery
matrix, d be an n̂-dimensional vector called the recovery cost vector, and D be a
non-negative number called the recovery budget. Further let S be a closed set of
pairs of m×n-matrices and m-dimensional vectors, called the scenario set. Then
the following optimization problem is called a Linear Recovery Robust Program
(LRP) over S:
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min
x

c′x

s.t. A0x ≥ b0

∀(A, b) ∈ S ∃y ∈ Rn̂ :
Ax + Ây ≥ b

d′y ≤ D

We refer to the A as the planning matrix although it is a quantified variable.
The planning matrix describes how the planning x influences the feasibility in
the scenario. The vectors y ∈ Rn̂ with d′y ≤ D are called the admissible recovery
vectors. Note that we do not call S a scenario space, because primarily there is
no probability distribution given for it.

We are not unnecessarily restrictive, when requiring the same number of rows
for A0 as for Â and A. If this is not the case, nothing in what follows is affected,
except may be readability.

If a solution x can be recovered by an admissible recovery y in a certain
scenario s, we say x covers s.

To any LRP we can associate a linear program, which we call the scenario
expansion of the LRP:

min
x,(ys)s∈S

c′x

s.t. A0x ≥ b0

Asx + Âys ≥ bs ∀s ∈ S

d′ys ≤ D ∀s ∈ S

Note that in this formulation the set S is comprised of the scenarios s, whereas
in the original formulation it contains (As, bs). This ambiguity of S is convenient
and should cause no confusion to the reader. Further, note that in the scenario
expansion of an LRP each recovery variable ys is indexed by its scenario. Thus
the solution vector to the scenario expansion contains for each scenario a separate
copy of the recovery vector. In the original formulation the recovery vector y is
not indexed with a scenario, because the formulation is not a linear program but
a logical expression where y is an existence quantified variable.

The scenario expansion is a first possibility to solve the LRP. But, usually,
the scenario set is too big to yield a solvable scenario expansion. The scenario
sets, which we will consider, are not even finite.

We will frequently use an intuitive reformulation of an LRP, that can be
interpreted as a game of a planning player setting x, a scenario player choosing
(A, b), and a recovery player deciding on the variable y. The players act one after
the other:

inf
x

c′x s.t. A0x ≥ b0 ∧ D ≥
{

sup
(A,b)∈S

{
inf
y

d′y s.t. Ax + Ây ≥ b

}}
(20)

with constant vectors c ∈ Rn, b0 ∈ Rm and d ∈ Rn̂, constant matrices A0 ∈ Rm,n

and Â ∈ R
m,n̂, and variables x ∈ R

n, A ∈ R
m,n, b ∈ R

m and y ∈ R
n̂.
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Again, when it is clear that either the extrema exist or the problem is un-
bounded we use the following notation:

min
x

c′x s.t. A0x ≥ b0 ∧ D ≥
{

max
(A,b)∈S

{
min

y
d′y s.t. Ax + Ây ≥ b

}}
(21)

Observe, that an LRP, its scenario expansion and its 3-player formulation have
the same feasible set of planning solutions x. Whereas, the set of recovery vec-
tors y, that may occur as a response to some scenario (As, bs) in the 3-player
formulation, is only a subset of the set of feasible second stage solutions ys in
the scenario expansion. The 3-player formulation restricts the later set to those
responses y, which are minimal in d′y. But this does not affect the feasible set
for x.

The formalism of Problem (21) can also be used to express, that x and y are
required to be non-negative. But it is a lot more well arranged, if we state such
conditions separately:

min
x

c′x s.t. A0x ≥ b0 ∧ D ≥
{

max
(A,b)∈S

{
min
y≥0

d′y s.t. Ax + Ây ≥ b

}}
(22)

and

min
x≥0

c′x s.t. A0x ≥ b0 ∧ D ≥
{

max
(A,b)∈S

{
min
y≥0

d′y s.t. Ax + Ây ≥ b

}}
(23)

The purely deterministic condition A0x ≥ b0, which we call nominal feasibility
condition, could also be expressed implicitly by means of S and Â. But, this
would severely obstruct readability. In some applications the nominal feasibility
plays an important role. For example, a delay resistant timetable shall be feasible
for the nominal data, i.e., it must be possible to operate the published timetable
unchanged at least under standard conditions. Else, trains could be scheduled
in the published timetable x to depart earlier from a station than they arrive
there. However, in this rather technical section the nominal feasibility plays a
minor role.

Let us mention some extensions of the model. The original problem may as
well be an integer or mixed integer linear program,

min
x=(x̂,x̄),x̄∈Z

c′x s.t. A0x ≥ b0 ∧D ≥
{

max
(A,b)∈S

{
min

y
d′y s.t. Ax + Ây ≥ b

}}
(24)

or some other optimization problem over a set of feasible solutions P and an
objective function c : R

n → R, in case the disturbances are confined to the
right-hand side:

inf
f∈P

c(f) s.t. D ≥
{

sup
b∈S

{
inf
y

d′y s.t. f + Ây ≥ b

}}
(25)

with a fixed planning matrix A.
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Using the concept of planned limits to the recovery cost (cf. p. 6), the budget
D can also play the role of a variable:

min
D≥0, x

c′x + D s.t. A0x ≥ b0 ∧

D ≥
{
max(A,b)∈S

{
miny d′y s.t. Ax + Ây ≥ b

}}
(26)

In case of right-hand side disturbances only, we can again formulate:

inf
f∈P,D≥0

c(f) + D s.t. D ≥
{

sup
b∈S

{
inf
y

d′y s.t. f + Ây ≥ b

}}
(27)

4.2 Solving Right-Hand Side LRPs

In this part we show that some scenario sets for the right-hand side data of an
LRP yield problems that can be solved by a relatively small linear program.

Consider again the 3-player formulation of an LRP (21). Let P := {x ∈
Rn : A0x ≤ b0} be the polytope of nominally feasible solutions. If we fix the
strategies of the first two players, i.e., the variables x and (A, b), we get the
recovery problem of the LRP: min d′y subject to Ây ≥ b − Ax. The dual of
the latter is maxζ≥0(b − Ax)′ζ s.t. Â′ζ ≤ d. The recovery problem is a linear
program. Thus, we have strong duality, and replacing this linear program by its
dual in expression (21) will not change the problem for the players optimizing x
respectively (A, b).

min
x∈P

c′x s.t. D ≥
{

max
(A,b)∈S

{
max
ζ≥0

(b − Ax)′ζ s.t. Â′ζ ≤ d

}}
⇔

min
x∈P

c′x s.t. D ≥
{

max
(A,b)∈S,ζ≥0

(b − Ax)′ζ s.t. Â′ζ ≤ d

}
(28)

Consider the maximization problem in formulation (28) for a fixed x, thus find
max(A,b)∈S,ζ≥0(b−Ax)′ζ subject to Â′ζ ≤ d. Assume for a moment ‖b−Ax‖1 ≤
Δ. In this case, for each fixed vector ζ the maximum will be attained, if we can set
sign(ζi)(b−Ax)i = Δ for i with |ζi| = ‖ζ‖∞ and 0 else. In other words, under the
previous assumptions (b − Ax)′ζ attains its maximum when (b − Ax) = Δei for
some suitable i ∈ [m]. Therefore, if we have ‖b−Ax‖1 ≤ Δ, we can reformulate
problem (28):

min
x∈P

c′x s.t. ∀i ∈ [m] : D ≥
{

max
ζ≥0

(Δei)′ζ s.t. Â′ζ ≤ d

}
⇔

min
x∈P

c′x s.t. ∀i ∈ [m] : D ≥
{

min
y

d′y s.t. Ây ≥ Δei

}
(29)

The at first sight awkward condition ‖b − Ax‖1 ≤ Δ is naturally met if only
the right-hand side data changes, and is limited in the set S1 := {(As, bs) :
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‖b∗ − bs‖1 ≤ Δ, A∗ = A}}. For an LRP over S1 formulation (29) is equivalent
to a linear program of size O(m(n + n̂ · m)):

min
x∈P

c′x

s.t. ∀i ∈ [m] :
Ax + Âyi ≥ b + Δei

d′yi − D ≥ 0

Next, consider the scenario set

Sk := {(As, bs) : ‖b∗ − bs‖1 ≤ k · Δ, ‖b∗ − bs‖∞ ≤ Δ, A∗ = A}

for arbitrary k > 1. By the same token, the maximization over ζ in formula-
tion (28) for fixed x and (A, b) can be achieved, by setting the maximal �k�
entries of the vector (b − Ax) equal to 1 and the �k�-th entry equal to k − �k�.
For example, when k is integer, we can replace the scenario set Sk by those

(
k
m

)
scenarios, where exactly k entries of b deviate maximally from b∗, and the other
entries equal their reference value b∗i . So, we have:

Theorem 1. An LRP over Sk can be solved by a linear program of size
polynomial in n, n̂, m, and

(
k
m

)
.

Corollary 1. An LRP over S1 can be solved by a linear program of size
polynomial in n, n̂, and m.

Corollary 2. For fixed k an LRP over Sk can be solved by a linear program of
size polynomial in n, n̂, and m.

Of course, in practice this approach will only work, when k is very small.
The above reasoning can give a fruitful hint to approach RROPs in general.

First, try to find a small subset of the scenario set, which contains the worst-
case scenarios, and then optimize over this set instead of the whole scenario
set. In the above setting we can achieve this very easily, because the recovery
problem fulfills strong duality. If the recovery problem is an integer program this
approach fails in general. Still, one can try to find a small set of potential worst
case scenarios, to replace the original scenario set. Unlike the recovery problem,
the planning problem may well be an integer or mixed integer program, as we
show in the following.

For the manipulations of the formulations the linearity of P, Ax ≥ b or c is
immaterial. So we can extend the above reasoning to non-linear optimization
problems. Let c : Rn → R be a real function, P ′ a set of feasible solutions and
{gi : Rn → R}i∈[m] be a family of real functions, and assume that extrema in
the resulting RROP are either attained, or the problem is unbounded. For the
scenario set S1 of right-hand side disturbances we have with the above notation
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minx∈P ′ c(x)

s.t. D ≥
{

maxb∈S1

{
miny d′y s.t. g(x) + Ây ≥ b

}}
⇔

minx∈P ′ c(x)
s.t. ∀i ∈ [m] : g(x) + Âyi ≥ b∗ + Δei

D − d′yi ≥ 0

In particular we are interested in the case of an integer linear program (min c′x,
Ax ≥ b, x ∈ Zn) with right-hand side uncertainty. We get as its recovery robust
version over S1.

minx∈Zn c′x
s.t. A0x ≥ b0

D ≥
{

maxb∈S1

{
miny d′y s.t. A∗x + Ây ≥ b

}}
⇔

minx∈Z c′x
s.t. A0x ≥ b0

∀i ∈ [m] : A∗x + Âyi ≥ b∗ + Δei

D − d′yi ≥ 0

Let A∗ = A0 and b∗ = b0. Defining f := A∗x − b∗ we can rewrite the previous
program as

min(x,f)∈Zn+m c̃′(x, f)
A∗x − f = b∗ (30)

s.t. ∀i ∈ [m] : f + Âyi ≥ Δei

d′yi − D ≥ 0
f ≥ 0

With a suitable cost vector c̃. Note that the original integer linear program
corresponds with the scenario part of the program only via the slack variable f .
In other words, for solving the recovery robust version the solving procedures
for the original, deterministic, integer linear optimization problem can be left
untouched. We only have to flange a set of linear inequalities to it. The f variables
function as means of communication between the original integer problem, where
they correspond to the slack in each row, and the linear part, in which their effect
on robustness is evaluated. In the next part we will consider this communication
situation for an even more specialized type of recovery.

4.3 Robust Network Buffering

Let us use Corollary 1 for the Simple Robust Timetabling problem with right-
hand side uncertainty limited in S1. Set g2 = 0 to drop the limit to the maximal
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delay at a node. By the corollary the Simple Robust Timetabling problem over
S1 reads as follows. Let χa be the indicator function of a, i.e., χa(x) = 1 if a = x,
and zero else.

min
π,f

∑
e=(i,j)∈E w(e)(πj − πi)

s.t. πj − πi + fe = t(e), ∀e = (i, j) ∈ E (31)
∀s ∈ E :

fe + ys
j − ys

i ≥ Δ · χe(s), ∀e = (i, j) ∈ E

D − d′ys ≥ 0
f, ys ≥ 0

Periodic Timetabling. Many service providers operate periodic schedules. This
means that—during some period of the day—equivalent events, e.g., all depar-
tures of the trains of a certain line at a certain station take place in a periodic or
almost periodic manner. For example, at a subway station each departure will
take place exactly, e.g., 10 minutes after the departure of the previous train. Like-
wise, most timetables for long-distances connections are constructed such that
if a train leaves from the central station of X to central station of Y at 12:43h,
then the next train to Y will leave the central station of X at (roughly) 13:43h,
the next at 14:34h, and so on. This means that the long-distance connection
from X to Y is operated with a period of one hour.

In case of periodic timetables, we do not plan the single events as in the
aperiodic case, but we plan periodic events. For these we schedule a periodic time,
which is understood modulo the period of the system. (There may also be differnt
periods in the same system, but we restrict our consideration here to the case of a
single, global period.) Assume we assign the value 5 to the variable corresponding
to the periodic event that trains of line A depart from station S towards station
S′. Let the period T of the system be one hour. Then—in every hour—five
minutes past the hour a train of line A will depart from station S towards station
S′. This leads to the Periodic Event Scheduling Problem (PESP)2, which can
be formulated as a mixed integer program of the following form. Let G(A, V ) be
a directed graph and three functions w, u, l : A → R on the arc set. Then the
following problem is called a PESP.

min
k∈Z|A|,π

∑
e=(i,j)∈A w(e)(πj − πi + keT )

s.t. u(e) ≥ πj − πi + keT ≥ l(e), ∀e = (i, j) ∈ A

This type of problem has a broad modeling power. For a comprehensive study
on periodic timetabling we refer the interested reader to [10].

To construct an RROP from an original problem, which is a PESP we have to
make a choice, whether we interpret the disturbances as periodic disturbances,

2 The Periodic Event Scheduling Problem was introduced in [14]. For details confer
also [10].
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like a construction site, that will slow down the traffic at a certain point for the
whole day, or as aperiodic events, like a jammed door at a stopping event. For
periodic disturbances we get the following program.

min
k∈Z|A|,π,f

∑
e=(i,j)∈A w(e)(πj − πi + keT )

s.t. πj − πi + fe + keT = l(e), ∀e = (i, j) ∈ A

πj − πi + f̄e + keT = u(e), ∀e = (i, j) ∈ A

∀s ∈ A, Ξ ∈ {0, 1} :
fe + ys

j − ys
i ≥ Δ · χe(i) · Ξ, ∀e = (i, j) ∈ A

f̄e + ys
i − ys

j ≥ Δ · χe(i) · (1 − Ξ), ∀e = (i, j) ∈ A

D − d′ys ≥ 0
ys ≥ 0

Note that the right-hand sides are still constants, though they look like a quadratic
term.

Again, the deterministic PESP instance can be flanged with a polynomial size
linear program to ensure robustness. This structure can be helpful for solving
such a problem, as the specialized solving techniques for the original integer
program can be integrated.

As an example for this approach confer [3], where a specialized technique for
an advanced platforming problem was combined with robust network buffering to
get a recovery robust platforming. The method was tested on real-world data of
Italian railway stations. The propagated delay through the stations was reduced
by high double-digit percentages without loss in the primal objective, which is
to maximizes the number of trains the station handles.

General Network Buffering. The general situation is the following: We are given
an optimization problem on a network. The solution to that problem will be
operated under disturbances. The disturbances propagate through the network
in a way depending on the solution of the optimization problem. The solution of
the original optimization problem x translates into a buffer vector f on the arcs
of the network. Changing perspective, the original problem with its variables x
is a cost oracle: If we fix a certain buffering f , the optimization will construct
the cheapest x vector to ensure the buffering f . Let us summarize the general
scheme.

Given an optimization problem P with the following features:

– A directed graph G.
– An unknown, limited, nonnegative vector of disturbances on the arcs, or on

the nodes, or both.
– The disturbances cause costs on the arcs, or on the nodes, or both, which

propagate through the network.
– A vector of absorbing potential on the arcs, the nodes, or both can be

attributed to each solution of P .
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If we further restrict the disturbance vector to lie in S1, we get the following
by the above considerations: The recovery robust version of P , in which the
propagated cost must be kept below a fixed budget D, can be formulated as the
original problem P plus a linear program quadratic in the size of G.

5 Platforming: A Real-World Study

In the previous section we have shown that a method to solve a linear, or convex,
or linear integer optimization problem can be extended to a method for the
recovery robust version of the problem with right-hand side disturbances in
an efficient and simple way, provided that the recovery can be described by a
linear program. Those conditions are fulfilled in particular for network buffering
problems. In this case the recovery is the propagation of a disturbance along a
network. The propagation in the network depends on the solution of the original
optimization problem. But this original optimization problem itself need not be
a linear program.

The advantage of this method for robustness is threefold:

– It yields an efficient algorithm, respectively it does not add to the complexity
of the original problem.

– The method provides for solutions which possess a precisely defined level of
robustness (in contrast to heuristics).

– The method is easy to implement. One can reuse any existing approach for
the original problem and supplement it with a linear program for recoverable
robustness.

To exemplify these advantages we describe a study on real-world data for the
train platforming problem (cf. [3]).

The train platforming problem considers a single station and a given set of
trains together with their planned departure and arrival times at the station
area. The goal is a conflict-free assignment of a pattern to as many of these
trains as possible. A pattern consists of a track in the station together with an
arrival path to this track and a departure path from the track. The assignment is
conflict free, if no track has a time interval during which two trains are assigned
to that track, and no pair of simultaneously used paths are in spacial conflict. In
the current study the spacial conflicts of paths are given explicitly in a conflict
graph.

It is straight forward to formulate this problem as an integer linear program
with (0, 1)-decision variables for each pair of a pattern and a train. Of course,
there are several possibilities to phrase this problem as an integer linear program.
In fact, the version used in the study is not trivial, but constructed carefully to
achieve a powerful model that allows to solve large-scale instances. (For details
we refer the reader to [3].) Independent of this particular study one might use
a different integer programming formulation, e.g., in case the path conflicts are
not given as a conflict graph, but implicitly by a digraph representing the in-
frastructure network. But the particular program is not relevant to the general
approach on which we focus here.
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The original program is reused without changes in the recovery robust pro-
gram. To effect robustness we add a linear program modeling the delay propa-
gation and a set of constraints that link the variables of the delay propagation
to those of the original program. The resulting program has three sections:

1. The original train platforming program to optimize the assignment of
patterns to trains (planning sub-model).

2. The linear program to model the delay propagation network (recovery
sub-model).

3. The constraints linking the nominal solution to the buffer values on the delay
propagation network (linking constraints).

In the delay propagation network each train has three vertices corresponding
to the three events in which it will free up each of the three resources assigned
to it (arrival path, platform, and departure path). Naturally, two vertices are
connected by an arc whenever delay at the train-resource pair corresponding
to the head-node may propagate onto the tail-node for a specic nominal solu-
tion. A delay in freeing up the platform for a train may propagate to a delay in
freeing up the same platform for other trains. Something similar applies to ar-
rival/departure paths, more precisely for paths that are in conflict. Every arc in
the delay propagation network has an associated buffer value, which represents
the maximum amount of delay that it is able to absorb without any propaga-
tion effect. Intuitively, a buffer corresponds to the slack among a given pair of
resource occupation time intervals.

The objective function of the original problem contains three parts that are
weighted (in the order given below) such that the optimal solution will also be
lexicographically optimal.

1. The total number of trains that can be assigned.
2. Certain trains have a preferred set of tracks to one of which they should be

assigned if possible.
3. A heuristic for robustness punishing any use of pairs of paths that are

in spacial conflict during time windows that are not overlapping (i.e. the
assignment is conflict-free) but close to each other.

For the recovery robust version we drop the third, heuristic objective and replace
it by the exact objective to minimize the maximum delay that can occur. We
use the scenario set S1 to get a compact model for the robust platforming. It
turns out that the second objective plays a role for none of the two methods in
any of the considered instances, i.e., the trains that are assigned to tracks can
always be assigned to their preferred tracks. Moreover, the real-world instances
are such that it is not possible to assign tracks to all given trains, neither in the
standard nor in the recovery robust model.

Note that by the weighting of the objective function this implies, that a
conflict-free assignment of all trains is physically impossible. But, in all consid-
ered instances the recovery robust method assigns as many trains as the original
method, i.e., as much as possible in general. Thus the two methods yield as-
signments that are equivalent in all given deterministic criteria. But they differ
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Table 1. Results for Palermo Centrale

time # trains not D CPU time D CPU time Diff. D Diff. D
window platformed nom nom (sec) RR RR (sec) in %

A: 00:00-07:30 0 646 7 479 46 167 25.85
B: 07:30-09:00 2 729 7 579 3826 150 20.58
C: 09:00-11:00 0 487 6 356 143 131 26.90
D: 11:00-13:30 2 591 6 384 228 207 35.03
E: 13:30-15:30 1 710 9 516 2217 194 27.32
F: 15:30-18:00 1 560 7 480 18 80 14.29
G: 18:00-00:00 3 465 11 378 64 87 18.71

significantly in delay propagation. In all instances the recovery robust method
yields assignments with a double-digit percentage of delay reduction. In one case
the reduction is almost 50%. Averaged over all instances the reduction is roughly
1/4.

Table 1 gives the details of the study for the station Palermo Centrale. The
study considers seven time windows during the day at the station Palermo Cen-
trale. These are given in the first column of Table 1. Further, the short cut nom
denotes values referring to the original method, whereas RR stands for the re-
sults of the recovery robust approach. For both the table states the CPU time
required to find the solution and the maximal propagated delay. Further, we
give the difference in propagated delay as absolute value (in minutes) and as
percentage of delay propagation in the original method’s solution. The number
of non-assigned trains is given without reference to the method, because both
methods achieve the same value here.

6 Conclusion

We have introduced recoverable robustness as an alternative concept for opti-
mization under imperfect information. It is motivated by practical problems like
delay resistant timetabling, for which classical concepts like stochastic program-
ming and robust optimization prove inappropriate. We describe the model in full
generality and demonstrate how different types of delay resistant timetabling
problems can be modeled in terms of recoverable robustness. Further, we spe-
cialized the general concept of recoverable robustness to linear recovery robust
programs. For these we provide an efficient algorithm in case of right-hand side
disturbances. By means of this general method delay resistant timetabling prob-
lems can be solved efficiently. This is exemplified by a real world application of
our method in a study [3] on recovery robust platforming. The platformings con-
structed with our method achieve maximal possible throughput at the stations,
but drastically reduces the delay propagation in comparison to a state-of-the-art
method.
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Abstract. In practical optimization problems, disturbances to a given
instance are unavoidable due to unpredictable events which can occur
when the system is running. In order to face these situations, many ap-
proaches have been proposed during the last years in the area of robust
optimization. The basic idea of robustness is to provide a solution which
is able to keep feasibility even if the input instance is disturbed, at the
cost of optimality. However, the notion of robustness in every day life
is much broader than that pursued in the area of robust optimization
so far. In fact, robustness is not always suitable unless some recovery
strategies are introduced. Recovery strategies are some capabilities that
can be used when disturbing events occur, in order to keep the feasibil-
ity of the pre-computed solution. This suggests to study robustness and
recoverability in a unified framework. Recently, a first tentative of uni-
fying the notions of robustness and recoverability into a new integrated
notion of recoverable robustness has been done in the context of railway
optimization.

In this paper, we review the recent algorithmic results achieved within
the recoverable robustness model in order to evaluate the effectiveness
of this model. To this aim, we concentrate our attention on two prob-
lems arising in the area of railway optimization: the shunting problem
and the timetabling problem. The former problem regards the reorder-
ing of freight train cars over hump yards while the latter one consists in
finding passenger train timetables in order to minimize the overall pas-
sengers traveling time. We also report on a generalization of recoverable
robustness called multi-stage recoverable robustness which aims to extend
recoverable robustness when multiple recovery phases are required.
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1 Introduction

Many real world applications are characterized by a strategic planning phase
and an operational phase. The main difference between the two phases resides
in the time in which they are applied. The strategic planning phase aims to plan
how to optimize the use of the available resources according to some objective
function before the system starts to operate. The operational phase aims to
have immediate reaction to disturbing events that can occur when the system is
running. In general, the objectives of strategic planning and operational phase
might be in conflict with each other.

In these scenarios, it is preferable to define a strategic plan which is able to
keep feasibility even if the input is disturbed instead of a plan which optimizes
the available resources for the undisturbed input. It follows that disturbances
have to be considered both in the strategic planning phase and in the operational
phase.

To face disturbances in the operational phase, the approaches used in the lit-
erature are mainly based on the concept of online algorithms [5]. An online re-
covery strategy has to be developed when unpredictable disturbances in planned
operations occur and before the entire sequence of disturbances is known. The
goal is to react fast while retaining as much as possible of the quality of an
optimal solution, that is, a solution that would have been achieved if the entire
sequence of disturbances was known in advance.

To face disturbances in the strategic planning phase, the approaches used
in the literature are mainly based on stochastic programming and robust opti-
mization. Within stochastic programming (e.g., see [4, 27, 32]), there are two
different approaches: chance constrained programming aims to find a solution
that satisfies the constraints with high probability, while in multi-stage stochas-
tic programming, an initial solution is computed in the first stage, and each time
new random data is revealed, a recourse action is taken. However, stochastic
programming requires detailed knowledge on the probability distributions of the
disturbances which could be not available.

In robust optimization (e.g., see [1, 2, 3, 16]), the objective is purely de-
terministic. It aims to find a solution to an optimization problem which keeps
feasibility when some disturbing events occur. For example, the notion of strict
robustness introduced in [3] requires that a solution to an optimization prob-
lem has to be feasible for all admissible scenarios of a given set. The solution
gained by this approach is fixed in the strategic planning phase and it does not
need to be changed when disturbances occur. However, as the solution is fixed
independently of the actual scenario, robust optimization leads to solutions that
are too conservative and thus too expensive in many applications. One approach
to compensate this disadvantage is the light robustness introduced in [17, 18].
This approach adds slacks to the constraints. A solution is considered robust if
it satisfies these relaxed constraints.

Despite the increasing interest, a final answer to the question “what is robust-
ness for an optimization problem?” has not yet been given. In fact, the notion
of robustness in every day life is much broader than that pursued in the area of
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robust optimization so far. The basic idea of robustness is given by a problem
and some knowledge imperfection which one has to cope with. That is, the so-
lution provided for a given instance of the problem must hold even though some
changes in such an instance occur. This kind of robustness is not always suit-
able unless some recovery strategies are introduced. Moreover, in many practical
applications, there might be the possibility to intervene before some scheduled
operations are being performed.

Usually, modifications that may occur are restricted to some specified subset
of all possible ones. It is reasonable to require that, if a disturbance occurs, one
would like to maintain as much as possible a pre-computed solution taking into
account some “soft” recovery strategies. Recovering should be simple and fast.
Moreover, there are cases where recoverability is necessary in order to still have
some useful solution for a problem. A solution that undergoes slight changes is
called robust even though it could require the use of some recovery capabilities.
This suggests to study robustness and recoverability in a unified way.

A first tentative of unifying the notions of robustness and recoverability into a
new integrated notion of recoverable robustness has been done in [29, 30] in the
context of railway optimization. This new notion describes robustness with re-
spect to (limited) recovery capabilities. It integrates robustness and recoverabil-
ity as the solutions are required to be recoverable. The basic idea of recoverable
robustness is to compute solutions that are robust against a limited set of sce-
narios and for a limited recovery. The quality of the robust solution is measured
by its price of robustness that determines the trade-off between an optimal and
a robust solution. Given an instance i of a problem, the price of robustness of i is
the ratio between the cost of an optimal robust solution and the cost of the op-
timal (non robust) solution. The price of robustness of a recoverable robustness
problem is then given by a worst case analysis, i.e., it is the maximum price of
robustness among all the instances of the problem. Hence the price of robustness
of a problem provides an upper bound to the loss that one has to pay in order
to introduce recoverable robustness in an optimization problem by fixing some
disturbances and recovery capabilities. In [29, 30], the aim is to provide the best
robust solution, i.e., the one that minimizes the price of robustness.

In [6], algorithmic aspects of recoverable robustness have been highlighted
by giving the definition of robust algorithm and of the corresponding price of
robustness. A robust algorithm is an algorithm which provides a robust solution
for each instance of a problem. The price of robustness of a robust algorithm Arob

is given by the worst case ratio, among all the possible instances of the problem,
between the cost of the solution computed by Arob for an instance i and the
optimal (non robust) solution for i. The price of robustness of a recoverable
robustness problem defined in [6] is then given by the price of the best possible
robust algorithm which solves the given problem. Hence, the price of robustness
of a problem here provides the loss that cannot be avoided by a robust algorithm,
fixed some disturbances and recovery capabilities. If the price of robustness of
an algorithm matches this minimal loss, then the algorithm is called optimal. If
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it is equal to 1, then no price has to be paid in order to achieve robustness and
hence such an algorithm is called exact.

Notice that, given a recoverable robust problem P , if there exists a robust
algorithm that is able to find an optimal robust solution for any instance of P ,
then the price of robustness of P defined in [29, 30] and that defined in [6] are
equivalent. However, the model given in [6] is more suitable for analyzing robust
algorithms than that in [29, 30] as the former concentrates on finding robust
algorithms and comparing them by using their prices of robustness, while the
latter concentrates on finding optimal robust solutions and recovery algorithms.

In this paper, we intend to review the algorithmic results achieved within the
recoverable robustness model given in [6] in order to evaluate the effectiveness of
this model in both practical and theoretical frameworks. To this aim, we focus
our attention on two problems arising in the area of railway optimization: the
shunting problem and the timetabling problem. The former problem regards the
reordering of freight train cars over hump yards while the latter one consists in
finding passenger train timetables in order to minimize the overall passengers
traveling time. We also report on a generalization of the recoverable robustness
model called multi-stage recoverable robustness model proposed in [11]. It aims
to extend recoverable robustness in the case of multiple disturbances which can
arise in many practical optimization problems and require a sequence of recovery
phases.

This paper is organized as follows: in the next section we report the recoverable
robustness model as given in [6]. In Section 3 we survey results on the shunting
problem obtained in [6, 8]. In Section 4 we survey results on the timetabling
problem obtained in [7, 9, 10, 11, 12]. In Section 5 we report the multi-stage
recoverable robustness model given in [11] and provide an example on how to
apply this model in the context of timetabling. Finally, in Section 6, we ana-
lyze the given models and propose some possible extensions, open problems and
future research directions.

2 Recoverable Robustness Model

In this section, we report the recoverable robustness model given in [6] which is
based on that given in [29, 30].

The recoverable robustness model aims to introduce robustness in an opti-
mization problem. In the remainder, an optimization problem P is characterized
by the following parameters.

– I, the set of instances of P ;
– F , a function that associates to any instance i ∈ I the set of all feasible

solutions for i;
– f : S → R≥0, the objective function of P , where S =

⋃
i∈I F (i) is the set of

all feasible solutions for P .

Note that, for several optimization problems, the objective function is defined
to have values in R. However, it is possible to turn any such problem into an
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equivalent one having values in R≥0. Without loss of generality, from now on,
minimization problems are considered. Additional concepts to introduce robust-
ness requirements for a minimization problem P are needed:

– M : I → 2I – a modification function for instances of P . This function
models the following case. Let i ∈ I be the considered input to the problem
P , and let s ∈ S be the planned solution for i. A disturbance is meant as a
modification to the input i, and such a modification can be seen as a new
input j ∈ I. Typically, the modification j depends on the current input i, and
this fact is modeled by the constraint j ∈ M(i). Hence, given i ∈ I, M(i)
represents the set of instances of P that can be obtained by applying all
possible modifications to i. Of course, when a disturbance j ∈ M(i) occurs,
a new solution s′ ∈ F (j) has to be recomputed for P .

– Arec – a class of recovery algorithms for P . Algorithms in Arec represent the
capability of recovering against disturbances. Since in a real-world problem
the capability of recovering is limited in some way, the class Arec can be
defined in terms of some kind of restrictions, such as feasibility or algorithmic
restrictions. An element Arec ∈ Arec works as follows: given a solution s for
P and a modification j ∈ M(i) of the current instance i, then Arec(s, j) = s′

where s′ ∈ S represents the recovered solution for P .
In what follows, some examples of recovery algorithm classes, used in the

remainder of this paper, are given.
Class 1 : Strict robustness. It models the case in which there are no

recovery capabilities, that is, each algorithm Arec ∈ Arec fulfills the
following constraint:

∀i ∈ I, ∀s ∈ S, ∀j ∈ M(i), Arec(s, j) = s. (1)

Class 2 : Bounded distance from the original solution. Arec is defined
by imposing a constraint on the solutions provided by the recovery algo-
rithms. In particular, the new (recovered) solutions computed by a recov-
ery algorithm must not deviate too much from the original solution s, ac-
cording to a distance measure d. Formally, given a real number Δ ∈ R and
a distance function d : S×S → R, each element Arec in such a class fulfills
the following constraint:

∀i ∈ I, ∀s ∈ S, ∀j ∈ M(i), d(s, Arec(s, j)) ≤ Δ. (2)

Note that Class 1 is contained in Class 2. In fact, for any distance
function d, if Δ = 0, then constraints (1) and (2) are equivalent.

Class 3 : Bounded computational power. Arec is defined by bounding
the computational power of recovery algorithms. Formally, given a func-
tion t : S× I → N, each element Arec in such a class fulfills the following
constraint:

∀i ∈ I, ∀s ∈ S, ∀j ∈ M(i),

Arec(s, j) must be computed in O(t(s, j)) time.



Recoverable Robustness in Shunting and Timetabling 33

Given an optimization problem P , it can be turned into a recoverable robustness
problem P as described below.

Definition 1. A recoverable robustness problem P is defined by the triple
(P, M, Arec). All the recoverable robustness problems form the class RRP.

Definition 2. Let P = (P, M, Arec) ∈ RRP. Given an instance i ∈ I of P , an
element s ∈ F (i) is a feasible solution for i with respect to P if and only if the
following relationship holds:

∃Arec ∈ Arec : ∀j ∈ M(i), Arec(s, j) ∈ F (j).

In other words, s ∈ F (i) is feasible for i with respect to P if it can be recovered
by applying some algorithm Arec ∈ Arec for each possible disturbance j ∈ M(i).
The set of all the feasible solutions for i with respect to P is denoted by FP (i).
Formally:

FP(i) = {s ∈ F (i) : s is a feasible solution for i with respect to P}.

In the remainder, solutions in FP(i) are also called robust solutions for i with
respect to the original problem P .

It is worth to mention that, if Arec is Class 1, i.e., it is the class of algorithms
that do not change the solution s, then the robustness problem P = (P, M, Arec)
represents the so-called strict robustness problem [3]. Note that in this case, given
an instance i and a robust solution s for i, then for each possible modification
j ∈ M(i), s ∈ F (j). This means that, since Arec has no capability of recovering
against possible disturbances, a robust solution has to “absorb” any possible
disturbance.

Definition 3. Let P = (P, M, Arec) ∈ RRP. A robust algorithm for P is any
algorithm Arob such that, for each i ∈ I, Arob(i) is a robust solution for i with
respect to P.

A possible scenario for this situation is depicted in Figure 1. Note that, if s̄
denotes the optimal solution for P when the input instance is i, it is possible
that s̄ is not in FP(i); this implies that every robust solution for i may be
“very far” from the optimal solution s̄. A “good” robust algorithm should find
the best solution in FP(i) for P , for each possible input i ∈ I. The quality
of a robust algorithm is measured by the so-called price of robustness. The
following definitions report the concepts of the price of robustness of both a
robust algorithm and a recoverable robustness problem.

Definition 4. Let P ∈ RRP. The price of robustness of a robust algorithm Arob

for P is

Prob(P , Arob) = max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}
.

Definition 5. Let P ∈ RRP. The price of robustness of P is

Prob(P) = min{Prob(P , Arob) : Arob is a robust algorithm for P}.
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F (i)

i

s̄

FP(i)
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M(i)

s

I

Arob(i)

F (j)

s′Arec ∈ Arec

Fig. 1. A scenario for recoverable robustness problem: I , set of instances; S, set of
solutions; M(i), set of instances obtainable after a small modification; F (i) and F (j),
set of feasible solutions for i and j respectively; FP(i), set of recoverable solutions for i;
s̄, optimal non-robust solution for i; s, robust solution obtained by Arob; s′, recovered
solution obtained by an algorithm Arec ∈ Arec after disturbance j ∈ M(i)

Definition 6. Let P ∈ RRP and let Arob be a robust algorithm for P. Then,

– Arob is P-optimal if Prob(P , Arob) = Prob(P);
– Arob is exact if Prob(P , Arob) = 1.

A solution provided by an optimal (exact) robust algorithm is called an optimal
(exact) solution. Notice that an exact algorithm is P-optimal.

The price of robustness of an algorithm Arob represents the quality of the so-
lutions it provides. In particular, it measures the relative worst case loss induced
by the value of the solutions provided by Arob compared to the value of the
optimal (non robust) ones. The price of robustness of the best robust algorithm
defines the price of robustness of the problem. This value represents the minimal
loss due to the introduction of robustness given by some disturbances and by
some recovery capabilities.

3 Recoverable Robust Shunting

This section is devoted to survey on recent results concerning robustness in
shunting problems [6, 8]. First the shunting over a hump yard model provided
in [23, 24, 25, 26] is described, and then, results obtained in this area in terms
of recoverable robustness are reported.

3.1 Shunting over a Hump Yard

The problem is specified by an input train Tin composed of n cars and an output
train Tout given by a permutation of Tin cars. Each car is assigned with a unique
label. The considered hump yard appears as in Figure 2. The hump yard is
made of an input track where trains arrive, and of a set of switches by which
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classification tracks

switches
hump

w

c

IN/OUT track

Fig. 2. Hump yard infrastructure composed of w classification tracks, each of size c

cars composing the incoming train can be shunted over the available classification
tracks. A classification track is approached from a single side and works like a
stack. The set of classification tracks is denoted by W , the size of W is denoted
by w, and the size of each track, i.e., the number of cars that can fit into a
classification track, by c. Therefore, an instance of the problem is given by a
quadruple (Tin, Tout, W, c).

The hump yard supports a sorting operation by repeatedly doing the so called
track pull operation which is made up of the following steps:

– connect the cars of one classification track into a train, called pseudotrain;
– pull the pseudotrain over the hump;
– disconnect the cars in the pseudotrain;
– push the pseudotrain slowly over the hump, yielding single cars that run

down the hill from the hump towards the classification tracks;
– control the switches such that every single car goes to a specified track.

The goal is to reorder Tin according to Tout by repeatedly performing the track
pull operation (an example of reordering by means of track pulls can be seen in
Figure 3). The cost of the reordering is measured by the number of track pulls.
Notice that at least one track pull must be performed as the hump yard is used
only when one has to reorder or to park a train.

As in [24], three different variants of the shunting over a hump yard problem
are considered by specifying constraints for parameters c and w. Namely,

Sh1: c bounded, w unbounded;
Sh2: c unbounded, w bounded;
Sh3: c and w unbounded.

When convenient, Sh is used to refer to any of the above problems.
In [24] polynomial time algorithms for each of the above problems is given.

In particular, a 2-approximation algorithm for Sh1 and optimal algorithms for
Sh2 and Sh3 are provided.

In what follows, the notation used in [6, 8, 24, 25, 26] to represent a shunting
plan is described. A shunting plan specifies (i) a sequence S of h track pull
operations given by the tracks whose cars are pulled, and (ii) for every pulled
car which track it is sent to. Note that, if one track is pulled several times, then
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it appears in S more than once. Of course, if there is no limit on the number of
tracks (w ≥ h), then there is no need to reuse a track. Given S, the itinerary of
a car can be described by the sequence of tracks it visits. For the task at hand,
it is convenient to specify this sequence as a bit-string or code b1 · · · bh where
the different bits stand for the pulled tracks and there is a 1 if and only if the
car visits that track. Now, if track i is pulled, then the new destination of a car
is given by the position of its next 1 in its code, i.e. the lowest index j > i such
that bj = 1. A shunting plan must specify a track pull sequence S and it has
to associate a code to each car. The length of each code is determined by the
length of S and cars may share the same code.

An example is shown in Figure 3. The sequence of track pulls is given by
S = {1, 2, 3, 4, 5} from right to left among classification tracks. In the example
c = 3 and the number of track pulls is set to 5. The set of codes of length 5
provided by a feasible solution satisfies the property that at each position at most
three codes have the corresponding bit set to 1. This implements the constraint
on c and implies that at most eleven different codes can be generated. Cars from
11 down to 1 are associated with codes 00000, 00001, 00010, 00011, 00100, 00110,
01000, 01100, 10000, 10001, and 11000, respectively. Figure 3 shows the sequence
of configurations obtained after each track pull and reorder of the pulled cars
according to their codes. The algorithm used in the example has been proposed
in [24]. From now on, such an algorithm will be called Aout. It computes a
shunting plan when c is bounded and the input train is unknown in advance. In
particular, Aout provides n different codes, one for each car in Tin. Each code
specifies the route that the corresponding car has to perform among the shunting
yard in order to be placed in the desired position according to Tout. In [24] it
has been shown that, when the order of cars in the incoming train is not known
in advance, Aout is optimal with respect to the minimum number of track pulls.
For the sake of simplicity, it is assumed that Tout is composed on a track not
used for shunting operations but that can contain the full train.

Note that, when Tin is known in advance, two cars might be assigned with
the same code. This would imply that they will have the same relative order in
Tout as in Tin. Two cars that are consecutive in Tout can get the same code if
they are in the correct order in Tin. A maximal set of cars in Tout that has this
property is called a chain. In a shunting plan, for each code x, a pure chain is
the set of all cars associated with x.

In practice, the number of chains in Tin along with the hump yard structure
represent the key quantity with respect to the number of track pulls that must be
performed by a shunting plan in order to obtain the desired Tout. The following
further notation is used: opt(k, c, w) ≥ 1 is the number of track pulls needed
by an optimal shunting plan in order to manage k cars/chains over a hump
yard made of w tracks, each of size c (for Sh1 and Sh3, w = ∞, while for
Sh2 and Sh3, c = ∞); apx(k, c, w) is the best known approximation algorithm
for the corresponding shunting problem, and apxr is its approximation ratio
(when it is clear by the context, parameters equal to ∞ are removed from the
previous notation); C denotes the set of codes assigned by an algorithm to the
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Fig. 3. Example of a shunting plan when c = 3 and the number of track pulls is set
to 5. Cars from 11 down to 1 are associated with codes 00000, 00001, 00010, 00011,
00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively. Tout is composed outside
the hump yard and the corresponding track is not shown.

cars. Furthermore, for every instance i = (Tin, Tout, W, c), ri and ni denote the
number of chains and cars in Tin, respectively.

3.2 Robust Algorithms

This section presents a surveys of the results obtained in [6, 8] on robust algo-
rithms for the shunting problems described above. For example, Sh1 is defined
by

– I: set of quadruples (Tin, Tout, W, c) where train Tin is defined as a sequence
of cars and train Tout is a permutation of Tin;

– F (i): set of all feasible solutions for a given instance i ≡ (Tin, Tout, W, c)
∈ I, i.e., any sequence of track pulls combined with a set of codes (one per
car) that transforms Tin in Tout when c is bounded;

– f : number of track pulls.

Regarding the modification function M , four different possibilities are
considered:

M1: one car can arrive in an unexpected incoming position;
M2: the incoming train contains one additional unexpected car;
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M3: the incoming train contains one car less than expected;
M4: one of the classification tracks composing the hump yard may fault.

Concerning recovery algorithms, the following three classes are considered:

A1
rec: ∀A ∈ A1

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(s, j) = s, i.e., there are no
recovery strategies to apply;

A2
rec: ∀A ∈ A2

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(s, j) = s′ where s′ may differ
from s by at most one code without affecting the track pull sequence, i.e., at
most one pure chain may be assigned with a new code of the same length;

A3
rec: ∀A ∈ A3

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(s, j) = s′ where s′ may differ
from s by all the set of codes without affecting the track pull sequence, i.e.,
every pure chain may be assigned with a new code of the same length.

The class A
1
rec is equivalent to Class 1, while classes A

2
rec and A

3
rec belong to

Class 2.
Note that each of the three defined classes of recovery algorithms does not

affect the scheduled track pulls sequence defined by a robust shunting algorithm.
This is motivated by the fact that modifying the track pulls sequence is expensive
as it requires to change the switches setting or increase the number of track pulls.
Recovery capabilities, instead, should be cheap operations since they cannot be
planned a priori but are used during the operational phase. By definition, every
upper bound to the price of robustness of each shunting problem with A1

rec holds
for the same problem with A2

rec as well as every upper bound obtained with A2
rec

holds for A3
rec. Moreover, every lower bound obtained with A3

rec holds for A2
rec

as well as every lower bound obtained with A
2
rec holds for A

1
rec.

Given a shunting problem Sh, a modification function M and a class of re-
covery algorithms Arec, the corresponding recoverable robustness problem is
denoted by SH = (Sh, M, Arec). Tables 1, 2 and 3 summarize the obtained re-
sults for all the considered robustness problems arising from Sh1, Sh2 and Sh3,
respectively. In these tables, Arob denotes the best robust algorithm given in
[6, 8] for the specific problem at hand.

3.3 One Car in an Unexpected Incoming Position

In order to better understand the ideas behind recoverable robust algorithms,
in this section, more details are provided concerning the case when the mod-
ification function M1 is considered. Given an instance i = (Tin, Tout, W, c) of
a shunting optimization problem Sh, let M1(i) represent all possible instances
(T ′

in, Tout, W, c) obtainable from i by changing the position of just one car in Tin.
The following lemma describes which practical situation a robust plan must be
able to absorb/recover with respect to a car incoming at an unexpected position.

Lemma 1 ([6, 8]). Let v be a car arriving at the hump yard in a different
position than expected. At most one additional pure chain must be managed with
respect to the expected case.
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Table 1. Price of Robustness for Sh1

Shunting Problem Sh1

Modifications A
1
rec A

2
rec A

3
rec

M1 Prob(SH) ≥ max
i∈I

opt(ni,c)
opt(ri,c)

≥ 2 ≥ 2

Prob(SH, Arob) max
i∈I

opt(ni,c)
opt(ri,c)

3 3

M2 Prob(SH) indefinite ≥ max
i∈I

opt
(

ni+1
3 ,c

)
opt(ri,c)

≥ max
i∈I

opt(ri+1,c)
opt(ri,c)

Prob(SH, Arob) no solution max
i∈I

opt(ni+1,c−1)+1
opt(ri,c)

max
i∈I

apx(ri+1,c)
opt(ri,c)

M3 Prob(SH) 1 1 1
Prob(SH, Arob) 2 2 2

M4 Prob(SH) indefinite ≥ 2 ≥ 2
Prob(SH, Arob) no solution |C| + 1 3

Table 2. Price of Robustness for Sh2

Shunting Problem Sh2

Modifications A
1
rec A

2
rec A

3
rec

M1 Prob(SH) ≥ max
i∈I

opt(ni,w)
opt(ri,w)

≥ 2 ≥ 2

Prob(SH, Arob) max
i∈I

opt(ni,w)
opt(ri,w)

2 2

M2 Prob(SH) indefinite ≥ max
i∈I

opt
(

ni+1
3 ,w

)
opt(ri,w)

≥ max
i∈I

opt(ri+1,w)
opt(ri,w)

Prob(SH, Arob) no solution max
i∈I

opt(ni+1,w)+1
opt(ri,w)

max
i∈I

opt(ri+1,w)
opt(ri,w)

M3 Prob(SH) 1 1 1
Prob(SH, Arob) 1 1 1

M4 Prob(SH) indefinite indefinite ≥ 2
Prob(SH, Arob) no solution no solution max

i∈I

opt(ri,w−1)+1
opt(ri,w)

Table 3. Price of Robustness for Sh3

Shunting Problem Sh3

Modifications A
1
rec A

2
rec A

3
rec

M1 Prob(SH) ≥ max
i∈I

opt(ni)
opt(ri)

≥ 2 ≥ 2

Prob(SH, Arob) max
i∈I

opt(ni)
opt(ri)

2 2

M2 Prob(SH) indefinite ≥ max
i∈I

opt((ni+1)/3)
opt(ri)

≥ max
i∈I

opt(ri+1)
opt(ri)

Prob(SH, Arob) no solution max
i∈I

opt(ni+1)+1
opt(ri)

max
i∈I

opt(ri+1)
opt(ri)

M3 Prob(SH) 1 1 1
Prob(SH, Arob) 1 1 1

M4 Prob(SH) indefinite ≥ 2 ≥ 2
Prob(SH, Arob) no solution |C| + 1 2
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In a shunting plan, Lemma 1 is reflected in the need of at most one additional
code. However, if the class of available recovery algorithm is A1

rec, then the
following lemma indicates how an optimal robust algorithm should behave.

Lemma 2 ([6, 8]). Let SH = (Sh, M1, A
1
rec). For every input train Tin, any

robust shunting algorithm Arob must provide a unique code to each car of Tin.

Let us consider problem Sh1. As mentioned in Section 3.1, two solutions have
been proposed in [24] for this case. The first solution provides a 2-approximation
of the optimum, i.e., apxr = 2, but it cannot be used for robustness purposes
when considering A1

rec since it does not fulfill the condition of Lemma 2. The
second solution, i.e., algorithm Aout described before, turns out to be SH-optimal
when SH = (Sh, M1, A

1
rec).

Theorem 1 ([6, 8]). Let SH = (Sh1, M1, A
1
rec). There exists a SH-optimal

robust shunting algorithm Arob such that Prob(SH, Arob) = max
i∈I

opt(ni,c)
opt(ri,c)

.

Even though Aout is SH-optimal for A1
rec, i.e., Prob(SH, Arob) = Prob(SH), it is

not exact since it could exist an instance i such that opt(ni, c) > opt(ri, c).

4 Recoverable Robust Timetabling

In this section, we survey results in [7, 9, 10, 11, 12] concerning recoverable
robust problems in the field of timetabling. First, we describe the problems
at hand and then, for each problem, we give its complexity and some solving
algorithms. Furthermore, we report experimental results in real world scenarios.

The problem of timetable planning (in short timetabling) arises in the strategic
planning phase for transportation systems and requires to compute a timetable
for passenger trains that determines minimal passengers traveling times. How-
ever, many disturbing events can occur during the operational phase that might
completely change the scheduled activities. The main effect of such disturbing
events is the arising of delays, caused by malfunctioning infrastructure/devices,
special events, or extreme weather conditions. The conflicting objectives of strate-
gic against operational planning are evident in timetable optimization. In fact,
a timetable that lets trains sit at stations for some time will not suffer from
small delays of arriving trains because delayed passengers can still catch poten-
tial connecting trains. On the other hand, big delays can cause passengers to
lose trains and hence imply extra traveling time. The problem of deciding when
to guarantee connections from a delayed train to a connecting train is known in
the literature as delay management problem [15, 19, 20, 21, 22, 33, 34] and has a
twofold impact. On the one hand, if a connection is maintained, the passengers
arriving late still catch their connection, but passengers in the connecting train
now face a delay and may miss subsequent connections. On the other hand, if a
connection is not maintained, the passengers on the departing train are on time,
but those arriving late have to wait for the next train. The latter implies that
the delay can propagate through the railway network. The trade-off between
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these two effects leads to the natural objective of minimizing the overall delay
faced by the total passenger population. Despite its natural formalization, the
problem turns out to be very complicated to be optimally solved. In fact, it has
been shown to be NP-hard in the general case, while it is polynomial in some
particular cases (see [19, 20, 33]).

In railway systems, events and dependencies among events are modeled by
means of an event activity network (see [34]). This is a directed graph where
the vertices represent events (e.g., arrivals or departures of trains) and the arcs
represent activities occurring between events (e.g., waiting in a train, driving
between stations or changing to another train). Event activity networks are a
particular class of Directed Acyclic Graphs (DAGs). Hence, in the remainder of
the section, we will survey on more general results concerning DAGs.

Let us consider a DAG G = (V, A) with one specified vertex v0 such that
there exists a directed path from v0 to each other vertex.

A solution for a timetabling problem requires to assign a time πv to each event
v ∈ V in such a way that all the constraints provided by the set of activities are
respected. In detail, the acyclic timetabling problem is then given as

(TT ) min f(π) =
∑
u∈V

wuπu (3)

such that

πv − πu ≥ La ∀a = (u, v) ∈ A (4)
πu ∈ R

≥0 ∀u ∈ V (5)

where wu ∈ R are weights representing the importance of the corresponding
events and La ∈ R>0 are given lower bounds indicating the minimal duration
that is needed for activity a ∈ A. An instance i of TT is specified by a triple
i = (G, w, L).

In the following, two subproblems of TT are considered:

Timetabling with Nonnegative Node Weights (TT v): In this subproblem,
the weights associated to the vertices are nonnegative. Formally:

(TT v) min f(π) =
∑
u∈V

wuπu

such that

πv − πu ≥ La ∀a = (u, v) ∈ A

πu ∈ R
≥0 ∀u ∈ V

with wu ≥ 0 ∀ u ∈ V .
Timetabling with arc Weights (TT a): In this subproblem, (nonnegative)

weights are associated to arcs instead of vertices. Formally:

(TT a) min farcs(π) =
∑

a=(u,v)∈A

wa(πv − πu)
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such that

πv − πu ≥ La ∀a = (u, v) ∈ A

πu ∈ R
≥0 ∀u ∈ V

with wa ≥ 0 ∀ a ∈ A.

In [11] it has been shown that TT a is a subproblem of TT . In order to turn
problems TT v and TT a into recoverable robustness problems, it is needed to
define a modification function and a class of recovery algorithms.

The modification function is defined by admitting a single delay of at most α
time. It is modelled as an increase of the minimal duration time of the delayed
activity. Formally, given an instance i of TT , M(i) is defined as follows:

M(i) = {(G, w, L′) | ∃ ā ∈ A : Lā ≤ L′
ā ≤ Lā + α and L′

a = La ∀a �= ā} .

In this section, we consider recovery algorithms which are allowed to change the
time of at most Δ events where Δ ∈ N. The class of these algorithms is denoted
by AΔ. Formally:

Limited-Events (AΔ): Given an instance i of TT , a solution π for i and a
modification i′ ∈ M(i), then a solution π′ computed by a recovery algorithm
in AΔ fulfills

|{u ∈ V : π′
u �= πu}| ≤ Δ.

Notice that class AΔ belongs to Class 2.
Throughout this section, we denote by TT v = (TT v, M, AΔ) and TT a =

(TT a, M, AΔ) the robust problems derived from TT v and TT a by imposing the
restriction described above on the recovery algorithms.

A general approach for tackling TT v and TT a is to add a slack time sa to
each activity a, i.e., to find a timetable π such that for each a = (u, v)

πv − πu ≥ La + sa.

It follows that TT v and TT a can be solved in two steps. The first step consists
in finding a slack times assignment s : L → R≥0 which ensures the robustness
for an instance i, while the second step consists in solving the instance i′ of the
(non robust) problem TT obtained by adding s to the minimal duration times
of activities of i. The second step is performed by algorithm Alg+

s defined as
follows.

Algorithm Alg+
s

input: An instance i = (G, w, L) of TT .
algorithm: 1. L̄a := La + sa for all a ∈ A.

2. Solve ī = (G, w, L̄) optimally.

Instead of adding a positive slack time to the lower bounds La, one can also
multiply them with factors ta ≥ 1. This approach is known as proportional
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buffering and has been studied and applied in the context of timetabling [31]. It
leads to the following variant Alg∗t which differs from Alg+

s only in Step 1:

Algorithm Alg∗t
input: An instance i = (G, w, L) of TT .
algorithm: 1. L̄a := ta ∗ La for all a ∈ A.

2. Solve ī = (G, w, L̄) optimally.

A special case of algorithm Alg+
s (Alg∗s, respectively) is Alg+

s̄ (Alg∗s̄) where the
same slack is added (multiplied) to each activity, i.e., s̄ = (s, . . . , s). Given two
positive real numbers a, b, when s = (a, . . . , a) ∈ R|A| and t = (b, . . . , b) ∈ R|A|,
we denote such algorithms by Alg+

a and Alg∗b , respectively. It is intuitively clear
that algorithms Alg+

s and Alg∗t are robust if s is large enough and that the price of
robustness increases in s. These observations are formally stated in the following
lemma (formulated only for Alg+

s , the statement for Alg∗t is similar).

Lemma 3 ([11]). Consider Alg+
s as an algorithm for solving both TT v and

TT a. Then:

1. Alg+
s is robust for Δ = 0 (strict robustness) if sa ≥ α for all a ∈ A.

2. Let Alg+
s be robust. Then Alg+

s′ is robust if s′a ≥ sa for all a ∈ A.
3. The price of robustness is monotone in s. In particular, if Alg+

s1 and Alg+
s2

are robust and s2
a ≥ s1

a for all a ∈ A, then:
– Prob(TT v, Alg+

s1) ≤ Prob(TT v, Alg+
s2).

– Prob(TT a, Alg+
s1) ≤ Prob(TT a, Alg+

s2).

Problem TT (as well as Step 2 of algorithms Alg+
s and Alg∗t ) can be solved in

polynomial time by linear programming, but, if G is a tree or if it is a DAG
and wu ≥ 0 for all u ∈ V , it can be solved by the Critical Path Method (CPM)
of project planning (see e.g. [28]) which requires linear time. This method also
plays an important role in the recovery algorithms in AΔ. Given an instance
i = (G, w, L) of TT , CPM works as follows.

Algorithm CPM

input: An instance i = (G, w, L) of TT .
algorithm: 1. For each v ∈ V

2. if v = vo then πv := 0
3. else πv := max {πu + La : a = (u, v) ∈ A}

The next two subsections are devoted to problems TT v and TT a, respectively.
For each problem, we first give results for general DAGs, then we restrict the
topologies of the graphs to trees or linear graphs.

4.1 Problem TT v

Results for General DAGs. In [11], it has been shown that computing the
price of robustness of problem TT v is NP-hard by a reduction from 3SAT. Fur-
thermore, when the value of Δ is fixed and is not in the input of the problem,



44 S. Cicerone et al.

then computing the price of robustness of such a problem remains NP-hard for
any Δ ≥ 3.

As the problem is NP-hard, non-optimal algorithms with a bounded price
of robustness have been provided. The focus has been posed only on the strict
robustness problem, i.e. the recovery algorithms have been restricted to Class 1
by considering Δ = 0. Note that, if an algorithm is robust for such a problem,
then it is robust also for the problem arising by allowing any Δ > 0. However,
in these cases, the price of robustness of a robust algorithm could be far from
the price of robustness of the problem and hence the solution obtained could
be too expensive. With the aim of finding such solutions, algorithms Alg+

α and
Alg∗γ have been used where γ = (1 + α

Lmin
), α is the maximum delay allowed

and Lmin is the minimum value assigned by function L with respect to all the
possible instances of TT v.

For Δ = 0, every robust algorithm for TT v must provide solutions that assign
a slack time of at least α to each activity. Then, it follows that Alg+

α is a robust
algorithm for TT v. To show that also Alg∗γ is a robust algorithm for TT v, it is
sufficient to observe that for each activity a ∈ A,

γLa = (1 +
α

Lmin
)La = La + α

La

Lmin
≥ La + α.

The following theorem shows the price of robustness of Alg∗γ .

Theorem 2 ([11]). Prob(TT v, Alg∗γ) = 1 + α/Lmin.

It has been shown that for each instance i of TT v, f(Alg+
α (i)) ≤ f(Alg∗γ(i)), that

is, Alg+
α is always better than Alg∗γ . It implies the following result.

Corollary 1 ([11]). Prob(TT v, Alg+
α ) ≤ 1 + α/Lmin.

Results for Trees. In [12, 13, 14], the attention is devoted to the subproblem
of TT v where the DAG G is a tree. In particular, in [12] theoretical results on
this subproblem are given, while in [14] and [13] modelling issues and practical
analysis have been addressed.

The motivation for focussing on trees is that, also in practice, a tree can be
very useful to model dependencies among trains in the particular case where
the railway system considered is a single-line corridor. A corridor is a sequence
of stations, represented by a line, where each station is served by many trains
of different types. Types of trains mostly concern the locations that each train
serves and its maximal speed. For an example, see Figure 4. In these systems,
it is a practical evidence that slow trains wait for faster trains in order to allow
passenger to reach the small stations that are not served by fast trains. This
situation is modelled with the only assumption that the changes of passengers
from one train to another at a station must be guaranteed only when the second
train is starting its journey from the current station.

Let us consider the real world example provided in Figure 4 where three
trains serve the same line. The slowest train, the Espresso, goes from Verona to
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Fig. 4. Example of three trains serving a same line

Bologna, the Interregionale goes from Fortezza to Bologna, and the Euro-City
goes from Brennero to Bologna. The Euro-City starts its journey before all the
other trains, and it arrives at Verona station before the Interregionale. There, the
Espresso is scheduled to start its journey before the Interregionale arrives. Hence,
there is an arc between the Euro-City and the starting event corresponding to the
Interregionale at Fortezza station, and another arc connecting the Euro-City to
the starting event of the Espresso at Verona station. As described above, an arc
which represents a changing activity can only connect one vertex to the head of
a branch. The DAG obtained by this procedure is a tree, the tree corresponding
to the scenario in Figure 4 is shown in Figure 5.

Let T = (V, A) be a tree rooted in v0. If v ∈ V , Tv denotes the subtree of T
rooted in v. Given a subtree Tv, No(Tv) denotes the set of vertices y such that
(x, y) ∈ A, x ∈ Tv and y �∈ Tv; deg(v) denotes |No(Tv)|.

In [12], it has been shown that the problem TT v restricted to trees remains
NP-hard and a pseudo-polynomial time algorithm SAΔ for fixed Δ has been
provided.

The proposed algorithm looks for solutions which assign only slack times of
size α as it has been proved that for any instance, there exists a TT v-optimal
solution which fulfills this condition.

In order to characterize a solution π, the following definition and lemma are
needed.

Definition 7. Given a solution π to TT v and a vertex v ∈ V , a ball is the
maximal subtree Bπ(v) rooted in v such that for each arc a = (x, y) in Bπ(v),
sa = 0.

Euro−City

Interregionale

Espresso

Fig. 5. A tree obtainable from the example provided by Figure 4
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Lemma 4 ([12]). For each instance of TT v, there exists a TT v-optimal solu-
tion such that for each v ∈ V , Bπ(v) cannot be extended by adding any vertex
from No(Bπ(v)) while keeping feasibility and, unless Δ = 0, at most one of two
consecutive arcs has a slack time of α.

For any Δ ≥ 1, there exists a TT v-optimal solution π with the following struc-
ture. By Lemma 4, for each arc a outgoing from the root v0, sa = 0. Then, for
each v ∈ No(v0), π induces a ball Bπ(v) such that |Bπ(v)| ≤ Δ. In particular,
|Bπ(v)| < Δ only if |Tv| < Δ. As a consequence, |Bπ(v0)| ≤ 1 + Δ · deg(v0). For
each arc a = (x, y) with x ∈ Bπ(v0) and y �∈ Bπ(v0), sa = α. By Lemma 4, for
each arc a outgoing from y, sa = 0, and the same arguments used for Bπ(v0)
can be used to characterize Bπ(y).

A possible approach can be that of enumerating all the solutions with the
above structure and choosing the cheapest one. Note that such an approach has
a computational time which is exponential in the number of nodes. In what
follows we report the recursive approach of [12] which avoids to consider a large
number of solutions and thus reduces the computational time to a polynomial
in n. The algorithm works as follows. It assigns π(v0) = 0 and no slack times to
arcs outgoing v0. Then, for each v ∈ No(v0) it has to decide which subtree of Tv

belongs to Bπ(v0). To do this, it evaluates the cost, in terms of the value of the
objective function, of any possible subtree B of Tv rooted in v of size at most Δ
and then chooses the subtree which implies the cheapest solution.

For each already defined ball Bπ, this procedure is then repeated for each
vertex v ∈ No(Bπ) which does not belong to an already defined ball by using v
as the root.

The cost of a subtree B rooted in v is computed as the value of the objective
function when B is chosen as a ball rooted in v. That is, for each arc a ∈ B,
sa = 0; for each a = (x, y) ∈ A with x ∈ B and y �∈ B, sa = α; and for each
vertex in Ty, an optimal solution is chosen. Computing this cost requires to know
the optimal solution of a subtree, this is done by recursively using the algorithm.

The following theorems provide the theoretical results concerning the
performances of SAΔ, Δ ≥ 1, on a tree with n vertices.

Theorem 3 ([12]).

– SAΔ is TT v-optimal;
– Prob(TT v, SAΔ) ≤ 1 + α

2 ;
– Prob(TT v) ≥ 1 + α

Δ+1 ;
– SAΔ requires O(nΔ+1) time and O(n2) space.

In [12], faster algorithms for the special cases of Δ ∈ {0, 1, 2} have been provided.
In particular, when Δ ∈ {0, 1} (Δ = 2, resp.), linear (quadratic, resp.) time
algorithms have been provided.

In [13, 14] these algorithms have also been experimentally studied in practical,
real world scenarios. Table 4 shows the data used in the experiments referring
to 4 corridors provided by Trenitalia [35].
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Table 4. Data used in the experiments

Corridor Line Stations Trains

BrBo Brennero–Bologna 48 68
MdMi Modane–Milano 54 291
BzVr Bolzano–Verona 27 65
PzBo Piacenza–Bologna 17 25

Starting from the provided data and according to the described requirements,
the authors derived event activity networks having tree topologies whose sizes
are reported in Table 5.

Table 5. Sizes of the trees

Corridor N. of Max. time Avg activity Max. N.
nodes of traveling time of hops

BrBo 1103 516 9 66
MdMi 4358 318 8 27
BzVr 648 197 5 37
PzBo 163 187 10 14

One of the experimental results of [14] concerning a particular real-world
corridor and three values of α is reported in Figure 6. It shows the price of
robustness of the solutions obtained by SAΔ and the computational time needed
as functions of Δ. It turned out that algorithm SAΔ is very fast in practice (it
only needs less than 30 milliseconds in the case reported in Figure 6 and a few
seconds in the worst cases), and its price of robustness rapidly tends to 1 while
Δ increases. In all the cases analyzed, the real price of robustness is even less
than the theoretical lower bound which is computed on the worst case instance.

Results for Linear Graphs. In [11], it has been shown that, if the subproblem
of TT v where the DAG G = (V, A) is a linear graph is considered, the price of
robustness can be optimally computed in polynomial time. In detail, in [11], a
linear time algorithm is given. The idea of the algorithm is to add slack times
“as late as possible”. Let a linear graph be defined by a set of vertices V =
{v1, . . . , v|V |}, ordered such that A = {a1 = (v1, v2), . . . , a|A| = (v|V |−1, v|V |)}.
Define sα by

sα
aj

:=

{
α if (Δ + 1)|j
0 else

(6)

for all arcs aj ∈ A. Then, the algorithm Alg+
sα adds sα

a to La for each a ∈ A and
calculates an optimal robust solution for TT v by applying CPM on the resulting
instance.
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α = 9
α = 5
α = 1

Δ

Time (sec)

121086420

0.03
0.028
0.026
0.024
0.022
0.02

0.018
0.016
0.014
0.012
0.01

0.008

α = 9
α = 5
α = 1

Prob

121086420

1.5
1.45
1.4

1.35
1.3

1.25
1.2

1.15
1.1

1.05
1

Fig. 6. Price of robustness and computational time needed by SAΔ in a particular
real-world corridor

4.2 Problem TT a

Results for General DAGs. By exploiting similar arguments used for TT v,
in [9] it has been shown that computing the price of robustness of problem TT a

is NP-hard. Furthermore, in [10] it has been shown that computing the price of
robustness TT a remains NP-hard for any fixed Δ ≥ 3 and it remains NP-hard
for any fixed Δ ≥ 5 when the considered DAG is restricted to an event activity
network.

As computing the price of robustness of TT a is NP-hard, there exist no poly-
nomial TT a-optimal algorithms, unless P=NP. It makes sense then to investigate
restricted sub-problems which may be of practical interest.

In [9, 10], problem TT a has been analyzed by using three different subprob-
lems obtained by imposing constraints to the input instances I of TT a. In detail,
the following constraints to functions L and w are imposed:

I1: L is constant;
I2: L and w are constant;
I3: w is constant.

Note that I2 ≡ I1 ∩ I3.
In the remainder of this section we use the following notation. The minimum

and maximum values assigned by the function w (L, resp.) with respect to all
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the possible instances of TT a are denoted by wmin and wmax (Lmin and Lmax,
resp.). The maximum out degree of a DAG is denoted by deg. Moreover, given
i = (G, L, w) ∈ I, Δ ∈ N and α ∈ N, we denote

γ(Δ) = 1+
α

(k + 1)Lmin
where k ≥ 0 is such that

k−1∑
p=0

degp ≤ Δ <
k∑

p=0

degp .

In [10] it has been proposed to use a proportional slack time of size γ(Δ) for
each activity of a given instance, that is, algorithm Alg∗γ(Δ) has been used.

The next theorems characterize the price of robustness of problem TT a and
algorithm Alg∗γ(Δ). In particular, they provide the price of robustness of TT a

when the input instances are those of I1; show that algorithm Alg∗γ(Δ) is robust
for any instance in I; provide the price of robustness of Alg∗γ(Δ) when the input
instances are in I and that Alg∗γ(Δ) is TT a-optimal when the input instances are
those of I2.

Theorem 4 ([10]). If L is constant, then Prob(TT a) ≥ γ(Δ) wmin

wmax
for any

fixed Δ.

Theorem 5 ([10]). For any Δ ≥ 0, Alg∗γ(Δ) is robust for TT a.

Theorem 6 ([10]).

– For any fixed Δ ≥ 0, Prob(TT a, Alg∗γ(Δ)) ≤ γ(Δ)wmax

wmin
.

– If w and L are constant, then Prob(TT a, Alg∗γ(Δ)) = γ(Δ), and Alg∗γ(Δ) is
TT a-optimal.

In [10] an algorithm Alg+
α(Δ) which uses an additive constant slack time which

depends on Δ instead of a proportional one has been proposed. In particular,
the slack time added to each activity is:

α(Δ) =
α

(k + 1)
where k ≥ 0 is such that

k−1∑
p=0

deg(N )p ≤ Δ <

k∑
p=0

deg(N )p.

It has been shown that Alg+
α(Δ) returns the same timetable as Alg∗γ(Δ) when the

input instances are those of I1 and that Alg+
α(Δ) is TT a-optimal when the input

instances are those of I3. When the input instances are those of the whole I,
other than one would expect, in some cases the timetable returned by Alg∗γ(Δ)

costs less than that returned by Alg+
α(Δ). For an extended example where Alg∗γ(Δ)

performs better than Alg+
α(Δ) see [10].

Results for Linear Graphs. In [10] the attention also has been concentrated
on linear graph with n nodes and no restrictions imposed on functions L and
w. In this case, a dynamic programming algorithm of time complexity O(Δn)
which is TT a-optimal has been given.
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5 Multi-stage Recoverable Robustness and Application
to Timetabling

As shown so far, the recoverable robustness model represents a significant im-
provement in the optimization area. It nevertheless has the following drawback:
in many applications, one is typically not facing only one disturbing event, but
several disturbances i1, i2, . . . , iσ may occur. For example, assume that we expect
at most two disturbances i1 and i2. In this case, a robust solution for i1 should
be also recoverable against the next disturbance i2. This means that under all
solutions which are robust for i1, we should choose one that is again robust
against the next disturbance i2 (if it exists). This example can be extended to
more than two disturbances, see Figure 7 for an illustration.

F (i1) F (i2) F (i3)F (i0)

F(i0, 3)
F(i0, 2)

F(i0, 1)

F(i1, 2)

F(i1, 1)

F(i2, 1)

Fig. 7. The set of solutions that are recoverable against 1, 2, and 3 disturbances.
Symbol F(i, n) is used to denote the set of feasible solutions for a problem which has
to be solved against n disturbances. Dotted arrows represent recovery algorithms.

In this section, we survey results in [7, 11] concerning an extension of the recov-
erable robustness model (see Section 2) to the multi-stage recoverable robustness
model which takes into account more than one disturbance and recovery stage.
Note that in [11], this model also has been called dynamic recoverable robustness
model.

To report the new model, some notation has to be recalled. Also in the multi-
stage case, the task is to introduce robustness to an arbitrary minimization
problems P . Problem P is characterized by the parameters I (set of instances),
F (i) for each i ∈ I (feasible solutions), and f (objective function). The goal of
a multi-stage recoverable robust problem is to find a robust solution for some
given initial instance i ∈ I of P . It is hence assumed again that a modification
function M and a class Arec of recovery algorithms for P are given. Any recovery
algorithm Arec ∈ Arec is defined as Arec : S × I → S, where the initial feasible
solution s0 (of the initial undisturbed instance i0) and the first modification
i1 ∈ M(i0) define the minimal amount of information necessary to recover the
solution. However, Arec can also require additional information. In particular,
when Arec is used in the k-th stage, it can use everything that has been processed
in the previous stages (in particular i0, ..., ik−1 and s0, ..., sk−1). Concerning
possible classes of recovery algorithms, all the classes defined in Section 2 can be
also used for multi-stage recoverable robustness. Additionally, the value σ ∈ N

is used to denote the maximum number of expected modifications.
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In [11], the multi-stage recoverable robustness model has been introduced
according to the following definitions.

Definition 8. A multi-stage recoverable robustness problem is defined by
(P, M, Arec, σ) where (P, M, Arec) ∈ RRP and σ ∈ N. The class RRP(σ) con-
tains all the multi-stage recoverable robustness problems, that is, the recoverable
robustness problems that have to be solved against σ ≥ 1 possible disturbances.

Definition 9. Let σ ∈ N and P = (P, M, Arec, σ) be an element of RRP(σ).
Given an instance i0 ∈ I for P , s0 is a feasible solution for i0 with respect to P
if and only if the following relationship holds:

∃Arec ∈ Arec : s0 ∈ F (i0) (7)
sk := Arec(sk−1, ik) ∈ F (ik), ∀ik ∈ M(ik−1), ∀k ∈ [1..σ]. (8)

This definition ensures that for each stage k, for any possible modification ik ∈
M(ik−1), and for any feasible solution sk−1 computed in the previous stage, the
output sk of algorithm Arec is a feasible solution for ik with respect to P . If it
is clear to which problem P , M and Arec we refer to, we also say in short that
s0 is feasible for i with respect to σ recoveries.

Notice that RRP(1) = RRP. Hence, each problem in RRP(1) is called a
single-stage problem and each problem in RRP(σ), σ > 1, is called a multi-stage
problem.

Using the definition of a feasible solution, the robust algorithm that is used to
compute the initial solution s0 for the initial (undisturbed) instance i0 is defined
in the following.

Definition 10. Given P = (P, M, Arec, σ) ∈ RRP(σ), a multi-stage robust al-
gorithm for P is any algorithm Arob : I → S such that for each i ∈ I, Arob(i) is
feasible for i with respect to P , i.e., such that Arob outputs a solution that can
be recovered against σ disturbances.

Notice that in the case of strict robustness, a robust algorithm Arob for P must
provide a solution s0 for i0 such that for each possible modification ik ∈ M(ik−1),
we have s0 ∈ FP(ik) for all k ∈ [1..σ]. The meaning is the following: If Arec has
no recovery capability, then Arob has to find solutions that “absorb” any possible
sequence of disturbances.

Analogous to the single-stage case, the price of robustness has also been de-
fined for multi-stage recovery algorithms. The following definition differs from
the corresponding definition for the single-stage case only in the problem P (it
now belongs to the larger class RRP(σ) instead of RRP).

Definition 11. Let P ∈ RRP(σ), σ ≥ 1, and Arob be a robust algorithm for P.
Then:

– The price of robustness of Arob is

Prob(P , Arob) = max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}
.
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– The price of robustness of P is given by

Prob(P) = min{Prob(P , Arob) : Arob is a robust algorithm for P}.

– Arob is P-optimal if Prob(P , Arob) = Prob(P).
– Arob is exact if Prob(P , Arob) = 1.

We report a first, but important observation concerning the price of robustness:

Lemma 5 ([11]). For fixed P , M and Arec, consider a family of problems Pσ =
(P, M, Arec, σ) for different values of σ, i.e., these problems vary in the expected
number of recoveries only. For σ1 < σ2, the following holds:

– FPσ2
(i) ⊆ FPσ1

(i) for all instances i ∈ I,
– Prob(Pσ1) ≤ Prob(Pσ2), i.e., the price of robustness grows in the number of

expected recoveries.

An important aspect when discussing multi-stage recovery algorithms is to ana-
lyze how Prob(Pσ) increases in σ, i.e., what it costs to establish a solution which
is robust with respect to σ recoveries. In the next section we present such an
analysis for the application of timetabling.

5.1 An Application: Timetabling

An example of real world systems where the multi-stage model plays an impor-
tant role is the timetable problem TT introduced in Section 4. In this problem,
many unforeseen delays (caused by disturbing events such as bad weather con-
ditions, repair work, signaling problems, or accidents) might occur during the
operational phase, and they might completely change the schedule. In order to
be able to deal with more than one delay, it is possible to consider the multi-
stage recoverable robust version of the timetabling problem. To this end, it is
necessary to formalize the modification function M and the class Arec as follows:

– Given an instance ik−1 = (G, w, Lk−1) and a constant α ∈ R>0, then
M(ik−1) =

=
{
(G, w, Lk) : ∃ a ∈ A : L0

a ≤ Lk
a ≤ L0

a + α and Lk
a = Lk−1

a ∀a �= a
}

,

i.e., one additional delay (whose size is bounded by α) is allowed in every
stage k.

– In general, it is interesting to use Class 2 with the two limitations speci-
fied next. One of them already has been defined for the single-stage case in
Section 4, the other one has not yet been defined before. Let π be a solu-
tion of TT and consider a recovery algorithm Arec. Let π′ be the recovered
timetable computed by Arec with input π and ik ∈ M(ik−1).
Limited-Events (AΔ): For each recovery stage, it is required that the

scheduled times of only a limited number of events might be changed
during the recovery with respect to π. Formally, this class of recovery
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algorithm is denoted by AΔ and contains the algorithm Arec if and only
if

|{u ∈ V : π′
u �= πu}| ≤ Δ,

for all π′ = Arec(π, ik), for any feasible disturbance ik ∈ M(ik−1) of step
k with k = 1, . . . , σ. Notice that this class has been already defined in
Section 4 where it has been used for the single-stage case.

Limited-Delay (Aδ): The class Aδ contains all polynomial algorithms pro-
ducing a solution for which the sum of all delays is less than or equal to
δ. Formally, the class Aδ contains the algorithm Arec if and only if

‖π′ − π‖1 ≤ δ,

for all π′ = Arec(π, ik), for any feasible disturbance ik ∈ M(ik−1) of step
k with k = 1, . . . , σ.

Analogously to Section 4, by using the multi-stage recoverable robustness model,
the following problems in RRP(σ) have been investigated:

– Robust timetabling with nonnegative node weights and limited events:
TT v

σ = (TT v, M, AΔ, σ) where TT v denotes the timetabling problem TT
with nonnegative weights wu. Note that studying TT v

σ corresponds to in-
vestigating the problem TT v (see Section 4) with respect to σ disturbances
instead of just one.

– Robust timetabling with arc weights and limited delay:
TT a

σ = (TT a, M, Aδ, σ) where TT a denotes the timetabling problem de-
fined for the special case farcs with nonnegative weights wa (see Section 4).
However, note that in contrast to Section 4, class Aδ instead of class AΔ is
considered here and that σ disturbances instead of just one are taken into
account.

The general approach of using the algorithm Alg+
s (with the same slack s for all

the activities) has been adopted to face both the previous problems. Of course,
in this scenario, the main task is to find the smallest value for s such that Alg+

s

is robust. Finding a bound for the price of robustness of Alg+
s is important as

well.
In the following paragraphs, we summarize the results obtained in [7, 11] for

both subproblems TT v
σ and TT a

σ:

Robust Timetabling with Nonnegative Node Weights and Limited
Events (TT v

σ). The following observations are easily obtained:

– π is robust if Δ ≥ |V | − 1.
– Let σ > Δ. Then the following holds:

π is robust ⇐⇒ sa ≥ α for all a ∈ A ⇐⇒ π is strictly robust.
– Let Δ = 0:

π is robust for σ = 1 ⇐⇒ π is robust for σ > 1.
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Table 6. Computational complexity of calculating an optimal robust solution

Problem graph σ Δ Complexity
TT v

σ arbitrary 1 ≥ 3 NP-hard
TT v

σ linear any any linear

– The set of robust solutions w.r.t σ > 1 is strictly contained in the set of
robust solutions for σ = 1.

However, the problem of calculating the price of robustness with number of
events as limitation is NP-hard for all fixed Δ ≥ 3 even for the case σ = 1
which corresponds to the problem faced in Section 4. Table 6 summarizes the
computational complexity of calculating an optimal robust solution for TT v

σ with
respect to different graph topologies.

Notice that, in the case of a sequence of σ ≥ 1 disturbances, it has been
proposed a solution for TT v

σ for arbitrary σ when the underlying graph is a linear
graph. As mentioned above, the solution uses the algorithm Alg+

s∗ assigning the
same slack

s∗ = min
{

α,
σα

Δ + 1

}
(9)

to each arc. The following result has been obtained:

Theorem 7 ([11]). Let s∗ be defined as in Eq. (9), and let G be a linear graph.
Then:

– Alg+
s is a robust algorithm if and only if s ≥ s∗;

– Prob(TT v
σ, Alg+

s∗) ≤ 1 + s∗
Lmin

;
– Alg+

s∗ is optimal compared to all robust algorithms that add an equal slack s
to all arcs.

Robust Timetabling with arc Weights and Limited Delay (TT a
σ). Also

for this problem, the algorithm Alg+
s (with the same slack s for all the activities)

has been used to solve TT a
σ. The following properties hold:

– Alg+
α is strictly robust for all σ;

– Alg+
α−Δ is robust for σ = 1 and Δ ≤ α

2 .

If G is a tree and Alg+
s is robust, the price of robustness can be bounded by

Prob(TT a
σ, Alg+

s ) ≤ 1 + s
Lmin

where the bound is obtained in the case of strict
robustness. This leads to the results in Table 7.

For arbitrary σ and Δ, it has been shown that there exists some s∗ such that
Alg+

s is robust for all s ≥ s∗. In linear graphs this value s∗ can be calculated as

s∗ =
2σα

(⌈2Δ
σα

⌉
+ σ

)
− σα(σ + 1) − 2Δ(⌈2Δ

σα

⌉
+ σ

) (⌈2Δ
σα

⌉
+ σ − 1

) ,

leading to a price of robustness equal to 1 + s∗.
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Table 7. Upper bounds for Prob in some special cases

problem graph σ Δ Prob

TT v
σ DAG 1 any 1 + α

Lmin

TT v
σ tree 1 any 1 + min

{
α

Lmin
, α

2

}
TT v

σ linear any any 1 + 1
Lmin

min
{

α, σα
Δ+1

}
TT a

σ tree any any 1 + α
Lmin

TT a
σ tree 1 Δ ≤ α

2
1 + α−Δ

Lmin

TT a
σ linear any any 1 +

2σα(� 2Δ
σα �+σ)−σα(σ+1)−2Δ

(� 2Δ
σα �+σ)(� 2Δ

σα �+σ−1)
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Fig. 8. The price of robustness of algorithm Alg+
s for α = 20 and Δ = 1000 as a

function of σ

In conclusion, the price of robustness can be exactly calculated in special cases
only; in many cases, an approximation is possible. It is clear that the price of
robustness increases with the number of expected recoveries, but its growth is
smaller than expected as can be seen in Figure 8.

6 Conclusions

The paper surveys on some recent algorithmic results achieved within the re-
coverable robustness model. This model provides the unification between the
standard notion of robustness (a solution must remain feasible although some
disturbances may occur) and the possibility to apply limited recovery strategies
once the feasibility of the current solution is lost. The attention has been ad-
dressed to two main problems arising in the area of railway optimization: the
shunting problem and the timetabling problem. The former problem regards the
reordering of freight train cars over hump yards while the latter one consists in
finding passenger train timetables in order to minimize the overall passengers
traveling time. In the reviewed papers, algorithms for both problems have been
investigated with respect to different possible disturbances and different recovery
capabilities. Moreover, the timetabling problem has been also used as a testbed
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for empirical experiments and for investigating on a natural extension of the
original model, i.e. the so called multi-stage recoverable robustness. This exten-
sion aims to provide recoverable robustness in the case that multiple recovery
phases are allowed.

The presented results reveal an interesting and practical applicability of the
model under which useful algorithms have been designed in the studied contexts.
The proposed notion of recoverable robustness provides a mean to compare the
performances of different robust algorithms in terms of distance from the opti-
mality. In particular, the price of robustness for an algorithm measures such a
distance and provides a practical tool to rank among algorithms. This implies
the possibility to apply standard techniques developed in algorithmic theory for
choosing the “best” algorithm, robust with respect to the required constraints.
Moreover, the presented experimental results confirm the effectiveness for the
defined price of robustness. In fact, the evaluations show how the algorithmic
performances are affected by the variation on both the recovery capabilities and
the modification function. As theoretically expected, the less restrictive the avail-
able recovery capabilities are, the smaller the price of robustness of an algorithm
is. Viceversa, the larger the set of modification is, the larger the price of robust-
ness of an algorithm is. Both observations can be seen in Figure 6 where the
price of robustness decreases with Δ and increases with α.

The reported results represent some initial contributions to the applicability
of the recoverable robustness model. It might be worth investigating the feasi-
bility of the model on different optimization problem, varying on modification
functions and the class of recovery algorithms. Concerning this last point, an
important issue that has not yet been addressed concerns the investigation of
robust algorithms when the allowed recovery capabilities are that of Class 3, i.e.
when the computational power of the recovery algorithms is bounded.

Extensions to the proposed model are also of interest. In particular, it is worth
to note that the proposed notion of recoverable robustness does not enforce the
requirement to design efficient robust algorithms in time and space. This is a
key point in introducing recoverable robustness in most of the problems studied
in the context of railway optimization as well as in the more general algorithmic
optimization turn out to be NP-hard. Hence, the optimal algorithm on which
the price of robustness depends might be exponential due to the computational
complexity of the underlying robust problem. Then, it would be interesting to
study the case in which the computational power of the robust algorithms is
limited and hence to define the price of robustness of the problem according to
the admitted class of robust algorithms.

Another interesting direction of research for the extension of the model is
about the design of robust and recovery algorithms. Consider the typical scenario
in the context of recoverable robustness: it is necessary to face a problem P =
(P, M, Arec) and, to this aim, in the operational phase, a plan s (computed by
a robust algorithm) is being used. At this time, if a disturbing event j ∈ M(i)
occurs, the recoverable robustness model guarantees that an algorithm Arec ∈
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Arec exists to recover, that is, to compute a new plan s′ = Arec(s, j) which is
feasible for j.

Notice that, the recoverable robustness model ensures only that Arec exists,
and it does not take care of defining details about such a recovery algorithm.
In an operative environment, such details are needed, and hence a recovery
algorithm has to be carefully designed. In this context, relevant questions are:
How to measure the quality of a given recovery algorithm? When to design
recovery algorithms? Concerning the first question, a method could be to define
a sort of price of recovery. Concerning the other question, in general, a robust
algorithm (planning stage) and a recovery algorithm (operational stage) can be
designed independently of each other. The main motivation for this lies on the
fact that Arec can be defined by means of just some mathematical properties,
and hence, the input of each recovery algorithm is completely defined, regardless
of the definition of any possible robust algorithm. This leads to two possible
scenarios:

– Considering the robust and recovery algorithms as belonging to different
modules of the same system. If Arec is designed a priori, i.e., independently of
any information concerning robust algorithms, then the robust and recovery
modules are decoupled. This guarantees that, in case, each module can be
re-engineered without affecting the whole system.

In this scenario, a possible definition for a price of recovery could be the
following:

Definition 12. Let P = (P, M, Arec) be a problem in RRP, and let Arec ∈
Arec. The price of recovery of Arec is:

Prec(P , Arec) = max
i∈I, s∈FP(i), j∈M(i)

{
f(Arec(s, j))

min{f(x) : x ∈ F (j)}

}
.

This price of recovery measures “how far” the recovered solution computed
by Arec is away from the optimum one, independently of which robust
algorithm has been used.

Unfortunately, this measure could be useless in most cases. For instance,
consider the robustness problem TT v for linear graphs defined at the end of
Section 4.1 where each algorithm in the class Arec can change the time of
at most Δ events. In this case, it is easy to see that the price of recovery is
unbounded since in FP(i), for i ∈ I, there are solutions s which are robust
due to slack times arbitrarily large.

– Designing a recovery algorithm Arec in hindsight (i.e., after the definition
of a good robust algorithm Arob) could imply the design of a specialized
recovery algorithm, since Arec could exploit specific properties of the robust
solutions computed by Arob.

In this scenario, a possible definition for the price of recovery could be
the following:
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Definition 13. Let P = (P, M, Arec) be a problem in RRP, Arob be a robust
algorithm for P, and Arec ∈ Arec. The price of Arob-recovery of Arec is:

Prec(P , Arob, Arec) = max
i∈I, j∈M(i)

{
f(Arec(Arob(i), j))

min{f(x) : x ∈ F (j)}

}
.

This measure could represent a good parameter for the quality of a recovery
algorithm.

Additionally, notice that a recovery algorithm Arec with a small price of recovery
is useless when its traditional worst case execution time is bad. For instance, if
we consider the timetabling problem TT along with the class AΔ (remember,
any algorithm in AΔ can change the time of at most Δ events), then we expect
that an algorithm in AΔ should be computationally efficient, that is, running
in O(Δ) time. Hence, the quality of a recovery algorithm should be measured
by means of two parameters: the price of recovery and the worst case execution
time. A trade-off between these two parameters could define a good recovery
algorithm.
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Abstract. We consider optimization problems where the exact value of
the input data is not known in advance and can be affected by uncer-
tainty. For these problems, one is typically required to determine a robust
solution, i.e., a possibly suboptimal solution whose feasibility and cost
is not affected heavily by the change of certain input coefficients. Two
main classes of methods have been proposed in the literature to handle
uncertainty: stochastic programming (offering great flexibility, but often
leading to models too large in size to be handled efficiently), and robust
optimization (whose models are easier to solve but sometimes lead to
very conservative solutions of little practical use). In this paper we in-
vestigate a heuristic way to model uncertainty, leading to a modelling
framework that we call Light Robustness. Light Robustness couples ro-
bust optimization with a simplified two-stage stochastic programming
approach, and has a number of important advantages in terms of flex-
ibility and ease to use. In particular, experiments on both random and
real word problems show that Light Robustness is sometimes able to pro-
duce solutions whose quality is comparable with that obtained through
stochastic programming or robust models, though it requires less effort
in terms of model formulation and solution time.

Keywords: Robust optimization, Stochastic Programming, Integer Lin-
ear Programming, Multi-dimensional Knapsack, Train Timetabling.

1 Introduction

One of the basic assumptions in mathematical programming is that the exact
value of the input data is fixed and known in advance. This assumption can
however be violated in many situations arising when real world problems are
considered. This can be due to the fact that the parameters used in the model are
just estimates of real parameters, or more generally to the effect of uncertainty
affecting some parameters. When uncertainty is taken into account, an optimal
solution with respect to the nominal values of the parameters can be suboptimal
(or even infeasible) according to the actual parameters. Hence, small uncertainty
in the input data can make the nominal optimal solution completely meaningless
from a practical viewpoint.

Within the above setting, a main request when dealing with real world ap-
plications is to determine a robust solution, i.e., a solution that remains feasible
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even if some of the input coefficients change. In other words, one is required to
determine a solution that is not necessarily optimal for the nominal objective
function, but such that its feasibility and cost is not affected heavily by the
change of some coefficients—at least for certain meaningful realizations of the
input data.

In this paper we mainly focus on a Linear Program (LP) of the form

min
∑
j∈N

cj xj (1)

∑
j∈N

aij xj ≤ bi i ∈ M (2)

xj ≥ 0 j ∈ N (3)

where some coefficients of constraint matrix A can take a value, say ãij ∈
[aij , aij + âij ], which is different from the nominal one (namely, aij). Uncertainty
on vectors b and c is not dealt with explicitly, as it can be handled in a straight-
forward way by just adding suitable artificial variables and/or constraints. We
denote by n = |N | and m = |M | the number of variables and constraints in the
LP model, respectively. Our approach extends easily to the Mixed-Integer Pro-
gramming (MIP) case, where certain variables can only assume integer values.

Classical approaches for dealing with uncertainty can be classified as follows:

- Stochastic Programming (SP): find a solution that is optimal by considering
possible recourse variables yω implementing corrective actions to be per-
formed after a certain scenario ω ∈ Ω has taken place (see, e.g., Birge and
Louveaux [8], Ruszczynski and Shapiro [16], and Linderoth, Shapiro, and
Wright [13]). This approach typically does not restrict the original solution
space, but penalizes the feasible solutions by taking into account the cost
of the corrective actions needed to face a certain scenario. The approach is
quite powerful but requires the knowledge of the probability and main fea-
tures of the various scenarios, and almost invariably leads to huge LPs that
require very large computing time—though clever decomposition techniques
have been proposed in the literature to speed-up their resolution.

- Robust Optimization (RO): uncertainty is associated with hard constraints
restricting the solution space, i.e., one is required to find a solution that is
still feasible for worst-case parameters chosen within a certain uncertainty
domain (see, e.g., Ben-Tal and Nemirovski [2] and Bertsimas and Sim [6]).
This is an effective way to model uncertainty, but it can lead to overcon-
servative solutions that are quite bad in terms of cost (actually, a feasible
solution may not exist at all).

In the present paper we analyze a heuristic way to model uncertainty, leading
to a modelling framework that we call Light Robustness (LR). Light Robust-
ness can be viewed as a “flexible counterpart” of robust optimization, obtained
through the following modelling steps. We first fix the maximum objective func-
tion deterioration that we are willing to accept in our model, by introducing a
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linear constraint of the type cT x ≤ z. Then we define a “robustness goal” that
we would like to achieve, and model it by using a classical robust optimization
framework (e.g., through the Ben-Tal and Nemirovski [2] or Bertsimas and Sim
[6] methods). In this way we obtain a robust model with no objective function,
that however is likely to be infeasible. To cope with infeasibility, we introduce
appropriate slack variables that allow for “local violations” of the robustness
requirements, and define an auxiliary objective function aimed at minimizing
the slacks. The LR slack variables play a role similar to second-stage recourse
variables in SP models, as they penalize the corrective actions needed to restore
feasibility. In this view, LR is a heuristic framework combining the flexibility
of SP (due to the presence of second-stage variables) and the modelling ease
of RO. The underlying assumption is that the robust model already captures
uncertainty in a sufficiently detailed way, so we hopefully do not need a cumber-
some second-stage set of variables and constraints—simple slack variables are
enough. Whether this is a reasonable assumption for a specific application (and
model) can only be verified experimentally, through simulations.

LR models are easy to formulate and to solve, and their applicability is poten-
tially larger than robust models. However, it is not clear whether such a simple
heuristic approach can deliver solutions that are comparable with those obtained
through more involved stochastic programming or robust models. The computa-
tional experience reported in the present paper confirms the viability of the LR
approach—at least in some practically relevant contexts.

The rest of the paper is organized as follows. In Section 2 we briefly outline the
Stochastic Programming approach, whereas in Section 3 we address Robust Op-
timization and review the Bertsimas and Sim method [6]. Two Light Robustness
variants are described in Sections 4 and 5, respectively, and are computationally
tested on random instances in Section 6. It is known that random instances may
produce “smooth” test cases that hide the hard situations. A real-world appli-
cation is therefore addressed in Section 7 and evaluated experimentally on real
data provided by Trenitalia, the main Italian railway operator for passengers.
Finally, Section 8 draws some conclusions.

2 Stochastic Programming

As already mentioned, SP is a framework for modelling optimization problems
that involve uncertainty in the parameter set. SP models take advantage of
the fact that probability distributions governing the data are known or can be
estimated. The goal here is to find some policy that is feasible for all (or almost
all) the possible data instances and maximizes the expectation of some function
of the decisions and the random variables. During the last four decades a vast
amount of literature on stochastic programming appeared. Two comprehensive
textbooks on the subject are [8] and [15]; an easily accessible introduction is
given in [11].

The most widely applied and studied SP models are 2-stage linear programs.
Here, the decision maker takes some action in the first stage, after which a ran-
dom event occurs that affects the outcome of the first-stage decision. A recourse
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decision can then be made in the second stage that compensates for the bad
effects that might have been experienced because of the first-stage decision. The
optimal policy for the resulting model is a single first-stage policy and a col-
lection of recourse decisions defining which second-stage action should be taken
in response to each random outcome. In a 2-stage SP, the set of constraints is
decomposed into structural constraints, which represent the deterministic part
of the model, and control constraints which have a stochastic nature and whose
coefficients depend on the particular scenario. Roughly speaking, the approach
allows one to take decisions in the first stage by ignoring the stochastic part
of the model, but enforces some costly recourse action when indeterminacy will
eventually occur. More specifically, a generic 2-stage SP formulation for linear
problems is given by

min{cT x + Q(x) | Ax ≤ b, x ≥ 0},

where

Q(x) = E[min{qT y | Wy ≤ h − Tx, y ≥ 0}],

expresses the expected recourse cost associated with the first-stage decision x,
and the triple (q, T , h) modelling the recourse is assumed to be affected by
randomness.

Solution methods for SP problems typically address the so-called deterministic
equivalent problem [8]. The basic assumption here is that the realizations of
the random parameters are specified in the form of K (say) scenarios ω1 =
(q1, T 1, h1), ω2 = (q2, T 2, h2), . . . , ωK = (qK , T K , hK), each with a probability
p1, . . . pK of occurrence. The problem can therefore be formulated as

min cT x +
∑K

k=1 pk(qk)T yk

A x ≤ b, x ≥ 0
T kx + Wyk ≤ hk, yk ≥ 0, k = 1, . . . , K.

(4)

and solved through methods that take advantage of its structure, e.g., Benders’
decomposition approaches.

3 Robust Optimization: The Bertsimas and Sim
Approach

The first attempt to handle data uncertainty through mathematical models was
performed by Soyster [18], who considered uncertain problems of the form

min {
∑
j∈N

cj xj |
∑
j∈N

Aj xj ≤ b, ∀Aj ∈ Kj , j ∈ N}

where Kj are convex sets associated with “column-wise” uncertainty. This ap-
proach tends to lead to overconservative models, thus to poor solutions in term
of optimality. Ben-Tal and Nemirovski [2], [3] and [4] defined less conservative
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models by considering ellipsoidal uncertainties. Moreover, [2] shows that the ro-
bust counterpart of an uncertain LP is equivalent to an explicit computationally
tractable problem, provided that the uncertainty is itself “tractable”. On the
contrary, when the problem to be considered is an ILP, these nonlinear (convex)
models become computationally hard problems.

Later on, Bertsimas and Sim (BS) considered a different concept of robust-
ness (see [5] and [6]). Their approach is based on the observation that, in real
situations, it is unrealistic to assume that all coefficients take, at the same time,
their worst-case value. So, it makes sense to define a robust model whose optimal
solution remains feasible for every change of (at most) Γi coefficients in each row
i ∈ M , where Γi is an input parameter associated to the expected robustness
of the solution. (For sake of simplicity, we will implicitly assume that Γi is in-
teger, although this is not required in the approach proposed in [6] nor by our
LR method.) The robust counterpart of (1)–(3) is therefore defined by replacing
each row i ∈ M with the new constraint:∑

j∈N

aij xj + β(x, Γi) ≤ bi (5)

where β(x, Γi) is related to the level of protection with respect to uncertainty in
the coefficients of row i, and is defined as

β(x, Γi) = max
S⊆N :|S|≤Γi

∑
j∈S

âij xj (6)

So, β(x, Γi) is the maximum increase in the left-hand side of the i-th constraint
evaluated for x∗, when at most Γi coefficients in row i take their worst-case
value.

As already mentioned, parameter Γi allows the modeler to control the solution
robustness: Γi = 0 means that robustness is not taken into account and the
nominal constraint is considered, whereas Γi = n means that each coefficient in
row i can take its worst-case value, and corresponds to the conservative method
by Soyster [18].

By using LP duality, the robust model can be formulated through the following
LP:

min
∑
j∈N

cj xj (7)

∑
j∈N

aij xj + Γi zi +
∑
j∈N

pij ≤ bi i ∈ M (8)

−âij xj + zi + pij ≥ 0 i ∈ M, j ∈ N (9)
zi ≥ 0 i ∈ M (10)

pij ≥ 0 i ∈ M, j ∈ N (11)
xj ≥ 0 j ∈ N (12)

The robust formulation above, referred to as BS in the sequel, involves a number
of variables and constraints that is polynomial in the input size. Note that the
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approach remains valid when MIPs are considered instead of just LPs, the only
requirement being that term β(x, Γi) can be formulated as an LP whose size is
polynomial in the input size.

The BS approach provides solutions that are deterministically feasible if the
coefficients change under the assumptions above, and are feasible with a high
probability if more than Γi coefficients in row i are allowed to change.

4 A First Light Robustness Heuristic

Very often, the optimal robust solution found according to the BS definition can
be considerably worse (with respect to the objective function value) than the
optimal nominal solution, even if few coefficients are allowed to change in each
row. This fact is dramatically emphasized for those problems where most of the
coefficients are “structural” and the number of uncertain coefficients in each row
is very small (as, e.g., in the train timetabling problem addressed in Section 7).

As already outlined in the introduction, our definition of Light Robustness is a
compromise between the robustness of the solution with respect to uncertainty
of the matrix coefficients, and the quality of the solution with respect to the
objective function. Indeed, in our scheme we look for the most robust solution
among those which are “not too far” from optimality for the nominal problem.
To be more specific, given the robust counterpart, such as the BS one, for model
(1)–(3), we define the LR counterpart as:

min
∑
i∈M

wiγi (13)

∑
j∈N

aij xj + β(x, Γi) − γi ≤ bi i ∈ M (14)

∑
j∈N

aij xj ≤ bi i ∈ M (15)

∑
j∈N

cj xj ≤ (1 + δ) z∗ (16)

xj ≥ 0 j ∈ N (17)
γi ≥ 0 i ∈ M (18)

Slack variables γi play the role of second-stage recourse variables used to recover
from a possible infeasibility, whose weighted sum is minimized by objective func-
tion (13). Each variable γi defines the level of robustness of the solution with
respect to uncertainty of parameters in row i ∈ M : in particular, γi takes a
strictly positive value if the corresponding robust constraint i is violated. Con-
straint (16) imposes a maximum worsening of the objective function value with
respect to z∗, defined as the value of the optimal solution of the nominal problem.
The role of the input parameter δ in (16) is to balance the quality (optimality)
and the feasibility (robustness) of the solution: δ = 0 corresponds to the nominal
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problem (i.e., robustness is only taken into account to break ties among equiv-
alent optimal solutions), while for δ = ∞ the nominal objective function is not
considered at all.

Note that the presence of constraints (14) combined with nominal constraints
(15) and objective function (13), implies 0 ≤ γi ≤ β(x, Γi) for all i ∈ M . In
other words, for each row i the model gives a prize (to be maximized) that is
proportional to the slack quantity si := bi −

∑
j∈N aij xj (= β(x, Γi) − γi), but

only till the target value β(x, Γi) is reached—a larger si does not receive any
extra prize.

Weights wi appearing in the objective function (13) are intended to compen-
sate for possibly different scales for the constraints and can be set, e.g., to the
Euclidean norm of each left-hand side coefficient vector. In the sequel we as-
sume implicitly that all the constraints are stated in a comparable unit, hence
we set wi = 1 for all i. It is worth noting that the BS approach itself is in-
trinsically dependent on the specific formulation of LP model at hand, in the
sense that it is not invariant with respect to transformations of the constraints
that leave the feasible space of the nominal problem unchanged. In other words,
the practical applicability of the BS approach (and hence of its LR counterpart)
implicitly assumes that the original model is stated in a form that is “suited for
robustness”—taking an LP-equivalent model can lead to meaningless results.

By using LP duality as in the BS approach, the LR counterpart of (1)–(3)
becomes:

min
∑
i∈M

γi (19)

∑
j∈N

aij xj + Γi zi +
∑
j∈N

pij − γi ≤ bi i ∈ M (20)

−âij xj + zi + pij ≥ 0 i ∈ M, j ∈ N (21)
zi ≥ 0 i ∈ M (22)

pij ≥ 0 i ∈ M, j ∈ N (23)∑
j∈N

aij xj ≤ bi i ∈ M (24)

∑
j∈N

cj xj ≤ (1 + δ) z∗ (25)

γi ≥ 0 i ∈ M (26)
xj ≥ 0 j ∈ N (27)

As stated, Light Robustness is strongly dependent on the BS definition of ro-
bustness, hence it can be applied only in those cases in which uncertainty can
be described by means of a linear formulation. However, different LR variants
can be defined for specific problems. In fact, in our view LR is not a rigid tech-
nique, but a modelling framework where robustness is achieved by first enforcing
a demanding robustness/optimality goal, and then by allowing for local viola-
tions of the constraints (absorbed by the slack variables) to deal with possible
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infeasibility issues. In the next section we analyze a different (and simpler) LR
version whose definition does not rely on the BS model. A problem-specific LR
definition will be addressed in Section 7.

5 A Second Light Robustness Heuristic

We next describe a modified LR scheme (called MLR in the sequel) that is not
based on the BS approach, but deals directly with the slack variables associated
with the constraints of the nominal problem. The underlying assumption here
is that the degree of robustness of a solution is somehow proportional to the
slack left in the uncertain rows, to be used to absorb variations of the left-
hand side coefficients. Determining the exact value of the slack in each row is
of course a difficult task that depends on the whole solution x∗ (and not just
on the constraint slacks) and has to take into account interactions among the
constraints, but it can be approached heuristically as follows.

Let x∗ be an optimal solution of nominal problem (1)–(3), and let

L∗
i =

∑
j∈N

(aij + âij) x∗
j − bi

denote the maximum violation of constraint i with respect to solution x∗. We
define by

U = {i ∈ M : L∗
i > 0}

the set of constraints that may be affected by uncertainty with respect to x∗. In
other words, U contains the rows we want to take care of in terms of uncertainty,
i.e., those rows for which enough slack should be given. We can assume without
loss of generality |U | ≥ 1, since otherwise the optimal solution x∗ of the nominal
problem would be feasible (and hence optimal) in any realization of the data.

We first solve the following LP

max σ (28)∑
j∈N

aij xj + si = bi i ∈ M (29)

σ ≤ si

L∗
i

i ∈ U (30)∑
j∈N

cj xj ≤ (1 + δ) z∗ (31)

xj ≥ 0 j ∈ N (32)
si ≥ 0 i ∈ M (33)

which maximizes the minimum slack that can be assigned to any uncertain
row. In order to take into account uncertainty on each row separately, the slack
variable si in the i-th uncertain constraint (30) is heuristically normalized by
dividing it by L∗

i (i ∈ U).
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The LP above typically has several equivalent optimal solutions, due to its
max-min nature. Indeed, objective function (28) only considers the row corre-
sponding to the minimum normalized slack, hence there is no incentive in giving
a large slack to the remaining rows—whereas this is very important for improv-
ing robustness. Thus, a second LP is solved in order to balance the slack among
uncertain rows, while keeping the total amount of slack large enough. Given
an optimal solution (x∗, s∗, σ∗) of model (28)–(33), we define the average and
minimum value for the normalized slack as

savg =
∑

i∈U s∗i /L∗
i

|U |

smin = min{s∗i /L∗
i : i ∈ U} (= σ∗)

and solve the following LP

min
∑
i∈U

ti (34)

∑
j∈N

aij xj + si = bi i ∈ M (35)

∑
j∈N

cj xj ≤ (1 + δ) z∗ (36)

si

L∗
i

+ ti ≥ savg i ∈ U (37)

xj ≥ 0 j ∈ N (38)
si/L∗

i ≥ smin i ∈ U (39)
si ≥ 0, ti ≥ 0 i ∈ U (40)

In this model, for each uncertain constraint i ∈ U we introduce an auxiliary
variable ti assuming a positive value if the associated normalized slack is smaller
than the average. Objective function (34) penalizes the sum of these variables,
so as to balance the normalized slack among all constraints.

Although this method requires the solution of two LPs (actually, three if the
nominal problem is also considered), our computational experiments reported in
Section 6 show that the corresponding extra computing time is quite small in
practice, due to the use of fast parametric reoptimization techniques.

6 Computational Experiments on Random Data

In order to test the two LR approaches described in the previous sections, we
performed computational experiments on knapsack and portfolio instances sim-
ilar to those considered by Bertsimas and Sim in [6], and on variants of these
instances.

Our computational measure of robustness for a given feasible solution x̃ of
the nominal model (1)–(3) is provided by an external tool (called the external
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validation tool in the sequel) that generates 10,000 random scenarios, i.e., real-
izations of the input data according to a uniform distribution. The validation
tool receives solution x̃ on input, and returns the probability of infeasibility of x̃
(of course, violation of a single constraint in model (1)–(3) is enough to declare
x̃ infeasible for a certain scenario).

Since our LR heuristics require an optimality threshold on input, namely
z := (1 + δ)z∗, a fair comparison with respect to BS is not immediate. In our
experiments we implemented the following scheme.

We first solved the BS model (7)–(12) so as to test the BS approach alone.
Since a main difficulty in using the BS approach is the definition of coefficients
Γi to be used in (6), we heuristically fixed Γi = Γ for all i ∈ M , and solved
the corresponding BS model for increasing values of Γ , until a value was found,
say Γmax, for which the corresponding solution is always feasible according to
our external validation tool. We will refer to this solution as the always-feasible
solution. The gap between the value of the optimal solution of the nominal
problem and the value of the always-feasible solution is then used for defining
threshold values z. More specifically, we considered 9 threshold values obtained
by allowing for a worsening (with respect to the optimal nominal solution) of
1%, 5%, 10%, 25%, 50%, 60%, 70%, 80%, and 90% of such a gap.

Once the threshold value z̄ is fixed, we ran all models and evaluated the
robustness of the corresponding solution x̃ through our external validation tool.
The basic LR model (13)–(18) was solved by setting all Γi’s to a constant (quite
large) value, so as to require a high level of protection against uncertainty.

Our second heuristic LR model (MLR) does not require any other parameter
and was solved as described. As to the BS model (7)–(12), we embedded it into
a binary search procedure that finds the maximum real value of Γ ∈ [0, n] such
that the optimal solution value for model (7)–(12) does not exceed z. In order to
limit computing time, binary search is halted as soon as the difference between
the maximum and minimum Γ values is smaller than 0.1. The procedure is
further speeded-up, at each binary-search iteration, by stopping the solution of
model (7)–(12) as soon as a solution with value not greater than z is found. In
a similar way, each iteration is halted whenever a proof is given that no such
solution exists. The value of Γ produced by the binary search procedure, say
Γ ∗, is therefore an approximation of the best possible value for model (7)–(12)
when a solution having cost at most z̄ is required. In the following we refer to
this method as BinBS.

A fair comparison of BinBS and LR computing times is not immediate, since
our experiment design is biased somehow in favor of the LR approach. Indeed,
one could symmetrically fix the Γ value and apply binary search to LR to find
the corresponding threshold value z̄. According to our experience, in practical
cases working with an optimality threshold is more natural than providing the
Γ coefficient(s). In any case, the reported computing times for BinBS and LR
have to be compared with some caution.

The following tables report, separately for each problem, the results of each
method for each threshold value z̄, showing the probability that the solution
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found is infeasible along with the corresponding computing time. In addition,
for method BinBS we report the value Γ ∗ found by the binary search procedure,
and the average time required to perform a single binary-search iteration. All
experiments described in this section have been performed on a AMD Athlon 64
Processor 3500+ using ILOG-Cplex 10.1 as LP/ILP solver, and all computing
times in Tables 1–7 are expressed in CPU seconds.

6.1 Single Knapsack Problem

One of the most famous problems in Combinatorial Optimization is the Knapsack
Problem (KP) in which one is given a set N = {1, . . . , n} of items and a knapsack
of capacity W . Each item j ∈ N has associated a positive profit pj and a positive
weight wj , and the aim is to select a set of items in such a way that (i) the sum
of the weights of the selected items does not exceed W , and (ii) the sum of the
profits of the selected items is maximized. By introducing, for each item j ∈ N
a binary variable xj taking value 1 iff item j is selected, the problem can be
formulated as follows:

max
∑
j∈N

pj xj (41)

∑
j∈N

wj xj ≤ W (42)

xj ∈ {0, 1} j ∈ N (43)

This problem is NP-hard, although pseudo-polynomial solution algorithms exist.
For extensive studies on approaches to the knapsack problem, as well as to its
variants or extensions, the reader is referred to the books by Martello and Toth
[14] and by Kellerer, Pferschy and Pisinger [12].

Following Berstimas and Sim [6], we tested our robust approach by generating
a KP instance with |N | = 200, integer profits pj randomly generated in [16, 77],
integer weights wj randomly generated in [20, 29], and W = 4000. Uncertainty
was modelled by allowing each weight to differ by at most 10% with respect to
its nominal value.

Table 1 reports the value of the optimal solution of model (7)–(12) using
different values for Γ . In addition, the table gives the percentage worsening in
the solution value, the required computing time, and the probability that the
provided solution is infeasible. The results of Table 1 experimentally confirm the
theoretical results provided in [6] for what concerns both the worsening of the
solution value and the probability of infeasibility.

The optimal solution of the nominal (maximization) problem has value 8801,
while the always feasible solution, provided by model (7)–(12) with Γ = 22, has
value 8732. The derived threshold values and the corresponding results for each
robust method are reported in Table 2. The first table row has the following
meaning: fixing a lower bound of z = 8800 on the solution profit, one can find a
solution with infeasibility probability of 43.18% (43.10% for MLR); this solution
if found in 0.06 CPU seconds by BinBS (each binary-search iteration taking 0.01
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Table 1. Results on BS model (7)–(12) on a random knapsack problem

Γ z % wors. % Infeas Time
0 8801 0.0000 47.57 0.00
1 8800 0.0114 43.18 0.01
5 8786 0.1704 19.96 0.12

10 8773 0.3181 5.08 0.02
15 8754 0.5340 0.57 0.06
20 8740 0.6931 0.02 0.13
22 8732 0.7840 0.00 0.14

Table 2. Results on a random knapsack problem

BinBS LR(Γ = 20) MLR
z̄ Γ ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8800 0.98 43.18 0.06 0.01 43.18 0.01 43.10 0.02
8797 1.95 36.82 0.07 0.01 36.82 0.01 36.54 0.01
8794 2.93 30.61 0.06 0.01 30.61 0.01 30.61 0.02
8783 5.47 18.60 0.19 0.02 18.60 0.01 18.60 0.19
8766 11.33 3.13 0.16 0.02 3.25 0.02 3.20 0.02
8759 13.28 1.48 0.25 0.03 1.48 0.02 1.48 0.15
8752 16.60 0.31 0.13 0.01 0.31 0.02 0.31 0.01
8745 18.75 0.12 0.09 0.01 0.12 0.02 0.12 0.03
8738 20.90 0.01 0.20 0.02 0.02 0.18 0.01 0.02

seconds on average), and corresponds to the choice Γ ∗ = 0.98, whereas LR and
MLR require 0.01 and 0.02 seconds, respectively.

According to the table, for each threshold value z̃ the three methods deliver
solutions with negligible differences in terms of robustness. This is not surpris-
ing, due to the very simple structure of the KP problem. As expected, the LR
approaches are faster than BinBS as no binary search is required.

6.2 Multi-dimensional Knapsack Problem

In order to validate our methods on a problem involving several constraints, we
considered a Multi-dimensional Knapsack instance with |M | = 10 constraints.
All coefficients and the associated deviations are generated as for the KP instance
of Section 6.1, i.e., in the same way used in [6]. For this instance, the optimal
solution of the nominal problem has value 8316, while the always feasible solution
is provided by model (7)–(12) with Γ = 24 and has value 8238.

Computational results in Table 3 show that the solutions provided by BinBS
and LR are quite similar in terms of robustness. On the other hand, comput-
ing times for LR are considerably smaller (often by two orders of magnitude)
than those required by BinBS. E.g., for threshold z = 8296 BinBS required 27.37
seconds, whereas LR took just 0.24 seconds. At first glance, this is quite sur-
prising since the average BS time for a single binary-search iteration is 2.74
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Table 3. Results on the multi-dimensional knapsack instance

BinBS LR(Γ = 20) MLR
z̄ Γ ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8315 0.59 86.97 1.88 0.19 88.42 0.21 86.97 0.10
8312 2.34 81.01 0.84 0.08 82.25 0.16 81.01 0.11
8308 3.32 78.20 0.88 0.09 71.53 0.11 71.58 0.08
8296 5.47 64.70 27.37 2.74 61.42 0.24 53.64 0.09
8277 12.70 5.62 4.45 0.45 6.74 0.14 5.62 0.08
8269 14.45 4.02 37.26 3.73 4.77 0.17 4.02 0.08
8261 18.75 0.30 2.38 0.24 0.30 0.30 0.30 0.11
8253 20.90 0.08 2.75 0.28 0.09 0.28 0.08 0.06
8245 22.66 0.05 12.08 1.21 0.15 2.05 0.05 0.09

Table 4. Results on the multi-dimensional knapsack instance with larger uncertainty
of the coefficients in the first row

BinBS LR(Γ = 20) MLR
z̄ Γ ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8313 1.56 89.68 1.24 0.12 86.44 0.27 89.68 0.08
8301 4.30 73.34 6.32 0.63 73.35 0.10 74.51 0.08
8286 7.03 41.21 0.72 0.07 28.20 0.29 40.85 0.05
8241 10.16 8.99 0.96 0.10 7.30 1.35 8.99 0.04
8167 14.84 0.77 0.69 0.07 0.84 0.08 0.84 0.04
8137 16.60 0.29 1.23 0.12 0.29 0.06 0.29 0.04
8108 18.36 0.14 3.05 0.31 0.12 0.26 0.13 0.06
8078 20.31 0.09 0.70 0.07 0.08 0.74 0.08 0.07
8048 22.07 0.02 0.55 0.06 0.04 0.06 0.01 0.06

seconds, i.e., 10 times larger than LR. A similar situation arises for z = 8277
and 8269. The explanation is that, during binary search, the BS model has to
deal with weird (noninteger) values for the Γi coefficients appearing in (8), which
makes these constraints numerically nasty and the solution of the overall prob-
lem much harder. The LR models, instead, do not suffer from this problem, due
to the greater flexibility granted by the presence of slack variables.

As to MLR, it provides even (slightly) better results than BinBS and LR
in terms of robustness, and requires much shorter computing times. E.g., for
z = 8296 it provides a solution with about 10% less probability of infeasibility
than BinBS, and requires about 3 orders of magnitude less computing time.

In order to analyze the performance of various robust approaches on more de-
manding settings, we performed additional experiments on the multi-dimensional
knapsack instance described above.

We first considered the situation arising when coefficients of the first con-
straint have more uncertainty than those of the other constraints. In particular,
the original instance is considered, but each coefficient in the first constraint is
allowed to differ by at most 50% with respect to its nominal value, while uncer-
tainty for coefficients in the remaining rows is at most 10%, as in the previous



74 M. Fischetti and M. Monaci

Table 5. Results on the multi-dimensional knapsack instance when the number of
uncertain coefficients in each row is not a constant

BinBS LR(θ = 1.0) MLR
z̄ θ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8315 0.015 77.89 0.58 0.06 77.80 0.09 77.89 0.08
8313 0.024 65.70 0.57 0.06 62.27 0.03 65.70 0.10
8311 0.043 40.60 0.39 0.04 60.39 0.05 40.60 0.04
8304 0.073 22.40 0.31 0.03 32.08 0.05 23.39 0.06
8292 0.108 20.64 6.82 0.68 13.28 1.24 27.12 0.11
8287 0.148 0.39 0.52 0.05 6.58 4.13 0.39 0.04
8283 0.167 0.09 0.58 0.06 2.47 1.00 0.20 0.05
8278 0.186 0.04 0.53 0.05 0.31 0.34 0.04 0.08
8273 0.204 0.00 0.75 0.08 0.14 0.02 0.02 0.06

Table 6. Results on the multi-dimensional knapsack instance when the number of
uncertain coefficients in each row is not a constant, and high correlation among uncer-
tainty in different rows exists

BinBS LR(θ = 1.0) MLR
z̄ θ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8315 0.015 78.27 0.52 0.05 78.27 0.08 78.27 0.09
8313 0.024 64.52 0.58 0.06 59.38 0.02 64.52 0.10
8311 0.043 40.95 0.41 0.04 77.45 0.05 40.95 0.04
8304 0.073 20.60 0.33 0.03 59.56 0.05 22.86 0.06
8292 0.109 19.93 5.74 0.57 12.93 1.70 22.00 0.14
8287 0.149 0.45 0.76 0.08 2.16 1.31 0.45 0.04
8283 0.167 0.15 0.92 0.09 0.78 0.12 0.25 0.06
8278 0.186 0.09 0.64 0.06 0.13 0.10 0.10 0.07
8273 0.204 0.01 0.94 0.09 0.03 0.02 0.06 0.06

experiment. The corresponding computational results are given in Table 4 and
confirm the previous findings: all three methods provided solutions with similar
robustness (the only exception being z = 8313 and 8286, where LR produced
significantly more robust solutions), and MLR is faster than LR, which is in turn
much faster than BinBS.

Finally, we considered two cases where the number of uncertain coefficients
in each row is not a constant. In particular, let Ji ⊆ N denote the index set
of the uncertain coefficients in each row i (i = 1, . . . , 10). We considered case
|Ji| = 10 ∗ (11 − i), i.e., 100 uncertain coefficients arise in the first row, 90 in
the second, and 10 in the last row. The set of uncertain coefficients in each row
is generated according to a uniform distribution, and each uncertain coefficient
can differ by at most 10% with respect to the nominal value.

Note that, in the new setting, defining a same value for all Γi’s does not make
sense for BS. Thus, according to [6], we considered a value θ representing the
normalized number of uncertain coefficients, and defined Γi = θ |Ji| for each row
i. Accordingly, binary search was executed with an accuracy equal to 10−3 on
the value of θ, while LR was executed with θ = 1.
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In the instance addressed in Table 5, there is no correlation among uncertain
coefficients in different rows. On the contrary, in the instance of Table 6 uncer-
tainty was generated so that a coefficient can be uncertain in row i only if the
coefficient in the same column is uncertain in row i− 1, thus inducing a certain
degree of correlation among uncertain coefficients in different rows.

Results in Tables 5 and 6 confirm once again that the LR heuristic ap-
proaches, in spite of their simplicity, are able to produce solutions that turn
out to be equally (or even more) robust than those produced by BinBS, in much
shorter computing times. In particular, MLR qualifies as the method of choice for
producing robust solutions for multi-dimensional knapsack problems.

6.3 A Simple Portfolio Problem

The two previous subsections showed the effectiveness of the LR approach in the
context of knapsack problems. In fact, these problems are very well suited for
the LR models, as the slack variables in the model correspond to empty space in
the the knapsacks, so encouraging large slacks has a clear impact on the robust-
ness of the final solution. There are however other contexts where the correlation
between slacks and robustness is more subtle, hence the LR approach is less likely
to be effective. However, it is important to stress that the LR performance de-
pends heavily on the model used (rather than on the problem itself), in the
sense that different models can lead to drastically different results in terms of
robustness—a property shared by other approaches to robustness, including the
BS one.

To illustrate this point, we consider a simplified portfolio problem taken again
from [6]. Given a set N = {1, . . . , n} of stocks, the i-th having an estimated re-
turn pi, a simplified portfolio problem requires to select the fraction xi of wealth
invested in stock i so as to maximize the portfolio value equal to

∑
i∈N pixi. In

real applications, the return value for stock i (i ∈ N) is subject to uncertainty,
i.e., it can differ by at most σi from the nominal value.

A linear formulation for the portfolio problem can be obtained as follows:

max z (44)

z ≤
∑
i∈N

pi xi (45)

∑
i∈N

xi = 1 (46)

xi ≥ 0 i ∈ N (47)

We generated a portfolio instance as done in [6], using n = 150, and generating
pi and σi values as follows:

pi = 1.15 + i
0.05
150

and σi =
0.05
450

√
2n(n + 1)i

so that stocks with higher return are also more risky. Note that the only uncertain
constraint in the above model is (45).
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Table 7. Results on a portfolio instance

BinBS LR(Γ = 15) MLR MLR∗

z̄ Γ ∗ % Infeas % Infeas % Infeas % Infeas
1.1994 – – 50.09 50.09 47.96
1.1971 – – 49.97 49.60 42.88
1.1942 0.15 46.92 48.94 49.12 36.97
1.1855 1.03 37.79 49.10 47.63 19.03
1.1710 4.83 18.38 47.06 45.24 0.00
1.1652 7.18 11.23 22.72 44.30 0.00
1.1595 10.25 5.04 7.61 43.11 0.00
1.1537 14.06 2.02 1.98 42.19 0.00
1.1479 19.34 0.26 0.46 41.20 0.00

Table 7 gives the results on this problem, providing the same information as
in the previous tables; computing times are negligible for all approaches and
are omitted. Column MLR∗ refers to MLR applied to a different model, to be
described later. Note that BinBS fails in finding a feasible solution for the first
two threshold values, for which the value Γ ∗ is so small to be below our binary
search precision (of course, one could modify the binary search procedure so as
to deal with case Γ ∗ = 0).

According to the table, LR provides results (in terms of robustness) somehow
worse than BinBS, which suggests that the LR slack variables are not effective
in this context. This is confirmed by the very bad performance of MLR, that
returns solutions whose robustness seems to be independent of the threshold. A
closer look to the portfolio model clarifies the situation. Given a threshold value
z̄, an optimal solution for the LR counterpart of model (44)–(47) is given by
xi = x∗

i , z = z̄, s = z∗ − z̄, where x∗ denotes the optimal solution of the nominal
problem and z∗ its value. Hence, MLR will always keep the same solution x∗

and use the slack variable s to absorb the allowed worsening of the objective
function.

The above considerations would suggest that MLR is not applicable to the the
portfolio application. However this is not true, in that one can derive an alter-
native model where the slack variables do play a role in terms of robustness (see
also Bienstock [7] for a recent paper based on a similar idea). Indeed, consider
the alternative LP model

max z (48)

z =
∑
i∈N

zi (49)

zi ≤ pi xi i ∈ N (50)∑
i∈N

xi = 1 (51)

xi ≥ 0 i ∈ N (52)



Light Robustness 77

By applying MLR to the above model one gets the results in column MLR∗ of
Table 7, showing that our heuristic LR approach produces much better solutions
than those found by BinBS with the original formulation.

7 A Real-World Application: The Train Timetabling
Problem

In order to illustrate a possible application of the LR idea in a real world context,
in this section we review the approach recently proposed by Fischetti, Salvagnin
and Zanette [10] for finding robust railway timetables. We only give a brief
sketch of the method and of the corresponding computational results; the reader
is addressed to [10] for details.

The Train Timetabling Problem (TTP) consists in finding an effective train
schedule on a given railway network. The schedule needs to satisfy some op-
erational constraints given by capacities of the network and security measures.
Moreover, one is required to exploit efficiently the resources of the railway infras-
tructure. In practice, however, the maximization of some objective function is
not enough: the solution is also required to be robust against delays/disturbances
along the network. Very often, the robustness of optimal solutions of the origi-
nal problem turns out to be not enough for their practical applicability, whereas
easy-to-compute robust solutions tend to be too conservative and thus unneces-
sarily inefficient. As a result, practitioners call for a fast yet accurate method to
find the most robust timetable whose efficiency is only slightly smaller than the
theoretical optimal one.

Fischetti, Salvagnin and Zanette (FSZ) [10] proposed and analyzed computa-
tionally alternative methods to find robust and efficient solutions to the TTP, in
its aperiodic (non cyclic) version described in [9]. Their method is based on an
event-based MIP model for the nominal TTP, akin to the formulation proposed
in [17] for the periodic (cyclic) case, and will be outlined briefly in the sequel.

7.1 Measuring Timetable Robustness

FSZ implemented an external simulation-based validation module that is in-
dependent from the optimization model itself, so that it can be of general
applicability and allows one to compare solutions coming from different meth-
ods. The module is required to simulate the reaction of the railways system
to the occurrence of delays, by introducing small adjustments to the planned
timetable (received as an input parameter). The underlying assumption here is
that timetabling robustness is not concerned with major disruptions (which are
to be handled by the real time control system and require human intervention)
but is a way to control delay propagation, i.e., a robust timetable has to favor
delay compensation without heavy human action. As a consequence, at valida-
tion time no train cancellation is allowed, and event precedences are fixed with
respect to the planned timetable.
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The validation model analyzes a single delay scenario at a time. As all event
precedences are fixed according to the input solution to be evaluated, the nominal
TTP constraints simplify to linear inequalities of the form:

ti − tj ≥ di,j (53)

where ti and tj are time variables associated with significant events (typically,
arrival and departure of a train from a certain station), and di,j is a minimum
trip time or minimum rest/headway time. Let P denote the set of ordered pairs
(i, j) for which a constraint of type (53) can be written, and E denote the set of
events.

The problem of adjusting the given timetable t under a certain delay scenario
δω can thus be rephrased as the following simple LP model with decision variables
tω describing the best possible adjustment of the published timetable t for the
considered delay scenario:

min
∑
j∈E

(
tωj − tj

)
(54)

tωi − tωj ≥ di,j + δω
i,j (i, j) ∈ P (55)

tωi ≥ ti i ∈ E (56)

Constraints (55) correspond to linear inequalities just explained, in which the
nominal right-hand-side value δi,j is updated by adding the (possibly zero)
extra-time δω

i,j from the current scenario ω.
Constraints (56) are non-anticipatory constraints stating the obvious condi-

tion that one is not allowed to anticipate any event with respect to its published
value in the timetable.

The objective function is to minimize the “cumulative delay” on the whole
network.

Given a feasible solution t, the validation tool keeps testing it against a large
set of scenarios, one at a time, gathering statistical information on the value
of the objective function and yielding a concise figure (the average cumulative
delay) of the robustness of the timetable.

7.2 Finding Robust Solutions

Different techniques to enforce robustness were implemented by FSZ.

A fat stochastic model. The first attempt to solve the robust version of the
TTP was to use a standard scenario-based SP formulation whose structure can
informally be sketched as follows:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)
(57)

∑
h∈T

ρh ≥ (1 − δ)z∗ (58)
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tωi − tωj ≥ di,j + δω
i,j (i, j) ∈ P , ω ∈ Ω (59)

tωi ≥ ti i ∈ E, ω ∈ Ω (60)
ti − tj ≥ di,j (i, j) ∈ P (61)
li ≤ ti ≤ ui i ∈ E (62)

The model is similar to that used in the validation tool, but takes into account
several scenarios ω ∈ Ω at the same time. Moreover, the nominal timetable values
tj are now viewed as decision variables to be optimized—their optimal value will
define the final timetable to be published. The model keeps a copy of the original
(linear) model with a modified right hand side for each scenario, along with the
original model; the original variables and the correspondent second-stage copies
in each scenario are linked through non-anticipatory constraints.

The objective is to minimize the cumulative delay over all events and scenar-
ios. The original objective function (namely, the total train profit

∑
h∈T ρh, to

be maximized, where T is the set of trains) is taken into account through con-
straint (58), where δ ≥ 0 is the tradeoff parameter and z∗ is the objective value
of the reference solution. As to the single-train profit variables ρh that appear in
(58), they are linked to the timetable variables through appropriate constraints
(not shown in the model); see [10] for a complete model.

For realistic instances and number of scenarios this model becomes very time
consuming (if not impossible) to solve–hence we called it “fat”. On the other
hand, also in view of its similarity with the validation model, the fat model
plays the role of a kind of “perfect model” in terms of achieved robustness,
hence it will be used for benchmark purposes.

A slim stochastic model. Given the computing time required by the full stochas-
tic model, the following alternative SP model was designed, which is simpler yet
meaningful for the TTP problem.

min
∑

(i,j)∈P,ω∈Ω

wω
i,js

ω
i,j (63)

∑
h∈T

ρh ≥ (1 − δ)z∗ (64)

ti − tj + sω
i,j ≥ di,j + δω

i,j (i, j) ∈ P , ω ∈ Ω (65)
sω

i,j ≥ 0 (i, j) ∈ P , ω ∈ Ω (66)
ti − tj ≥ di,j (i, j) ∈ P (67)
li ≤ ti ≤ ui i ∈ E (68)

In this model there is just one copy of the original variables, plus the recourse
variables sω

i,j that account for the unabsorbed extra times δω
i,j . It is worth noting

that the above “slim” model is inherently smaller than the fat one. Moreover,
one can drop all the constraints of type (65) with δω

i,j = 0, a situation that occurs
very frequently in practice since most extra-times in a given scenario are zero.
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As to the objective function, it involves a weighted sum of the the recourse
variables. Finding meaningful values for the weights wω

i,j turns out to be very
important. Indeed, we will shown in the sequel how to define the weights so as
to produce solutions whose robustness is comparable with that obtainable by
solving the (much more time consuming) fat model.

Light Robustness. A LR approach was used in [10] to generate robust timetables.
The resulting method is related to the adjustable robustness paradigm used by
Ben-Tal, El Ghaoui, and Nemirovski [1] in the context of project management.

In our TTP model, a typical constraint reads

ti − tj ≥ di,j

where di,j is the coefficient affected by uncertainty, and its LR counterpart is
simply defined as

ti − tj + γi,j ≥ di,j + Δi,j γi,j ≥ 0

where Δi,j is a parameter fixing the desired (overconservative) protection level,
and γi,j are the slack variables whose weighted sum has to be minimized.

7.3 Computational Results

Computational tests were performed on four single-line medium-size TTP in-
stances provided by the Italian railway company, Trenitalia. An almost-optimal
heuristic solutions for each of these instances was computed through the al-
gorithm described in [9], and used as a reference solution to freeze the event
precedences and to select the trains to schedule.

The overall framework was implemented in C++ and tested on a AMD
Athlon64 X2 4200+ computer with 4GB of RAM running Linux 2.6. The MIP
solver used was ILOG-Cplex 10.1.

As far as scenarios are concerned, for each train on the line and for each
scenario FSZ generated the corresponding extra-time, 5% on average, drawn
from an exponential distribution, and distributed it proportionally to its train
segments.

For each reference solution, a set of experiments was performed to compare
the different methods for different values of the tradeoff parameter δ giving the
allowed percentage of worsening of the nominal objective function, namely 1%,
5%, 10%, 20% and 40%. In particular, we compared the following alternative
methods:

– fat : fat stochastic model (50 scenarios only)
– slim1 : slim stochastic model with uniform objective function–all weights

equal (400 scenarios)
– slim2 : slim stochastic model with enhanced objective function (400 scenar-

ios), where events arising earlier in each train sequence receive a larger weight
in the objective function. More specifically, if the i-th event of train h is fol-
lowed by k events, its weight in the objective is set to k+1. The idea beyond
this weighing policy is that early extra-times in a train sequence are likely
to propagate to the next ones, so they are more important.
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Table 8. Comparison of different methods w.r.t. computing time and robustness
(cumulative delay in minutes), for different lines and tradeoff δ

δ Fat Slim1 Slim2 LR
Line Delay Time (s) Delay Time (s) Delay Time (s) Delay Time (s)

0% BZVR 16149 9667 16316 532 16294 994 16286 2.27
0% BrBO 12156 384 12238 128 12214 173 12216 0.49
0% MUVR 18182 377 18879 88 18240 117 18707 0.43
0% PDBO 3141 257 3144 52 3139 63 3137 0.25

Tot: 49628 10685 50577 800 49887 1347 50346 3.44
1% BZVR 14399 10265 15325 549 14787 1087 14662 2.13
1% BrBO 11423 351 11646 134 11472 156 11499 0.48
1% MUVR 17808 391 18721 96 17903 120 18386 0.48
1% PDBO 2907 250 3026 57 2954 60 2954 0.27

Tot: 46537 11257 48718 836 47116 1423 47501 3.36
5% BZVR 11345 9003 12663 601 11588 982 12220 1.99
5% BrBO 9782 357 11000 146 9842 164 10021 0.51
5% MUVR 16502 385 18106 86 16574 107 17003 0.45
5% PDBO 2412 223 2610 49 2508 57 2521 0.28

Tot: 40041 9968 44379 882 40512 1310 41765 3.23
10% BZVR 9142 9650 10862 596 9469 979 10532 2.01
10% BrBO 8496 387 10179 132 8552 157 8842 0.51
10% MUVR 15153 343 17163 84 15315 114 15710 0.43
10% PDBO 1971 229 2244 50 2062 55 2314 0.25

Tot: 34762 10609 40448 862 35398 1305 37398 3.20
20% BZVR 6210 9072 7986 538 6643 1019 8707 2.04
20% BrBO 6664 375 8672 127 6763 153 7410 0.52
20% MUVR 13004 384 15708 91 13180 116 13576 0.42
20% PDBO 1357 230 1653 55 1486 60 1736 0.28

Tot: 27235 10061 34019 811 28072 1348 31429 3.26
40% BZVR 3389 10486 4707 578 3931 998 5241 2.31
40% BrBO 4491 410 6212 130 4544 166 6221 0.53
40% MUVR 10289 376 13613 95 10592 108 11479 0.45
40% PDBO 676 262 879 55 776 57 1010 0.28

Tot: 18845 11534 25411 858 19843 1329 23951 3.57

– LR: light robustness model, with objective function as in slim2 and pro-
tection level parameters set to Δ = −μ ln 1

2 , where μ is the mean of the
exponential distribution. This is the protection level required to absorb a
delay of such distribution with probability 1

2 .

The results are reported in Table 8, where for each tradeoff parameter δ and
railway line we give, for each method, the level of robustness of the correspond-
ing solution (measured by the validation tool in terms of cumulative delay, in
minutes—the smaller, the better) and the required computing time (in CPU
seconds). According to the table, fat, slim2 and LR models produce solutions of
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comparable robustness (at least when the tradeoff parameter δ is not unrealisti-
cally large), whereas slim1 is clearly the worst method. As to computing times,
the fat model is one order of magnitude slower than slim1 and slim2, although it
uses only 50 scenarios instead of 400. LR is much faster than any other method,
more than two orders of magnitude w.r.t the fast stochastic models, and qualifies
as the method of choice to attack even larger instances.

8 Conclusions

In this paper we have addressed optimization problems in which input data is
affected by uncertainty. Although many robust and/or stochastic programming
models have been proposed in the literature to handle such a situation, their
applicability is sometimes not completely satisfactory. We have proposed to deal
with uncertainty by means of a new heuristic framework that we called Light
Robustness (LR).

LR couples robust optimization with a simplified two-stage stochastic pro-
gramming approach based on the introduction of suitable slack variables. The
approach can be viewed as a “flexible counterpart” of robust optimization, ob-
tained through the following modelling steps. We first fix the maximum objective
function deterioration that we are willing to accept in our model. Then we de-
fine a “robustness goal” that we would like to achieve, and model it by using a
classical robust optimization framework. In this way we obtain a robust model
with no objective function, that however is likely to be infeasible. To cope with
infeasibility, we introduce appropriate slack variables that allow for “local viola-
tions” of the robustness requirements, and define an auxiliary objective function
aimed at minimizing the slacks. The LR slack variables then play a role similar
to second-stage recourse variables in stochastic programming models, as they
penalize the corrective actions needed to restore feasibility. In this view, LR is
a heuristic framework combining the flexibility of SP (due to the presence of
second-stage variables) and the modelling ease of RO.

Because of its heuristic nature, the LR performance on a specific application
can only be evaluated through experimental analysis. We have reported exten-
sive experiments on both random and real word problems, showing that LR is
often able to produce solutions whose quality is comparable with that obtained
through stochastic programming or robust models, though it requires much less
effort in terms of model formulation and solution time—even if this latter aspect
appears to be less important in many applications.

According to our computational results, the LR approach is mostly successful
when the slack variables have a direct impact on robustness. For the cases where
the correlation between slacks and robustness is more subtle, the LR approach is
less likely to be effective, though an appropriate reformulation of the model can
be highly beneficial. We have illustrated this behavior on a simplified portfolio
problem, where a simple LR scheme applied to a suitable reformulation of the
initial model produces extremely good results in term of robustness.

In our view, the LR framework is not a rigid technique, but a heuristic mod-
elling framework where robustness is achieved by first enforcing a demanding
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robustness/optimality goal, and then by allowing for local violations of the con-
straints (absorbed by the slack variables) to deal with possible infeasibility issues.
As such, effective LR variants can be designed for specific problems, such as the
train timetabling problem recently addressed in [10].

Future research should investigate the applicability of the LR paradigm to
other real life problems, so as to highlight its pros and cons in various contexts.
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Abstract. The problem of robust line planning requests for a set of
origin-destination paths (lines) along with their frequencies in an un-
derlying railway network infrastructure, which are robust to fluctuations
of real-time parameters of the solution. In this work, we investigate a
variant of robust line planning stemming from recent regulations in the
railway sector that introduce competition and free railway markets, and
set up a new application scenario: there is a (potentially large) number
of line operators that have their lines fixed and operate as competing
entities issuing frequency requests, while the management of the infras-
tructure itself remains the responsibility of a single entity, the network
operator. The line operators are typically unwilling to reveal their true
incentives, while the network operator strives to ensure a fair (or socially
optimal) usage of the infrastructure, e.g., by maximizing the (unknown
to him) aggregate incentives of the line operators.

By investigating a resource allocation mechanism (originally devel-
oped in the context of communication networks), we show that a socially
optimal solution can be accomplished in certain situations via an anony-
mous incentive-compatible pricing scheme for the usage of the shared
resources that is robust against the unknown incentives and the changes
in the demands of the entities.This brings up a new notion of robustness,
which we call incentive-compatible robustness, that considers as robust-
ness of the system its tolerance to the entities’ unknown incentives and
elasticity of demands, aiming at an eventual stabilization to an equilib-
rium point that is as close as possible to the social optimum.

1 Introduction

Problem Setting. An important phase in the strategic planning process of a
railway (or any public transportation) company is to establish a suitable line
plan, i.e., to determine the routes of trains that serve the customers. In the line
planning problem, we are given a network G = (V, L) (usually referred to as
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the public transportation network), where the node set V represents the set of
stations (including important junctions of railway tracks) and the edge set L
represents the direct connections or links (of railway tracks) between elements
of V . A line p is a path in G. The frequency of a line p is a rational number
indicating how often service to customers is provided along p within the planning
period considered. For an edge � ∈ L, the edge frequency f� is the sum of the
frequencies of the lines containing � and is upper bounded by the capacity c� of �,
i.e., a maximum edge frequency established for safety reasons (measured as the
maximum number of trains per day). The goal of the line planning problem is to
provide the final set of lines offered by the public transportation company, along
with their frequencies (also known as the line concept). Typically, a line pool is
also provided, i.e., a set of potential lines among which the final set of lines will
be decided. In certain cases, there may be multiple line pools representing the
availability of the network infrastructure at different time slots or zones. This
is due to variations in customer traffic (e.g., rush-hour pool, late evening pool,
night pool), maintenance (some part of the network at a specific time zone may
be unavailable), dependencies between lines (e.g., the choice of a high-speed line
may affect the choice of lines for other trains), etc.

The line planning problem has been mostly studied under two main ap-
proaches (see e.g., [7,10]). In the cost-oriented approach, the goal is to minimize
the costs of the public transportation company, under the constraint that all
customers can be transported. In the customer-oriented approach, the goal is to
maximize the aggregate level of satisfaction for the customers (e.g., maximize
the number of customers with direct connections, minimize the maximum num-
ber of intermediate changes of a single customer, or minimize the traveling time
of the customers). A recent approach aims at minimizing the travel times over
all customers including penalties for the transfers needed [18,20].

The aforementioned approaches do not take into account certain fluctuations
of input parameters; for instance, due to disruptions to daily operations (e.g.,
delays), or due to fluctuating customer demands. This aspect introduces the
so-called robust line planning problem: Provide a set of lines along with their
frequencies, which are robust to fluctuations of input parameters. Very recently,
a game theoretic approach for robust line planning was presented in [19]. In that
model, the lines act as players and the strategies of the players correspond to
line frequencies. Each player aims to minimize the expected delay of her own
line. The delay depends on the traffic load and hence on the frequencies of all
lines in the network. The objective is to provide lines and their frequencies, that
are robust against delays. This is pursued by distributing the traffic load evenly
over the network (respecting edge capacities) such that the probability of delays
in the system is as small as possible.

In this work, we investigate a different perspective of robust line planning
stemming from recent regulations in the railway sector (at least within Europe)
that introduce competition and free railway markets, and set up a new appli-
cation scenario: there is a (possibly large) number of line operators (LOPs in
short) that should operate as commercial organizations, while the management
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of the network remains the responsibility of a single (typically governmental) en-
tity; we shall refer to the latter as the network operator (NOP in short). Under
this framework, LOPs act as competing entities for the exploitation of shared
goods and are (possibly) unwilling to reveal their actual level-of-satisfaction (or
utility) functions that determine their true incentives. Nevertheless, the NOP
would like to ensure the maximum possible level of satisfaction of these com-
peting entities, e.g., by maximizing the (unknown due to privacy) aggregate
levels of satisfaction. This would establish a notion of a socially optimal solu-
tion, which could also be seen as a fair solution, in the sense that the average
level of satisfaction is maximized. Additionally, the NOP should ensure that the
operational costs of the whole system are covered by a fair cost sharing scheme
announced to the competing entities. This implies that a (possibly anonymous)
pricing scheme for the usage of the shared resources should be adopted, that is
also robust against changes in the demands of the LOPs. That is, we consider
as robustness of the system its tolerance to the entities’ unknown incentives and
elasticity of demand requests, and the eventual stabilization at an equilibrium
point that is as close as possible to the social optimum.

Contribution. In this paper, motivated by rate allocation in communication
networks [13,14,21], we explore the aforementioned rationale by considering the
case where the (selfishly motivated) LOPs request frequencies over a pool of
already fixed line routes (one route per LOP). In particular, we investigate the
resource allocation mechanism proposed in the pioneering work of Kelly [13].
Rather than requesting end-to-end frequencies, the LOPs offer bids, which they
(dynamically) update for buying frequencies. Each LOP has a utility function
determining her level of satisfaction that is private; i.e., she is not willing to
reveal it to the NOP or her competitors, due to her competitive nature. The NOP
announces an (anonymous) resource pricing scheme, which indirectly implies an
allocation of frequencies to the LOPs, given their own bids.

Our first contribution is to show that for the case of a single line pool an adap-
tation of Kelly’s approach [13] provides a distributed, dynamic, (LOP) bidding
and (resource) price updating scheme, whose equilibrium point is the unknown
social optimum – assuming strict concavity and monotonicity of the private util-
ity functions. All dynamic updates of bids and prices can be done at the LOP
and resource level respectively, based only on local information that concerns the
particular LOP or resource. The key assumption is that the LOPs can control
only a negligible amount of frequency along a single line, compared to its total
frequency.

Our second contribution is a (non-trivial) extension of the approach for a
single pool to the case of multiple line pools. By assuming that the NOP can
periodically exploit a whole set of (disjointly operating) line pools and that each
LOP may be interested in different lines from different pools, we show that
there exists a globally convergent, dynamic, (LOP) bidding and (resource) price
updating scheme, whose equilibrium point is the unknown social optimum. The
NOP, similarly to the single pool case, uses a mechanism (a feasible frequency
allocation rule and an anonymous resource pricing scheme) aiming to maximize
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the aggregate level of satisfaction of LOPs. The NOP, contrary to the single
pool case, decides on how to divide the whole infrastructure among the different
pools so that the resource capacity constraints are preserved, aiming (again) to
achieve the optimal welfare value.

Our third contribution is an experimental study on a discrete variant of the
distributed, dynamic scheme developed for the single pool case on both syn-
thetic and real-world data. We note that in both single and multiple line pool
cases the proposed mechanisms assure market clearance, i.e., the entire network
infrastructure (capacities) is eventually used by the LOPs and all the budget
afforded by the LOPs is actually spent.

Our solution is robust against the imperfect knowledge imposed by the private
(unknown) utility functions and the arbitrary (dynamically updated) bids, since
the proposed protocol enforces convergence to an equilibrium which is the social
optimum. Our approach introduces a new notion of robustness, which we call
incentive-compatible robustness, that is complementary to the notion of recover-
able robustness introduced in [2,16,17]. The latter appears to be more suitable
in the context of railway optimization, as opposed to the classical notion of ro-
bustness within robust optimization; see [2,16,17] for a detailed discussion on
the subject and for the limitations of the classical approach as suggested in [4].

Recoverable robustness is about computing solutions that are robust against
a limited set of scenarios (that determine the imperfection of information) and
which can be made feasible (recovered) by a limited effort. One starts from a
feasible solution x of an optimization problem, which a particular scenario s,
that introduces imperfect knowledge (i.e., by adding more constraints), may
turn to infeasible. The goal is to have at our disposal a recovery algorithm A
that takes x and turns it to a feasible solution under s (i.e., under the new set
of constraints). In other words, in recoverable robustness there is uncertainty
about the feasibility space: imperfect information generates infeasibility and one
strives to (re-)establish feasibility.

Incentive-compatible robustness is about computing an incentive-compatible
recovery scheme for achieving robustness (interpreted as convergence to opti-
mality). By an incentive-compatible scheme, we mean that the players act (up-
date their bids, in our application) in a selfish manner during the convergence
sequence. In this context, the feasibility space is known and incomplete informa-
tion refers to complete lack of information about the optimization problem, due
to the unknown utility functions. The goal is to define an incentive-compatible
(pricing) scheme so that the players converge (recover) to the system’s optimum.
In other words, in incentive-compatible robustness there is uncertainty about the
objectives: feasibility is guaranteed, since imperfect knowledge does not intro-
duce new constraints, and one strives to achieve optimality, exploiting the selfish
nature of the players.

Note that incentive-compatible robustness is different from the concept of
game-theoretic robustness as developed in [1]. The approach in [1] is a central-
ized, deterministic paradigm to uncertainty in strategic games, mainly in the
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flavor of the Bertsimas and Sim approach [4] to robust LP optimization. We
elaborate on the differences in Section 5.

Related Work and Approaches. Related to our work is that of Borndörfer
et al. [5] that considers the allocation of slots in railway networks. That work
considers the improvement of existing schedules of lines and frequencies, by
reconsidering the allocation of (scarce) bundles of slots (i.e., lines with given fre-
quencies in our own terminology) that have positive synergies with each other.
The remaining schedule is assumed to remain intact, so that the resulting op-
timization problem is solvable. Initially, the involved users (LOPs) make some
bids and consequently a centralized optimization problem is solved to determine
the changes in the allocation of these slots so as to maximize the welfare of the
whole system. This approach is different from ours in the following points: (i)
It assumes no incentive-compatibility for the involved users and the eventual
allocation is determined by a centralized scheduler. In our case, there is a simple
pricing policy per resource (track), which is a priori known to all the players,
and the winner is determined by the players’ bids. The selfish behavior of the
LOPs (in our case) is not only taken into account, but also exploited by the sys-
tem in order to assure convergence to the social optimum of the whole network.
(ii) The approach in [5] makes some local improvements in hope of improving
the whole system, but does not exclude being trapped at some local optimum,
which may be far away from the social optimum of the system. Our proposed
scheme provably converges towards the social optimum, even if changes in the
parameters of the game (e.g., in the players’ secret utilities) change in the fu-
ture. (iii) In [5], it is required that a centralized optimization problem is solved
(considering the data regarding the whole network) and its solution is enforced
in the current schedule. In our work (at least for the single-pool case) there is no
need for global knowledge of the whole network. Each player dynamically adapts
her bids according to her own (secret) utility and the aggregate cost she faces
along her own path.

Another way to tackle the problem we consider here would be through the
celebrated Vickrey-Clarke-Groves (VCG) class of mechanisms [6,12,22]. Such
a mechanism would guarantee in our application scenario the existence of a
dominant strategy equilibrium [11] in which the allocation of frequencies to the
LOPs indeed maximizes the sum of their utilities, by encouraging LOPs to reveal
their utility functions truthfully. Unfortunately, implementing VCG mechanisms
is generally a very complex task, not only due to the huge size of the centralized
optimization problem to be solved, but also due to the dynamic nature of an
evolving market in which the parameters of the problem (railway infrastructure,
number of participating LOPs, LOP utilities, etc) change over time. For instance,
each LOP may vary her own utility function over time, due to changes in her
own data, or her way of thinking. It may even be the case that some LOPs
are unable to fully express their utility function, simply because they do not
know it (for example, determining the parameters of such a function could be a
hard optimization problem to solve by itself). On the other hand, it seems more
plausible for a LOP to determine whether she would like to marginally increase
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or decrease her budget for claiming usage of the network, given the current
situation she faces in the system. Therefore, we opt to follow Kelly’s approach
[13] by deploying a decentralized, dynamic updating scheme for the LOP budgets
and the resource prices, whose updating rules are simple and are based on local
information as much as possible that will monotonically converge to the socially
optimal solution. Of course, the price to pay is some loss of efficiency w.r.t. how
fast we converge to the optimum. Nevertheless, the self-stabilizing nature of
our scheme, even to also dynamically changing optima (e.g., due to changes
in the system infrastructure), is a very strong characteristic that compensates
this efficiency drawback, compared to the adoption of a static, centralized VCG
mechanism.

Structure. The rest of this paper is organized as follows. In Section 2, we pro-
vide the set up of our modeling, and present the adaptation of Kelly’s approach
[13] to the case of a single line pool by showing that the social optimum can
be found by a polynomial-time computable mechanism, and by providing a de-
centralized, dynamic scheme that globally converges to the social optimum. To
adapt and cast Kelly’s approach to our problem setting, we recapitulate and
re-prove certain results both for the sake of completeness and for providing the
road-map for the extension to the multiple pools case. In Section 3, we provide
our approach for the case of multiple line pools. We show that the social opti-
mum can be found by a polynomial-time computable mechanism, and we provide
a dynamic scheme (for implementing this mechanism) that globally converges
to the social optimum. In Section 4, we present an experimental evaluation of
our decentralized dynamic scheme for the single pool case, using synthetic and
real-world data. In Section 5, we discuss incentive-compatible robustness and
its comparison to other notions of robustness. We conclude in Section 6. A
preliminary version of this work appeared in [15].

2 Single Line Pool: Modeling and Solution Approach

In this section, we present the modeling and the solution approach for the ro-
bust line planning problem we consider, for the case where a single line pool is
provided. The development in this section is based on an adaptation of Kelly’s
resource allocation mechanism [13] (originally proposed within the context of
communication networks for allocating network capacity to potential users). To
adapt and cast Kelly’s approach to our problem setting, we recapitulate and re-
prove certain results for the sake of completeness and also to make this section
the road-map for the development of our approach for the case of multiple line
pools in Section 3.

Suppose that a set P of LOPs behave as competing service providers, willing to
offer regular (train) line routes to the end users of a railway public transportation
system. The NOP provides the (aforementioned) public transportation network
G = (V, L). The node set V represents train stations and junctions, while the
edge set L (with each edge corresponding to a railway track establishing direct
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Fig. 1. A simple network with two distinct lines, and the corresponding routing matrix

connection for some pair of nodes in G) is the set of shared resources of the net-
work. These resources are assumed to be subject to (fixed) capacity constraints,
described by the capacity vector c = (c�)�∈L > 0; for an edge � ∈ L, c� represents
the maximum number of trains passing through � over a whole time period (e.g.,
a day).

There is a fixed pool of line routes (i.e., origin–destination paths) that the
LOPs are willing to use, and we assume that there is one line route per LOP1.
This pool is represented by a routing matrix R ∈ {0, 1}|L|×|P |, in which each
row R�,� corresponds to a different edge � ∈ L, and each column R�,p corre-
sponds (actually, is the characteristic vector of) the line route of a distinct LOP
p ∈ P . Fig. 1 demonstrates a network with two distinct lines and the corre-
sponding routing matrix. Each LOP p ∈ P claims a frequency of trains that she
wishes to route over her path, R�,p, given that no edge capacity constraint is
violated in the network. A utility function Up : R �→ R determines the level of
satisfaction of p ∈ P for committing an end-to-end frequency xp > 0 along her
route R�,p, for the purposes of her clients. These utility functions are assumed
to be strictly increasing, strictly concave, nonnegative real functions of the end–
to–end frequency xp allocated to p ∈ P . It is also assumed that these functions
are private: each LOP is not willing to reveal it either to the NOP, or to her
competitors, due to her competitive nature.

The NOP is only interested in having a socially optimal (fair) solution. This
is usually interpreted as maximizing the aggregate satisfaction of the LOPs.
Therefore, the social welfare objective is considered to be the maximization of
the aggregate utilities of the LOPs, subject to the capacity constraints. That
is, the NOP is interested in the solution of the following convex optimization2

problem:

SOCIAL (SC) max

⎧⎨⎩∑
p∈P

Up(xp) : Rx ≤ c; x ≥ 0

⎫⎬⎭
1 We can always enforce this assumption by considering a LOP with more than one

routes as different LOPs distinguished by the specific route.
2 We make the tacit assumption that convex optimization refers to minimizing a con-

vex function f , which is equivalent to maximizing the concave function −f .
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Since all (private) utility functions are strictly concave and the feasible space
is also convex, SC has a unique optimal solution, which is called the social
optimum. To solve SC directly, the NOP, apart from the inherent difficulty
in centrally solving (even convex) optimization programs of the size of a railway
network, faces the additional obstacle of not knowing the exact shape of the
objective function. Moreover, there exist some operational costs that have to be
split among the LOPs who use the infrastructure, and this has to be done also
in a fair way: each LOP should only be charged for the usage of the resources
standing on her own route. In addition, the per–unit cost for using a line should
be independent of a LOP’s identity (i.e., we would like to have an anonymous
pricing scheme for using the resources). But of course, this cost depends on the
aggregate frequency induced by all the LOPs in each of these edges, due to the
congestion effect. Indeed, it would be desirable for the NOP to be able to exploit
the announcement of a pricing scheme not only for covering these operational
costs, but also in such a way that a fair solution for all the LOPs is induced,
despite the fact that there is no global knowledge of the exact utility functions
of the LOPs.

In this work, we explore the possibilities of having such a frequency allocation
and resource pricing mechanism. We would like this mechanism to depend only
on the information affecting either a specific LOP (e.g., the amount of money she
is willing to afford) or a specific resource (e.g., the aggregate frequency induced
by the LOPs’ demands on this resource), but as we shall see this is not always
possible.

As for the LOPs (the players), each of them is interested in selfishly utilizing
her own payoff, which is determined by the difference of the private utility value
minus the operational cost that the NOP charges her for claiming an amount
of frequency along her own route. The strategy space of a LOP is to claim (via
bidding) the value of the frequency she is willing to buy, subject to the global
capacity constraints (for all the players). It is mentioned here that this linear
combination of the private utility and the cost share is not a real restriction, as
there is no restriction for the shape of the utility function, other than the strict
concavity and the monotonicity, which are quite natural assumptions.

2.1 Social Optimum – Tractability

Our first goal is to demonstrate that, despite the hidden utilities of the LOPs, it
is indeed possible for the NOP to induce the social optimum, i.e., the solution of
SC , as the result of the LOPs’ selfish behavior. In order to study the effect of

the selfish behavior in this setting, we consider the following Frequency Game
in Line Planning:

– Each player p ∈ P is a LOP, whose strategy is to choose a line frequency
over her (already fixed) route R�,p connecting her own origin–destination
pair (sp, tp) of stations/stops.
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– The strategy space for all the players is the set of feasible flows from origin to
destination nodes, so that the edge capacity constraints are preserved. That
is, the strategy space of the game is the set of vectors

{
x ∈ R

|P |
≥0 : Rx ≤ c

}
.

– Each player’s payoff is determined both by the value of the private utility
function Up(xp) (for having a frequency of xp over her route) and the oper-
ational cost Cp(x) she has to pay along her own route, due to the required
frequency vector x induced by all the players in the network. Hence, player
p’s individual payoff is defined as: IPp(xp, x−p) = Up(xp) − Cp(xp, x−p),
where x−p is the frequency vector for all the players but for player p. There-
fore, the sole goal of player p ∈ P is to choose her frequency so as to maximize
her individual payoff:

USER max {IP (xp, x−p) = Up(xp) − Cp(xp, x−p) : xp ≥ 0}

– We consider as shared resources the capacities of the available network edges,
for which the LOPs compete with each other.

As we shall explain later, we actually view this game as a mechanism–design
instance, in which the NOP is the game regulator that receives the players’ bids
(for buying frequencies) and consequently decides both a feasible allocation of
frequencies to the players and the payments that they have to provide. In this
setting, the players can only affect their own eventual choice (allocation of a
frequency) indirectly via bidding, rather than freely setting her own frequency
along her route. In order to receive a (hopefully) higher frequency, a player may
only offer a higher bid.

Describing the Social Optimum. Due to our assumption on the convex-
ity of SC , we know that a frequency vector x̂ is the social optimum if there
exists a vector of Lagrange Multipliers λ̂ = (λ̂�)�∈L satisfying the following
Karush-Kuhn-Tucker (KKT) conditions (see e.g., [3, Chap. 3]):

KKT-SOCIAL (KKT-SC)

U ′
p(x̂p) = λ̂T · R�,p, ∀p ∈ P, (1)

λ̂� (c� − R�,� · x̂) = 0, ∀� ∈ L, (2)
R�,� · x̂ ≤ c�, ∀� ∈ L, (3)

λ̂, x̂ ≥ 0 (4)

Of course, the problem with the KKT-SC system is that the utility functions
(and hence their derivatives) are unknown to the system. The question is whether
there exists a way for the network designer to enforce the optimal solution of
SC , also described in KKT-SC , without demanding this knowledge. The an-

swer to this is partially affirmative, and this is by exploiting the selfish nature
of the LOPs as we shall see shortly.
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Setting the Right Pricing Scheme for the Players. In order to allow
usage of his resources (the capacities of the edges in the network), the NOP has
to define a pricing scheme that will (at least) pay back the operational costs of
the edges. This scheme should be anonymous, in the sense that all the LOPs
willing to use a given edge, will have to pay the same per–unit–of–frequency
price for using it. But these prices may vary for different edges, depending on
the popularity and the availability of each edge.

For the moment let us assume that we already know the optimal Lagrange
Multipliers, (λ̂�)�∈L of KKT-SC . Interpreting these values as the per–unit–of–
frequency prices of the resources, we have a pricing scheme for the frequency in-
duced by the LOPs to their own routes. Each LOP pays exactly for the marginal
cost of her own frequency at the resources she uses in her route. That is,

∀p ∈ P, Cp(xp, x−p) = μ̂p · xp

where μ̂p ≡
∑

�∈L:R�,p=1 λ̂� = λ̂T R�,p is the per–unit price for committing one
unit of frequency along the route R�,p of player p ∈ P .

One should mention here that there is indeed an indirect effect of the other
players’ congestion in the marginal cost of each player, despite the fact that
this seems to be only linear in her own frequency. This is because the scalar μ̂p

actually depends on the optimal primal–dual pair (x̂, λ̂).
We next assume that the players are actually controlling only negligible

amounts of frequencies compared to the aggregate ones3. Then, their effect in
the total congestion (and therefore in the values of the marginal prices) is also
negligible. This implies that the players consider the per-unit-prices they face to
be constant, even if this is actually affected by the frequency vector as well. In
such a case we say that the players are price takers, i.e., they accept the prices
without anticipating to have an effect on them by their own strategy. In such a
case each player solves the following optimization problem:

USER-I max {Up(xp) − μ̂pxp : xp ≥ 0}

Due to the convexity of USER-I , x̃p ≥ 0 is an optimal solution if U ′
p(x̃p) = μ̂p.

That is, each player (selfishly) tries to satisfy her own part of equations (1) in
KKT-SC . Of course, we still have to deal with the crucial problem that the op-

timal Lagrange Multipliers (that define the marginal prices for the users) cannot
be directly computed, due to both the size of SC and the lack of knowledge of
the private utility functions, in the framework of railway optimization.

To tackle this situation, we transform the Frequency Game to a mechanism
design instance, in order to have a more active participation of the NOP, as the
game regulator. In particular, we consider the following two-level scenario for
dynamically setting per–unit prices of the edges and frequencies of the selfish
players. Initially each LOP p ∈ P announces a bid wp ≥ 0 concerning the total
amount of money she is willing to pay for buying frequency along her own route.

3 For the considered application scenario, this is not unrealistic.
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The exact amount of frequency that she will eventually buy, depends on the
per–unit price that will be announced by the NOP, and is not yet known to her
(nevertheless, it will be the case that, given the other players’ bids, any LOP
p ∈ P may only increase her assigned frequency by raising, unilaterally, her
own bid). Consequently, the NOP considers the following optimization problem,
whose Lagrange Multipliers define the per–unit prices of the edges:

NETWORK (NET) max

⎧⎨⎩∑
p∈P

wp · log(xp) : Rx ≤ c; x ≥ 0

⎫⎬⎭
That is, the NOP considers that the private utility Up(xp) is substituted by
the (also strictly concave and increasing, for any given bid vector w ∈ R

|P |
≥0)

function wp log(xp). The choice of this function, along with the selfishness of the
LOPs, allows us to obtain a convex program with linear inequalities, whose KKT
conditions are very similar (except for the first line) to those of KKT-SC :

KKT-NETWORK (KKT-NET)
wp

x̄p
= λ̄T · R�,p, ∀p ∈ P, (5)

λ̄� (c� − R�,� · x̄) = 0, ∀� ∈ L, (6)
R�,� · x̄ ≤ c�, ∀� ∈ L, (7)

λ̄, x̄ ≥ 0 (8)

By (x̄, λ̄), we denote the optimal primal-dual pair of KKT-NET . Observe that
the only difference between KKT-NET and KKT-SC concerns the (left-hand
side of) equations (5) and (1), respectively. But we shall demonstrate now that
the selfish (and price taking) behavior of the LOPs is enough to make this dif-
ference vanish. Returning to the LOPs, we initially assumed that they announce
some fixed bids, and consequently the NOP sets the per–unit prices of the re-
sources. Given the bid vector and the resource prices, it is then easy to determine
each LOP’s assigned frequency. But the truth is that, since the pricing scheme
changes over time, it is in the interest of each LOP to actually vary her own bid
over time. Indeed, if the players are assumed to be price takers and act myopi-
cally (i.e., without anticipating to affect the prices via their own pricing policy),
then they will try to solve the following system, which is parameterized by the
instantaneous set of per–unit prices μ(t) = (μp(t))p∈P (now seen by the LOPs
as constants) they are charged at time t ≥ 0:

USER-II max
{

Up

(
wp(t)
μp(t)

)
− wp(t) : wp(t) ≥ 0

}
Due to convexity, the optimal solution w̃p(t) of the unconstrained optimization
program USER-II , will be the bid chosen by player p ∈ P at time t ≥ 0, and
is be given by:
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1
μp(t)

· U ′
p

(
w̃p(t)
μp(t)

)
= 1 ⇔

U ′
p (x̃p(t)) = U ′

p

(
w̃p(t)
μp(t)

)
= μp(t) ⇔

x̃p(t)U ′
p (x̃p(t)) = μp(t) · x̃p(t) = w̃p(t)

That is, the price taking, myopic players have an incentive to set their bids
properly so that ∀t ≥ 0, ∀p ∈ P, wp(t) = xp(t)U ′

p(xp(t)). This will also hold at
the optimal solution of NET , i.e., ∀p ∈ P, w̄p = x̄pU

′
p(x̄p). But when this is

true, it also holds that KKT-NET and KKT-SC coincide. That is, the selfish–
bidding behavior of the myopic, price taking players, under the pricing scheme
λ̄ determined by the Lagrange Multipliers of KKT-NET , leads to the optimal
solution (x̄, λ̄) = (x̂, λ̂) of KKT-SC .

The discussion within this section establishes the following result.

Theorem 1. Consider a transportation network G = (V, L) and a set P of
(selfish, price taking) LOPs with hidden utilities, whose lines are determined
by a routing matrix R ∈ {0, 1}|L|×|P |. There exists a polynomial–time com-
putable mechanism (i.e., a pair of a frequency allocation rule and resource pric-
ing scheme) which induces the optimal solution of SC as a result of the LOPs’
selfish behavior.

2.2 Social Optimum – Dynamic and Decentralized Computation

At this point, one could argue that, in order to solve the (partially determined)
convex program SC , it suffices to determine the proper resource prices by the
optimal solution of the (completely determined, and computationally tractable)
convex program NET . The latter can be directly solved and provide the proper
Lagrange Multipliers of SC . However, the huge scale of a railway network op-
timization instance makes this rationale rather unappealing.

Motivated by the pioneering work of Kelly et al. [13,14] and its excellent
simplification and elaboration in [21], we shall try to compute an optimal solution
of NET as the stable point of a system of differential equations that determines
the updates of the resource prices, and (consequently) the LOPs’ bids. The
crucial observation at this point is that it suffices to enforce the resource prices
to gradually converge to the optimal price vector λ̄ provided by NET , and the
“right bids” will follow.

We consider the following dynamic system of differential equations that actu-
ally constitutes our decentralized, dynamic algorithm for computing the social
optimum.

1. Each resource (edge in the transportation network) is equipped with a dy-
namically updated charging mechanism, which is the same (per–unit) price
for all the LOPs using it. This charging mechanism is updated according to
the following system of differential equations:
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∀� ∈ L, λ̇�(t) = max{y�(t) − c�, 0} · I{λ�(t)=0} + (y�(t) − c�) · I{λ�(t)>0} (9)

where y�(t) ≡
∑

p∈R:R�,p=1 xp(t) = R�,� · x(t) is the aggregate frequency
committed at edge � ∈ L at time t ≥ 0, and I{E} is the indicator variable of
the truth of a logical expression E .

2. Each LOP p ∈ P , at any time t ≥ 0, is charged an instantaneous per-
unit price μp(t) ≡

∑
�∈L:R�,p=1 λ�(t) = λ(t)T · R�,p. It solves USER-II to

determine wp(t), and consequently is allocated a frequency xp(t) = wp(t)
μp(t) .

The system of differential equations (9) is obtained from the well-known ap-
proach (see e.g., [13,21]) that considers the Lagrange Multipliers of an opti-
mization problem as the (per unit) prices of the resources corresponding to the
constraints represented by each Lagrange Multiplier. Therefore, the above sys-
tem has the following intuitive interpretation. For each resource � that currently
has a zero price, the tendency is to increase the price only if this resource is
over-used (i.e., the aggregate frequency exceeds the capacity of the resource).
When a resource has positive price, then the tendency is either to increase or
reduce this price, depending on whether its current frequency exceeds or is be-
low the capacity of the resource, respectively. Thus, the only stable situation
is when a resource is either under-used and has zero price (since there is no
interest in using the residual capacity), or its frequency has already reached its
capacity. Observe that the equilibrium of this system of differential equations has
∀� ∈ L, ȳ� ≡ R�,� · x̄ = c� ∨ λ̄� = 0. That is, the complementarity conditions
of both KKT-SC and KKT-NET (equations (2) and (6)) are satisfied.

Step 2 above implies that at equilibrium player p, given its commitment on
spending wp for buying frequency, is allocated a frequency of x̄p = wp

μ̄p
. From

this we deduce that at equilibrium also the equations (5) of KKT-NET are
satisfied.

We are now ready to prove the following.

Theorem 2. The above defined dynamic system of resource-pricing and LOP-
bid-updating differential equations ensures monotonic convergence to the social
optimum of NET from any initial point of resource prices and LOP bids.

Proof. The above system of differential equations is a distributed algorithm, in
which each LOP reacts to signals she gets about the aggregate frequency along
her route. These signals are the per-unit prices μp(t) that the LOP gets from
the NOP at any time.

The question is whether the above system converges at all. This is indeed
true, if we assume that the routing matrix R has full rank. This assures that
given a set λ(t) = (λ�(t))�∈L of instantaneous per-unit prices at the resources,
the set μ(t) = (μp(t))p∈P of per-unit prices for the LOPs, that is computed as
the solution of the system μ(t) = RT ·λ(t), is unique. Using a proper Lyapunov
function argument, it can be shown (cf. [21, Chapter 3]) that this dynamic (and
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distributively implemented) pricing scheme, for fixed player bids (wp)p∈P , is
stable and converges to the optimal solution (x̄, λ̄) of NET .

In particular, consider the Lyapunov function V (λ(t)) = 1
2 (λ(t)− λ̄)T (λ(t)−

λ̄). To show stability of our scheme, it suffices to show that dV (λ(t))/dt ≤ 0.
Then we have:

dV (λ(t))
dt

=
∑
�∈L

(λ�(t) − λ̄�) · λ̇(t)

=
∑
�∈L

(λ�(t) − λ̄�) · [max{y�(t) − c�, 0} · I{λ�(t)=0} + (y�(t) − c�) · I{λ�(t)>0}]

≤
∑
�∈L

(λ�(t) − λ̄�) · (y�(t) − c�)

=
∑
�∈L

(λ�(t) − λ̄�) · [(y�(t) − ȳ�) + (ȳ� − c�)]

≤
∑
�∈L

(λ�(t) − λ̄�) · (y�(t) − ȳ�)

=
∑
�∈L

(λ�(t) − λ̄�) · R�,� · (x(t) − x̄)

=
∑
p∈P

(μp(t) − μ̄p) · (xp(t) − x̄p)

=
∑
p∈P

(
wp

xp(t)
− wp

x̄p

)
· (xp(t) − x̄p) =

∑
p∈P

wp ·
(

2 − xp(t)
x̄p

− x̄p

xp(t)

)
≤ 0

The first inequality holds because: ∀� ∈ L, (i) if λ�(t) > 0 then λ̇�(t) = y� − c�;
(ii) if λ�(t) = 0 then max{y�−c�, 0} ≥ 0 and λ�(t)− λ̄� = −λ̄� ≤ 0. Therefore, for
λ�(t) = 0 it holds that (λ�(t)−λ̄�)max{y�(t)−c�, 0} = −λ̄� max{y�(t)−c�, 0} ≤ 0.
But so long as λ(t) = 0, it holds that the total frequency y�(t) is at most as
large as the capacity c� (otherwise the price for this resource would have raised
earlier). That is, 0 ≤ −λ̄�(y�(t) − c�). The second inequality holds because at
equilibrium no aggregate frequency ȳ� can exceed the capacity c� of the resource,
and λ̄�(ȳ� − c�) = 0. The third inequality holds because ∀z > 0, z + 1

z ≥ 2 ⇒
2− z − 1

z ≤ 0. We have also exploited the facts that ∀t ≥ 0, y(t) = R · x(t) and
μ(t) = λ(t)T · R. ��

3 Multiple Line Pools: Modeling and Solution Approach

In this section we extend the freedom of both the NOP and the LOPs. For
the NOP we assume that he can now periodically exploit a whole set K of
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(disjointly operating) line pools, rather than a single line pool, to serve the
LOPs’ connection requests. It is up to the NOP how to split a whole operational
period of the railway infrastructure among the different pools, so that (in overall,
for the whole period) the resource capacity constraints are not violated. A first
assumption that we make at this point, is that the NOP divides the usage of
the whole infrastructure (rather than each resource separately) among the pools.
This is because we envision the line pools to be implemented, not concurrently,
but in disjoint time intervals (e.g., via some sort of time division multiplexing),
and also to concern different characteristics of the involved lines (e.g., high-speed
pool, regular-speed pool, local-trains pool, rush-hour pool, night-shift pool, etc.).
The capacity of each resource (as in the single pool case) refers to its usage
(number of trains) over the whole time period we consider (e.g., a day), and
if a particular pool consumes (say) 50% of the whole infrastructure, then this
implies that for all the lines in this pool, each resource may exploit at most half
of its capacity.

As for the LOPs, they can now even claim different lines from different pools.
In accordance with the single pool case, each LOP may express interest in at most
one line per pool. For simplicity we assume that each LOP is interested for exactly
one line per pool, adding dummy origin-destination pairs connected with an edge
of zero capacity, for every LOP that has no interest in some pool. Technically, our
analysis would allow even the case where a LOP expresses interest for lines with
different origin–destination pair (in different pools). Nevertheless, we assume
that each LOP p ∈ P has a single (strictly concave, as before) utility function
Up : R≥0 �→ R≥0, which depends on the aggregate frequency xp that she gets
from all the pools in which she is involved. In order to be in compliance with this
assumption, we consider the case where each LOP expresses interest for different
lines (at most one per pool) over the same origin-destination pair. Of course, in
reality, different ways of dividing the same aggregate frequency xp among the
various lines, could make a huge difference for the particular LOP, but we do
not account for this effect in this paper.

In analogy with the single pool case, each pool k ∈ K is represented by its
own routing matrix R(k) ∈ {0, 1}|L|×|P |. The frequency (number of trains over
one time period) granted to the LOP p ∈ P within the pool k ∈ K, is indicated
by a nonnegative real variable xp,k. The aggregate frequency that p gets is then
xp =

∑
k∈K xp,k. The LOPs still try to have (indirect, via bidding) control over

the aggregate end-to-end frequency xp they get by the NOP along all their lines,
from all the possible pools that may be of use by the NOP. It is up to the NOP to
decide how to divide the whole railway infrastructure among the different pools,
so that the resource capacity constraints are preserved, the goal being to achieve
the optimal social welfare value. That is, the NOP now directly participates in
the optimization problem via the variables fk : k ∈ K indicating the proportion
of capacity that each pool consumes from every resource, over the whole time
period we study. We will say that the NOP or the vector f completely divides
the infrastructure, if

∑
k∈K fk = 1.
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The NOP is now interested in solving the following optimization problem:

MULTI-SOCIAL (MSC)

maximize
∑
p∈P

Up(xp) =
∑
p∈P

Up

(∑
k∈K

xp,k

)
s.t. ∀(�, k) ∈ L × K,

∑
p∈P

R�,p(k) · xp,k ≤ c� · fk∑
k∈K

fk ≤ 1

x, f ≥ 0

Once more, this is a strictly convex optimization problem (due to the strict con-
cavity of the LOP utility functions, and the linearity of the feasible space), whose
objective function is unknown to the NOP. We shall explain in this section how
we can tackle this issue. The overall idea is that we can handle the multiple pools
case as an expanded single pool case. We have |K| replicas of the same railway
infrastructure, and |K| replicas p1, . . . , p|K| of the same LOP p ∈ P , each being
interested only in a single line (the one of interest to LOP p in the correspond-
ing pool). Each LOP offers her bid wp for buying aggregate frequency xp. The
NOP determines the proportions of railway infrastructure that are committed
per pool. Exactly the same proportions are used (by the NOP) for splitting the
LOPs’ bids among the various pools.

3.1 Multi Social Optimum – Tractability

We start by an observation that exploits the economic interpretation of the
Lagrange Multipliers of MSC .

Lemma 1. Assuming that all the players adopt strictly increasing, concave util-
ity functions, if the resource prices are determined by the vector Λ̂ of optimal
Lagrange Multipliers of the resource constraints in MSC , then the following
are true: (i) Each LOP is indifferent of the way her aggregate frequency is split
among different pools. (ii) All the pools have the same (weighted) aggregate cost.
(iii) The NOP completely divides the whole railway infrastructure among the
different pools. Facts (i) and (iii) also hold even when the NOP fixes a priori
the vector of proportions, for the corresponding optimal solution.

Proof. Let Λ be the vector of Lagrange Multipliers for the resource capacity
constraints, and ζ the Lagrange Multiplier concerning the constraint for the
capacity proportions per pool. The Lagrangian function is the following:
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L(x, f , Λ, ζ)

=
∑
p∈P

Up(xp) −
∑
�∈L

∑
k∈K

Λ�,k ·

⎡⎣∑
p∈P

R�,p(k) · xp,k − c� · fk

⎤⎦− ζ

[∑
k∈K

fk − 1

]

=
∑
p∈P

[
Up(xp) −

∑
k∈K

xp,k

(∑
�∈L

Λ�,k · R�,p(k)

)]
+
∑
k∈K

fk ·
[
cT Λ�,k − ζ

]
+ ζ

=
∑
p∈P

[
Up(xp) −

∑
k∈K

xp,k · μp,k(Λ)

]
+
∑
k∈K

fk ·
[
cT Λ�,k − ζ

]
+ ζ

where we set μp,k(Λ) ≡
∑

�∈L Λ�,k · R�,p(k). If we consider Λ�,k as the per-unit-
of-frequency price of resource � with respect to the pool k, then μp,k(Λ) is again
the end-to-end per-unit cost that p has to pay in pool k. The strict concavity of
the utility functions, along with the linearity of the feasible space, assure that we
indeed have to solve a strictly convex optimization problem, which has a unique
optimal solution, (x̂, f̂). The system of KKT conditions of MSC describing this
solution, is the following:

KKT-MULTI-SOCIAL (KKT-MSC)
U ′

p(x̂p) = μ̂p,k ≡ μp,k(Λ̂), ∀(p, k) ∈ P × K (10)

cT · Λ̂�,k ≡
∑
�∈L

Λ̂�,k · c� = ζ̂, ∀k ∈ K (11)

Λ̂�,k

⎡⎣∑
p∈P

R�,p(k)x̂p,k − c�f̂k

⎤⎦ = 0, ∀(�, k) ∈ L × K (12)

ζ̂ ·
(∑

k∈K

f̂k − 1

)
= 0 (13)

∑
p∈P

R�,p(k) · x̂p,k ≤ c� · f̂k, ∀(�, k) ∈ L × K (14)

∑
k∈K

f̂k ≤ 1 (15)

x̂ ≥ 0, f̂ ≥ 0, Λ̂ ≥ 0, ζ̂ ≥ 0 (16)

Observe that from KKT-MSC we can easily deduce the following facts with
respect to the optimal solution:

(i) By equation (10), each LOP faces exactly the same end-to-end per-unit-
of-frequency cost μ̂p = μ̂p,k = U ′

p(x̂p), ∀k ∈ K, along any line of interest
to her. This justifies the fact that p is not really concerned about how the
aggregate frequency x̂p =

∑
k∈K x̂p,k is distributed among the different lines

of interest to her. The pricing scheme induced by Λ̂ makes all these lines
look of equal importance.
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(ii) By equation (11), in the optimal solution all the pools have the same
(weighted) aggregate per-unit-of-frequency cost, equal to ζ̂, if we interpret
the resource capacities as their weights.

(iii) Due to equation (13), unless this optimal (identical for all pools) aggregate
per-unit-of-frequency cost is zero, it holds that the resource capacities are
totally distributed among the distinct pools: if ζ̂ > 0 then

∑
k∈K f̂k = 1.

But if we consider the non-trivial case in which the network has positive
resource capacities, then clearly (due to strict concavity of the utilities)
some of the resource prices will have to be positive. This directly implies
the positivity of ζ̂.

Observe finally that facts (i) and (iii) still hold for the unique optimal primal-dual
solution (x̄, Λ̄), in the case that the NOP fixes a particular vector of proportions
f̄ (that completely divides the infrastructure among the pools), which is then
considered to be constant both in MSC and in KKT-MSC . Of course, this
time we cannot assure the same aggregate cost per pool. ��

To tackle the issue of limited information, we consider again (as in the single pool
case) a mechanism in which the LOPs are initially required to propose their own
bids for buying frequencies, and consequently the NOP somehow determines the
resource prices and the frequencies granted to the LOPs (per pool) according to
this pricing scheme and their bids. In particular, we construct a new (strictly
convex) program, by substituting the (unknown) LOP utility functions with the
pseudo-utilities wp log(xp), where wp ≥ 0 is the (fixed) amount of money that
p ∈ P is willing to spend for buying frequency (across all pools). This program
is the following:

MULTI-NETWORK (MNET)

maximize
∑
p∈P

wp log(xp) =
∑
p∈P

wp log

(∑
k∈K

xp,k

)
s.t. ∀(�, k) ∈ L × K,

∑
p∈P

R�,p(k) · xp,k ≤ c� · fk∑
k∈K

fk ≤ 1

x, f ≥ 0

Therefore, for any (fixed) vector w = (wp)p∈P of LOP bids, the NOP computes (in
polynomial time) the optimal solution of MNET , considering as resource prices
the optimal Lagrange Multipliers of the resource constraints in KKT-MNET ,
which is almost identical to KKT-MSC , except for the equations (10), which are
substituted by the following:

wp

x̄p
= μ̄p,k ≡ μp,k(Λ̄), ∀(p, k) ∈ P × K (17)
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The properties of Lemma 1 for the optimal solution of MSC also hold for the
optimal solution (for any fixed bid vector) of MNET , even when the NOP
decides to fix a particular vector of proportions f̄ . In particular, for (x̄, f̄ , Λ̄, ζ̄)
it holds that each LOP faces exactly the same cost μ̄p = μ̄p,k in every pool
k ∈ K, this time equal to wp

x̄p
rather than U ′

p(x̄p). Moreover, if the capacity
proportions are also variables (rather than constants), then all the pools have
the same (weighted) aggregate cost ζ̄.

Consequently, the NOP announces all the optimal frequencies x̄p,k for each
LOP p ∈ P and each pool k ∈ K, for which we know that x̄p =

∑
k∈K xp,k = wp

μ̄p
.

Based once more on our assumption that the LOPs are price taking selfish en-
tities, as in the single pool case, we exploit the fact that each LOP will choose
her own bid w̄p as the optimal solution of USER-II , which assures then that
U ′

p(x̄p) = μ̄p = μ̄p,k, ∀k ∈ K, exactly as required in KKT-MSC . This holds
for any vector of resource prices that assures for every LOP exactly the same
per-unit cost in all the pools, and in particular, for the optimal Lagrange Mul-
tipliers vector Λ̄ of KKT-MNET . Therefore, we again conclude that at equi-
librium the LOPs will choose their bids in such a way that the optimal solution
of KKT-MSC coincides with the optimal solution of KKT-MNET , for any
fixed vector of capacity proportions, f̄ . The above discussion thus leads to the
following conclusion.

Theorem 3. Consider a transportation network G = (V, L) and a set P of (self-
ish, price taking) LOPs with private utility functions of the aggregate frequency
assigned to them. Each LOP expresses interest for at most one line in each pool
from a set K of pools. There exists a polynomial–time computable mechanism
(i.e., a pair of a frequency allocation rule and resource pricing scheme) which
induces (as the only equilibrium point) the optimal solution with respect to the
aggregate utility value, as a result of the LOPs’ selfish behavior.

Once more, this tractable mechanism, which is based on the solvability of MNET ,
is totally centralized and rather inconvenient for a dynamically changing (over
time), large-scale railway system. Therefore, in the next subsection we shall de-
vise an almost-localized analogue to the single pool case that is based on a system
of updating rules for the resource prices (determined by each resource), the LOP
bids, and the vector of proportions (determined by the NOP), which converges to
this optimal solution of MSC .

3.2 Multi Social Optimum – Dynamic and Decentralized
Computation

Our first argument has to do with the independence of the adopted pricing
scheme from the way that the NOP chooses to split the railway infrastructure
among the different pools. In particular, as we shall shortly explain (Lemma 2),
for any fixed vector of capacity proportions f̄ that the NOP chooses, the optimal
value of the corresponding dual program of MSC exclusively depends on the
choice of the vector Λ of resource prices. The dynamic updating system that we
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shall later propose will exploit exactly this fact and let (in a continuous fashion)
the resource prices gradually converge to the optimal price vector (which then
forces the LOP bids and the corresponding frequencies to get the right values), for
the currently adopted vector of capacity proportions. This vector of proportions
will be updated periodically by the NOP, only after the system has stabilized to
that optimal point (of optimal prices and bids).

Lemma 2. For any (fixed) vector f of capacity proportions that completely di-
vides the network infrastructure among the pools, the optimal value of MSC
exclusively depends on the optimal vector Λ̄ of per-unit prices for the resources.

Proof. Using the Lagrange function previously defined, the dual problem of
MSC is the following:

DUAL-MSC max {D(Λ, ζ) : ∀� ∈ L, ∀k ∈ K, Λ�,k ≥ 0; ζ ≥ 0}

where:

D(Λ, ζ) = max {L(x, f , Λ, ζ) : x, f ≥ 0}

= max
x,f≥0

⎧⎨⎩∑
p∈P

[
Up(xp) −

∑
k∈K

xp,k

∑
�∈L

Λ�,kR�,p(k)

]
+
∑
k∈K

fk

[∑
�∈L

Λ�,kc� − ζ

]
+ζ

⎫⎬⎭
=max

x≥0

⎧⎨⎩∑
p∈P

[
Up(xp) −

∑
k∈K

xp,kμp,k(Λ)

]⎫⎬⎭+max
f≥0

{∑
k∈K

fk

[∑
�∈L

Λ�,kc� − ζ

]}
+ζ

Observe that the dual objective D(Λ, ζ) can be split in two parts. The first part:

F (Λ) = max
x≥0

⎧⎨⎩∑
p∈P

[
Up(xp) −

∑
k∈K

xp,k · μp,k(Λ)

]⎫⎬⎭
is a maximization problem similar to the one already dealt with in the single pool
case (i.e., for |K| = 1) of the previous single-pool case. Its value is a function
of the resource prices, and the vector of proportions has no involvement at this
point. The only difference from the single pool case, is that we now have distinct
LOP frequencies, as well as LOP end-to-end costs, per pool. But this technical
issue can be tackled by a proper choice of the dynamic updating system, as we
shall see later. The second part of D(Λ, ζ) is the following:

G(Λ, ζ) = max
f≥0

{∑
k∈K

fk ·
[∑

�∈L

Λ�,k · c� − ζ

]}
+ ζ

= max
f≥0

{∑
k∈K

fk ·
(
cT Λ�,k

)
+ ζ ·

(
1 −

∑
k∈K

fk

)}

Recall that at global optimality (when we consider the capacity proportions as
variables), the term ζ ·

(
1 −

∑
k∈K fk

)
has zero contribution in G(Λ, ζ). But this
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also holds for any solution in which the NOP chooses some vector f of capacity
proportions that sums up to 1. Additionally, we have already seen that this is
indeed the case for the optimal vector of capacity proportions as well, as was
explained in Lemma 1, fact (iii). Therefore, the optimal choice f̂ of capacity
proportions can be seen as a probability distribution that assigns positive mass
only to pools of maximum aggregate price (according to Λ). We demand this
restriction explicitly from G(Λ, ζ):

G(Λ, ζ) = max
1T f=1; f≥0

{∑
k∈K

fk ·
(
cT · Λ�,k

)}
= max

k∈K

{
cT · Λ�,k

}
= min

{
z : z · 1T ≥ cT · Λ

}
That is, G(Λ, ζ) simply calculates the maximum (rather than the average, indi-
cated by ζ) aggregate (per-unit) cost among the pools, which only depends on
the given resource pricing vector Λ. ��

Lemma 2 is crucial in deriving a dynamic algorithm that computes the social
optimum, in analogy with the one derived for the single pool case. In particular,
Lemma 2 and the framework of the single pool case suggest the following dynamic
algorithm, whose high-level description is as follows.

1. Each resource continuously updates its own (anonymous) per-unit-of-
frequency price.

2. Each LOP updates her offer (bid) for claiming frequency, only when the
resource prices (and thus her own per-unit costs in the pools) have stabilized.

3. The NOP updates periodically the vector of capacity proportions of the
railway infrastructure given to the different line pools, only when both the
resource prices and the LOP bids have stabilized.

In particular, assume that at some time t ≥ 0 we have the following situation:

– Λ(t) is the vector of current resource prices. ∀p ∈ P, ∀k ∈ K, μp,k(t) =∑
�∈L R�,p(k) · Λ�,k is the per-unit cost of player p at pool k, while μp(t) =

1
|K|

∑
k∈K μp,k(t) is the average per-unit cost of p over all the pools.

– w(t) = (wp(t))p∈P is the vector of the LOPs’ current bids.
– f(t) = (fk(t))k∈K is the current vector of proportions of resource capacities

of the railway infrastructure to each of the pools (as determined by NOP).
We always assure the invariant that the entire railway infrastructure is
provided to the pools: 1T · f (t) = 1.

– We calculate the frequencies that each LOP gets per pool as follows. We
split each LOP’s bid wp(t) among the different pools according to the vector
of capacity proportions. Then each LOP buys the corresponding frequency,
given her bid and the per-unit cost for this LOP at each particular pool:
∀(p, k) ∈ P × K, xp,k(t) = fk(t)·wp(t)

μp,k(t) . The aggregate frequency of the LOP
p ∈ P is obviously xp(t) =

∑
k∈K xp,k(t).
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– The resource frequencies at time t are then calculated as follows: ∀(�, k) ∈
L × K, y�,k(t) =

∑
p∈P R�,p(k) · xp,k(t) and y�(t) =

∑
k∈K y�,k(t).

We assume that the resource price updating scheme operates continuously, the
LOP bidding updating scheme applies only when the resource prices have sta-
bilized, and finally the updating of the capacity proportions (conducted by the
NOP) is carried out only when both the resource prices and the LOP bids have
stabilized. This is explained as follows. Each resource continuously updates its
price as a function of the aggregate frequency over it (in each pool), and this is
instantly known local information to the resource. As for the LOPs, they would
like to update their bids only when there is a clear picture of what should be
paid in each pool. This can only happen when the resource prices have stabi-
lized. Additionally, each LOP has to gather the pricing information along the
lines she uses, which is somehow local information (only refers to resources ac-
tually used by the LOP) but not instantly available. Finally the NOP wishes to:
(i) let the whole situation with the resource prices and LOP bids stabilize before
it intervenes to determine the new capacity proportions of infrastructure, and
(ii) avoid too frequent changes in the capacity proportions, since this updating
scheme does not depend only on local information (either on each LOP, or on
each resource) but on the aggregate costs of all the pools, as we shall see shortly.
Therefore, the NOP prefers this update to happen only occasionally, in order to
be able to amortize its heavy cost over a large period of time.

Let’s now see the exact shape of the dynamic protocol at time t ≥ 0.

Resource Price Updating. ∀t ≥ 0, the resource per-unit prices are updated
according to the following differential equation: ∀� ∈ L, ∀k ∈ K,

Λ̇�,k(t) = max {0, y�,k(t) − c�fk} · I{Λ�,k(t)=0} + (y�,k(t) − c�fk) · I{Λ�,k(t)>0}

LOP Bid Updating. Assuming now that the LOPs are selfish entities, their
(instantaneous) bids are chosen as the solutions of the analogue of USER-II
(per LOP), which is the following:

MUSER-II maximize

{
Up

(∑
k∈K

fkwp

μ̄p,k

)
− wp : wp ≥ 0

}

where, ∀k ∈ K, μ̄p,k = μ̄p is the common per-unit cost that the LOP p ∈ P
faces in each pool, as soon as the resource prices stabilize. The optimality
condition of MUSER-II is now that

U ′
p

(∑
k∈K

fkwp

μ̄p,k

)
·
∑
k∈K

fk

μ̄p,k
= 1

⇔ U ′
p(xp) = U ′

p

(∑
k∈K

fkwp

μ̄p,k

)
=

(∑
k∈K

fk

μ̄p,k

)−1

= μ̄p
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Capacity Proportions Updating. After the LOPs have stabilized the bids
(wp(t))p∈P and the resources have updated their per-unit prices in each
pool (Λ�,k(t))�∈L,k∈K , the NOP sets ζ(t) to the average price of a pool:

ζ(t) =
1
|K|

∑
k∈K

cT · Λ�,k(t) (18)

Then the NOP updates the proportions of the railway infrastructure granted
to each of the pools, so that pools exceeding the current average cost ζ(t)
increase their proportion (in hope of decreasing their weighted cost), while
pools that are cheaper than the average price slightly decrease their pro-
portion (recall that in the optimal solution all the pools have exactly the
same weighted aggregate cost). The proportions are updated according to
the following system of differential equations:

∀k ∈ K, ḟk(t) = max
{
0, cT · Λ�,k(t) − ζ(t)

}
(19)

It should be noted here that, in order for the vector f(t + 1) of capacity
proportions to sum up to 1, we must divide the resulting vector of new
proportions by a proper scaling factor φ(t) > 1 (since the expensive pools
increased their proportions, while the cheap pools kept their old proportion,
according to the proposed derivative in equation (19)).

The resource updating in this differential system assures the validity of equations
(12) at equilibrium, for any fixed vector f of capacity proportions provided
by the NOP, and any fixed bid vector w provided by the LOPs. Moreover, if
we assume that the LOPs are price taking and myopic entities, the LOP bid
updating again leads us to the validity of equations (10). We shall now prove
the convergence to the optimal resource prices, with respect to any given vector
of capacity proportions, and any given vector of LOP bids.

Lemma 3. For any choice of fixed bid vector w̄ = (wp)p∈P offered by the
LOPs, and any fixed vector of proportions f̄ = (fk)k∈K determined by the NOP,
the resource price updating scheme makes the resource prices converge to the
corresponding optimal vector Λ̄ (for these particular given bids and proportions).

Proof. We use again the Lyapunov function V (Λ(t)) = 1
2 ·(Λ(t)−Λ̄)T ·(Λ(t)−Λ̄),

we can once more prove convergence to the optimal resource prices, Λ̄, for any
fixed vector of LOP bids, w̄ and any vector of pool proportions, f̄ (determined
by the NOP):

dV (Λ(t))
dt

=
∑
�∈L

∑
k∈K

(Λ�,k(t) − Λ̄�,k) · Λ̇(t)

=
∑
�∈L

∑
k∈K

(Λ�,k(t) − Λ̄�,k) ·
[
max

{
0, y�,k(t) − c�f̄k

}
· I{Λ�,k(t)=0}

+
(
y�,k(t) − c�f̄k

)
· I{Λ�,k(t)>0}

]
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≤
∑
�∈L

∑
k∈K

(Λ�,k(t) − Λ̄�,k) ·
[
y�,k(t) − c�f̄k

]
=
∑
�∈L

∑
k∈K

(Λ�,k(t) − Λ̄�,k) ·
[
y�,k(t) − ȳ�,k + ȳ�,k − c�f̄k

]
≤
∑
�∈L

∑
k∈K

(Λ�,k(t) − Λ̄�,k) · [y�,k(t) − ȳ�,k]

=
∑
�∈L

∑
k∈K

(Λ�,k(t) − Λ̄�,k) ·
∑
p∈P

R�,p(k) · [xp,k(t) − x̄p,k]

=
∑
p∈P

∑
k∈K

[xp,k(t) − x̄p,k] · (μp,k(t) − μ̄p,k)

=
∑
p∈P

∑
k∈K

[xp,k(t) − x̄p,k] ·
(

f̄kw̄p

xp,k(t)
− f̄kw̄p

x̄p,k

)

=
∑
p∈P

∑
k∈K

f̄kw̄p ·
[
2 − xp,k(t)

x̄p,k
− x̄p,k

xp,k(t)

]
≤ 0

The first inequality holds trivially for each (�, k) : Λ�,k(t) > 0, but also holds
when for (�, k) : Λ�,k(t) = 0, because then either y�,k(t) − c�f̄k ≥ 0 and

(Λ�,k(t) − Λ̄�,k) · max
{
0, y�,k(t) − c�f̄k

}
= −Λ̄�,k ·

[
y�,k(t) − c�f̄k

]
or y�,k(t) − c�f̄k < 0 and then:

(Λ�,k(t) − Λ̄�,k) · max
{
0, y�,k(t) − c�f̄k

}
= −Λ̄�,k · 0 < −Λ̄�,k ·

[
y�,k(t) − c�f̄k

]
The second inequality holds because for the optimal vector Λ̄ (for the given
vectors w̄ and f̄ ) it holds that

∑
�∈L

∑
k∈K Λ̄�,k(ȳ�,k − c�f̄k) = 0 (cf. equation

(12), which is also a KKT condition for MNET ). The third inequality holds
again because ∀z > 0, 2 − z − 1

z ≤ 0. ��

Of course, when the resource prices and LOP bids have stabilized, we still can-
not be sure that we have reached the optimal solution of MNET , because we
cannot guarantee for the time being that all the pools have the same (weighted)
aggregate cost, as required by equation (11). Due to the strict concavity of
MSC , we know that the current optimal value (for the given proportions) of

its dual is strictly less than the globally optimal value (with respect to the opti-
mal proportions). This is because we obviously have not chosen yet the optimal
vector of proportions. But, as it was shown in Lemma 2, the optimal value of
DUAL-MSC exclusively depends on the vector of resource prices. Therefore we

also know that we do not have the optimal resource prices as well. At this point
exactly, the NOP intervenes with the capacity proportions updating procedure,
which increases (in a continuous fashion) the proportions of pools that are more
expensive than the current value of the average cost ζ(t). That is, the NOP
chooses to increase the pool-capacity proportions to already expensive pools
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(therefore allowing, at the next optimal point, lower aggregate costs for them)
and decreases the proportion of infrastructure for cheap pools (which can afford
slightly larger aggregate costs). This way we get closer to the optimal vector
of capacity proportions in MSC , since the vector of aggregate pool costs will
now become smoother. Consequently, the new optimal value of DUAL-MSC
(with respect to the new capacity proportions) will strictly increase due to the
intervention of the NOP, because the dominant parameter for it is the vector of
resource prices.

Eventually, by Lemmata 2 and 3, we shall converge to an equilibrium point
of the whole system in which equation (10) is guaranteed by the selfish, price
taking behavior of the LOPs, equation (11) is assured by the NOP, equation (12)
is assured by the resource price updating scheme, and equation (13) is assured by
our invariant on the vector of capacity proportions. This is exactly the optimal
solution of both KKT-MSC and MNET , as required. The following theorem
summarizes the previous discussion.

Theorem 4. The aforementioned dynamic system of resource-pricing, LOP-
bid-updating and capacity-proportions-updating differential equations ensures
monotonic convergence to the social optimum of MNET from any initial point
of resource prices, LOP bids and proportions of capacities for the pools.

4 Implementation and Experimental Evaluation

In this section, we present the implementation of a discrete version of our de-
centralized algorithm for the single pool case and its experimental evaluation on
synthetic and real-world data.

4.1 The Algorithm

We have implemented a discrete version of our distributed algorithm given in
Section 2.2, and which is provided below. Parameter b determines the desired
accuracy at equilibrium, B� is an upper bound on the value of λ�(t), ε� represents
the interval upon which λ̇�(t) is defined and which gradually reduces via the Up-

date routine, and the boolean variable S� is used to determine the termination
condition of the repeat-until loop. The algorithm is as follows.

1. Initialization (t = 0).
(a) For all p ∈ P : { wp(0) = 1; xp(0) = min�∈p{c�}; }
(b) For all � ∈ L: { λ�(0) = 0; ε� = 1; δ� = 10−b; B� = +∞; S� = false; }

2. Repeat for t > 0
(a) For all � ∈ L:

i. y�(t) =
∑

�∈p xp(t − 1);
ii. α�(t) = y�(t) − c�;
iii. λ̇�(t) = max{0, α�(t)} − min{λ�(t)

2 , max{0,−α�(t)}};
iv. if λ�(t − 1) = 0 ∧ max{0, α�(t)} < δ� then S� = true;
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v. if λ�(t − 1) > 0 ∧ |α�(t)| < δ� then S� = true;
vi. Update(ε�);
vii. λ�(t) = λ�(t − 1) + ε�λ̇�(t);

(b) if
⋂

�∈L S� = true then break;
(c) For all p ∈ P :

i. μp(t) =
∑

�∈p λ�(t);

ii. Solve USER-II to determine wp(t);
iii. xp(t) = wp(t)

μp(t) ;
(d) t = t + 1;
Until true

The routine for updating ε� is as follows.

Update(ε�)

1. if λ̇�(t) < 0 ∧ λ̇�(t − 1) > 0 then
if λ�(t − 1) < B� then B� = λ�(t − 1) else ε� = ε�/2;

2. return ε�;

4.2 Experimental Setup

The algorithm was implemented in C++ using the GNU g++ compiler (version
4.3.2) with -O2 optimization level, and the LEDA C++ library (version 6.2). Our
experiments were performed on a computer having an Intel Core 2 Duo Processor
clocked at 2.00GHz (T7300 model) and a total of 2GB RAM.

Synthetic data consisted of grid graphs having a vertical dimension of 3 and
a horizontal dimension ranging from 120 to 36000 (i.e., the graph sizes range
from 120× 3 to 36000× 3). The edge capacity was set to 10. In these graphs, we
define three paths in a way that they have a fair amount of edges in common. By
considering the graph nodes as points in the plane, we define three directions:

UP: The next edge of the path is headed upwards.
RIGHT: The next edge of the path is headed to the right.
DOWN: The next edge of the path is headed downwards.

We consider two families of three paths. The first family is defined as follows;
see Figure 2. All paths start at node (0, 1). The first path follows the RIGHT
direction until it can no longer proceed. We will call this the middle path (yellow-
grey path in Fig. 2. The second path (red path in Fig. 2) first goes RIGHT, then
UP, then RIGHT, then DOWN, and then continues the same pattern until it can
no longer proceed. The third path (green path in Fig. 2) first goes RIGHT, then
DOWN, then RIGHT, then UP, and then continues the same pattern until it
can no longer proceed. Observe that all paths share the odd edges of the middle
path (i.e., the edges (2i, 2i + 1), i = 0, 1, 2, . . .).
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0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1

Fig. 2. Deterministic paths on grids

The second family of paths is defined as follows. All paths start at node (0, 1)
and go RIGHT. Then, at node (2i + 1, 1), i = 0, 1, 2, . . ., each path makes a
(uniformly) random decision on whether it will go UP, RIGHT, or DOWN. If
the random choice is to go UP, then it follows the pattern RIGHT, DOWN,
RIGHT, reaching the next node where it will make a new random decision. If
the random choice is to go DOWN, then it follows the pattern RIGHT, UP,
RIGHT, reaching the next node where it will make a new random decision. If
the random choice is to go RIGHT, then it follows the pattern RIGHT, RIGHT,
reaching the next node where it will make a new random decision. These choices
ensure that all three paths share the edges (2i, 2i + 1), i = 0, 1, 2, . . ..

Real-world data concern parts of the German railway network (concerning
mainly intercity train connections). We have considered three instances with
280 (354), 296 (393), and 319 (452) nodes (edges), and a single line pool of
varying size. The capacity of the edges varied from 8 up to 16.

For both synthetic and real-world data, we used the function Up(x) = a
√

x
as utility function of all LOPs p ∈ P , where a is a constant (a ≥ 104).

4.3 Experimental Results

We start with the experimental results on our synthetic data. Figure 3 shows
the number of iterations required by our distributed algorithm to converge to
the social optimum in the grid graphs of sizes 12000 × 3 to 36000 × 3. The top
diagram does this for the first family of paths (deterministically defined paths),
while the bottom diagram does it for the second family of paths (that include
random choices at certain nodes). We observe that despite the graph size, the
algorithm converges quite fast to the optimal solution. It is worth mentioning
that the real execution time never exceeded 1.5 minutes.

We now turn to the real-world graphs. Figures 4 and 5 show the number
of iterations required by our distributed algorithm to converge to the social
optimum with respect to the size of the line pool, which varies from 100 to
2000 lines (in Fig. 5). We observe again that the algorithm converges fast to the
optimal solution; the maximum execution time never exceeded 2 minutes.
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Fig. 3. Grid graphs. Top: deterministic paths. Bottom: random paths.

In both synthetic and real-world experiments, we observe that the convergence
rate, determined by the number of iterations required to reach the optimum,
varies not only between graph classes but also within the same graph class. This
can be explained as follows.

It is clear from the description of the algorithm that the number of iterations
depends on how fast λ�(t) reach their optimal values, which also depends on
λ̇�(t). The latter depends on α�(t), which in turn depends on y�(t).

The quantity y�(t) depends on the number of paths that use edge �. Fast
convergence implies an as small as possible value for α�(t), which implies a value
for y�(t) that is as close as possible to c�. At a first place observe that initially
y�(t) can be much larger than c�, especially in the case where many paths use
edge �. At a second place observe that the initial value of wp(t) can be quite
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Fig. 4. Real-world graphs. Top: 280 nodes and 354 edges. Bottom: 296 nodes and
393edges.

large since its value depends on the utility function. This in turn implies that
the initial frequency value xp(t) can be very large, leading to large values of y�(t)
in subsequent iterations. For these two reasons, the value of α�(t) (that depends
on y�(t)) can start, for a specific input instance, from a rather high value and
therefore it may take more iterations to reach its proper value, demonstrating a
slower rate of convergence.

In conclusion, the convergence rate depends on a combination of input-specific
factors that can vary considerably even between instances of the same graph
class. These factors include the edge capacity values, the specific form of the
utility function, the number of edges in a line route, and the number of line
routes that share edges.



114 A. Bessas, S. Kontogiannis, and C. Zaroliagis

Fig. 5. Real-world graph with 319 nodes and 452 edges

5 Incentive-Compatible Robustness and Railway
Optimization

The approach pursued in the preceding sections can be generalized to deal with
robustness issues in the broader context of railway optimization (i.e., not only
within line planning). In this section, we will argue on this matter and also com-
pare incentive-compatible robustness with other known notions of robustness.

Railway optimization deals with large-scale planning and scheduling problems
over several time horizons. Due to their complexity and sheer size, quite often
such problems are provided with incomplete or uncertain data. For instance,
some data may in advance be completely unknown or of low precision, while
other data are subject to changes during the operational phase (e.g., due to
delays). As there are several different types of imperfect information, there are
also several different concepts for optimizing with respect to imperfect informa-
tion. Each of the known concepts, such as multi-stage stochastic programming,
chance constraint programming, robust optimization or online optimization, has
its own strengths and weaknesses, making the various concepts the models of
choice for different practical problems.

Two main approaches have been pursued in the literature to handle uncer-
tainty: (i) Stochastic programming models, offering great flexibility but often
too large in size to be handled efficiently, and also requiring that probability
distributions are given a priori and can be handled in the solution procedure.
(ii) Robust optimization models, which are easier to solve but sometimes leading
to very conservative solutions of little practical use. Under this classical concept,
feasibility is guaranteed if the number of constraints affected by data changes
is bounded; see, for instance, the seminal work of Betsimas and Sim [4] on this
subject.
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A third way to model uncertainty, leading to a modeling framework called
light robustness, was recently proposed in [8,9]. It couples robust optimization
with a simplified two-stage stochastic programming approach, and constitutes
a flexible counterpart of (classical) robust models that turned out to be quite
promising within railway optimization. It is also worth mentioning that a variant
of the Bertsimas and Sim method [4] for robustness was also applied to a game-
theoretic scenario, in which competing entities act selfishly so as to optimize their
own utility functions. In this case, uncertainty can involve both the rules of the
game and the players’ utility functions. It is showed that the robust counterpart
of a game (under bounded, polyhedral uncertainty) is approximately as hard as
the nominal game, at least in certain cases of finite games [1].

The classical robustness framework neglects the realistic possibility of a re-
covery phase; i.e., that small infeasibilities may be corrected. If such a phase is
excluded, then solutions should be either unacceptably expensive or too conser-
vative in order to be feasible in all scenarios that determine the imperfection of
information.

Recoverable robustness is a new notion introduced in [2,16,17] that appears
more suitable to deal with data uncertainty and recovery in the context of rail-
way optimization. Recoverable robustness is about computing solutions that are
robust against a limited set of scenarios and which can be made feasible (recov-
ered) by a limited effort. One starts from a feasible solution x of an optimization
problem which a particular scenario s, that introduces imperfect knowledge (i.e.,
by adding more constraints), may turn to infeasible. The goal is to have handy
a recovery algorithm A that takes x and turns it to a feasible solution under s
(i.e., under the new set of constraints). In other words, in recoverable robustness
there is uncertainty about the feasibility space: imperfect information generates
infeasibility and one strives to (re-)achieve feasibility.

The aforementioned approaches provide a quite powerful set of methods to
deal with some kind of predictable and statically described level of uncertainty
mainly in the constraints4. But what happens when the exact shape of the global
objective function is unknown to the system? This may happen in application
scenarios where many entities compete for common resources and each one acts
selfishly. For example, in the line planning setting which we considered in the pre-
vious sections, where commercial line operators (competing entities) with fixed
choices of lines compete for the utilization of these lines (common resources)
via frequency negotiation with the (possibly public-sector or governmental) net-
work operator. In such settings, for obvious reasons, each competing entity is
not willing to reveal her own (private) utility function; that is, to reveal her level
of satisfaction for acquiring a specific usage of resources. Nevertheless, the goal
of the dynamic market designer (network operator in the line planning setting)
– corresponding to the socially optimal solution – is to guarantee a fair and
feasible solution, that is, a certain usage of subsets of resources to the compet-
ing entities in such a way that constraints regarding the usage of the resources

4 Uncertainty can also be transferred to the objective function as well, by incorporating
it into the constraints.
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are not violated and at the same time the average satisfaction of the competing
entities (players) is maximized.

All aforementioned approaches seem to be inadequate to deal with such an
application scenario, because the nature of the uncertainty itself is not quantified
in any sense, and indeed may vary with time. Additionally, this situation should
not be dealt with as a static problem to be centrally solved, but rather as a
dynamic decentralized scheme, that continuously adapts the usage of resources
to the players, in order to always keep them as close as possible to the socially
optimal solution, as the utility functions of the players may also evolve with
time.

In this work, we propose a new notion of robustness along with a correspond-
ing solution framework, which we call incentive-compatible robustness and
which is complementary to the notion of recoverable robustness. It is concerned
with the computation of an incentive-compatible recovery scheme that achieves
robustness by enforcing the system to converge to its optimal solution. By an
incentive-compatible recovery scheme we mean a decentralized price-updating
and resource-usage allocation method, that exploits the selfish nature of the
competing entities, in order to lead them back to the socially optimal solution,
even if the social optimum itself varies with time. Each resource gets a dynamic
pricing scheme, and each competing entity is allowed to continuously change
her bidding for getting (in the near future) usage of resources. In this context,
the feasibility space is known and incomplete information refers to lack of infor-
mation about the optimization problem, due to the unknown utility functions.
In incentive-compatible robustness, there is uncertainty about the objectives:
feasibility is guaranteed, since imperfect knowledge does not introduce new con-
straints, and one strives to achieve optimality, exploiting the selfish nature of
the players.

Note that incentive-compatible robustness is different from the concept of
game-theoretic robustness as developed in [1]. The approach in [1] is a central-
ized, deterministic paradigm to uncertainty in strategic games. Our approach
differs from that in the following: (i) It is decentralized to a large extent, based
only on local information that the participating entities (line operators and re-
sources) have at any time; (ii) we impose no restriction on the kind of the utility
functions of the players other than their strict concavity, whereas the approach
in [1] has to somehow quantify the “magnitude” of uncertainty of the constraints
and/or the payoffs, in order to keep the solvability of the problem comparable
to that of the nominal counterpart; (iii) the solvability of the robust counterpart
in [1] is largely based on the solvability of the nominal counterpart (which is
strongly questionable for the general game-theoretic framework).

To summarize, incentive-compatible robust optimization suggests a generic
approach to deal with robustness issues in railway optimization applications
that require setting up a dynamic market for negotiating usage of resources,
over subsets of resources, by selfish entities that do not reveal their incentives
and having non-fixed (elastic) demands.
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6 Conclusions and Open Issues

We investigated a new application scenario in line planning that achieves
incentive-compatible robust solutions by exploiting a resource allocation mech-
anism introduced by Kelly [13] in the context of communication networks. For
the case of a single line pool, an adaptation of Kelly’s approach can provide
(under certain assumptions) a decentralized algorithm that provably converges
to the socially optimal solution. For the case of multiple line pools, an exten-
sion and further elaboration of Kelly’s approach is required in order to derive
such an algorithm. We also conducted experiments on a discrete variant of the
pricing scheme for the single-pool case over synthetic and real-world data. Our
algorithms allow LOPs to negotiate line frequencies over fixed lines in a dynamic
fashion. In a broader context, our approach comprises a generic technique to set
up a dynamic market for (re-)negotiating usage of resources over subsets of re-
sources. Consequently, it could be applied to set up a dynamic frequency market
over other transportation settings (e.g., in the airline domain).

A crucial question would be to devise protocols that demonstrate faster con-
vergence to the equilibrium point, even approximately. Additionally, it would be
interesting to find ways to tackle the assumption on price taking and myopic
behavior of the users. It would be nice to do this even at the cost of suboptimal
equilibrium points. It is noted that when the LOPs are not price takers and my-
opic (called price anticipators in the congestion control jargon), then the above
scheme does not lead to socially optimal solutions, even for the case where there
is only a single resource to share. Nevertheless, it would be quite interesting to
know how far one can be from the social optimum, given that a decentralized
updating scheme is adopted for the user requests and the prices of the resources.

Further open issues concern: (i) a theoretical analysis of the discrete variants
of our algorithms; (ii) an extension of our approach to introduce proportions per
resource (rather than per line pool); (iii) the investigation of other types of LOP’s
utility functions, or the case for a LOP to pursue a different utility function per
line pool; (iv) looking for other parameters of robustness and recoverability (e.g.,
introduction of delays).
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Abstract. Finding robust solutions of an optimization problem is an
important issue in practice. Various concepts on how to define the ro-
bustness of an algorithm or of a solution have been suggested. However,
there is always a trade-off between the best possible solution and a ro-
bust solution, called the price of robustness. In this paper, we analyze
this trade-off using the following bicriteria approach. We treat an op-
timization problem as a bicriteria problem adding the robustness of its
solution as an additional objective function. We demonstrate this ap-
proach at the aperiodic timetabling problem in which a timetable which
is robust under delays is sought. We are able to derive necessary condi-
tions for the resulting Pareto-optimal timetables. For the case in which
the robustness is defined as the largest delay for which all connections
are maintained we show the bicriteria problem can be solved with the
same time complexity as the original single-criteria problem.

1 Introduction

In many applications optimization tools can nowadays be used to calculate good
(or even optimal) solutions. Unfortunately, there is one major drawback that
prevents many solutions being established in real-world applications: nearly al-
ways there will be some kind of disturbance, e.g. input data changes, disruptions,
delays or any other unforeseen event. To overcome such difficulties and make so-
lutions applicable for real-world problems, researchers are working on various
concepts of robustness. The goal of these concepts is to find not the best so-
lution to the nominal (undisturbed) problem but to calculate a robust solution
which is still good or at least recoverable in case of a disturbance. The ratio
between the optimal solution and the robust solution is called its price of ro-
bustness. It is intuitively clear that the two objectives, to optimize the solution
for the undisturbed scenario and to maximize its robustness are conflicting in
most cases.

In this paper we hence suggest to treat these two objectives, the nominal ob-
jective of the undisturbed, original problem and the robustness of the solution as
two objective functions of a bicriteria optimization problem. The corresponding
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Pareto solutions hence yield decisions that can not be improved in both objec-
tives simultaneously: Whenever the robustness is increased the nominal objective
will get worse (and vice versa).

Let us first mention some related literature. Dealing with expected distur-
bances already in the strategic planning phase has been done by using stochastic
programming, or within the area of robust optimization. Within stochastic pro-
gramming (e.g., see [4,12,21]), there are two different approaches: chance con-
strained programming aims to find a solution that satisfies the constraints in
most scenarios (i.e. with a high probability) instead of satisfying them for all
possible realizations of the random variables, while in multi-stage stochastic pro-
gramming, an initial solution is computed in the first stage, and each time when
some new random data is revealed, a recourse action is taken. However, stochas-
tic programming requires detailed knowledge on the probability distributions of
the random variables.

In robust optimization (e.g., see [1,2,3,8]), the objective – in contrast to
stochastic programming – is purely deterministic. In the concept of strict ro-
bustness, the solution has to be feasible for all likely scenarios. The solution
gained by this approach can then be fixed since by construction it needs not be
changed when disruptions occur. However, as the solution is fixed independently
of the actual scenario, robust optimization leads to solutions that are too conser-
vative in many applications. One approach to compensate this disadvantage is
the idea of light robustness introduced in [9,10]. This approach relaxes the con-
straints by adding slack to them. A solution is considered as robust if it satisfies
the relaxed constraints.

Recently, [15,16] suggested the concept of the recoverable robustness. They
start from the practical point of view that a solution is robust if it can be
recovered easily in case of a disruption. This means the solution has no longer
to be feasible for all possible scenarios, but a recovery phase is allowed in which
a recovery algorithm is applied to turn an infeasible solution into a feasible one.
To obtain a good solution, some limitations on the recovery phase have to be
taken into account. For example, the recovery should be quick enough and the
quality of the recovered solution should not be too bad. The initial model of
recovery robustness has been extended in [5], a multi-stage approach that can
handle not only one, but a sequence of disturbances has been developed in [6].

Finding timetables in public transportation is used as an example of robust
optimization in many of the studies mentioned above. Timetabling arises in the
strategic planning phase for transportation systems. The problem is well known
and well researched (see [14], [19], [17] and references therein for approaches on
solving the NP hard problem of periodic timetabling). In our case we restrict
ourselves to the tractable variant of aperiodic timetabling, also known as feasi-
ble differential problem (FDS, see [20]). It can be solved by linear programming
or by shortest path techniques. In timetabling, disturbances during the opera-
tional phase often occur. In public transportation systems such disturbances can
be caused e.g. by bad weather conditions, repair work, signalling problems, or
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accidents. Hence timetabling is a prominent and important example on which
robustness concepts can be tested and should be implemented.

Most of the robustness approaches use a given level of robustness that has
to be determined beforehand. In this paper we suggest to treat the timetabling
problem as a bicriteria problem (see [7] for an introduction to multicriteria op-
timization) with the two conflicting objectives of minimizing the waiting time
of the passengers and maximizing the robustness of the timetable. Theoretically
any of the robustness concepts mentioned above can be used as robustness func-
tion; in our case we define the robustness of a timetable as the largest possible
delay such that all transfers are maintained under some given strategy.

In Section 2 we summarize properties of aperiodic timetables and describe
our robustness model in Section 3. The model is illustrated in Section 4 where
we analyze a basic example. Other structures are investigated in Section 5. In
Section 6 we derive properties of Pareto solutions. In Section 7 we present an
efficient approach for solving the bicriteria problem.

2 Finding Timetables in Public Transportation

In order to describe a timetable, we use an event-activity network N = (E ,A)
in which the set E represents the events and its directed edges are denoted as
activities A ⊆ E × E . We assume N to be connected. A timetable Π ∈ IR|E|

assigns a time Πi ∈ IR to each event i ∈ E . For each activity a = (i, j) linking
two events i and j in E we are given a lower bound la and an upper bound ua

that have to be respected, i.e. if event i takes place at some specified time Πi

then event j cannot take place earlier than Πi + la and must not be scheduled
later than Πi + ua. Consequently, a timetable Π is feasible if Πj − Πi ∈ [la, ua]
for all a = (i, j) ∈ A. We further define ma := ua − la ≥ 0 for all a ∈ A.

Additionally, we need the following notation:

A path P in N will be given as a sequence of events P = (i1, . . . , ik) such
that either a forward activity (il, il+1) ∈ A or a backward activity (il+1, il) ∈ A
exists for each pair of consecutive events l = 1, . . . , k − 1. The forward activities
of P are denoted as P+ and the backward activities as P−. If all activities are
forward activities, the path is called directed path. A cycle is a path with i1 = ik.
Note that no feasible timetable exists if N contains a directed cycle with at least
one activity a with la > 0.

Given a timetable, one can calculate its slack times sa := Πj − Πi − la. The
slack time sa represents the additional time available for activity a and can be
used to reduce delays. It is well known that the problem of finding a feasible
timetable Π can equivalently be formulated with respect to the variables sa, see
e.g. [20,18]. This is needed later and hence specified in the next two lemmas.

Lemma 1. Let Π be a feasible timetable for N = (E ,A). Let sa = Πj −Πi − la
for all a ∈ A. Then

(i) 0 ≤ sa ≤ ma for all a ∈ A.
(ii) For any circle C of N :
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∑
a∈C+

sa −
∑

a∈C−
sa = −

∑
a∈C+

la +
∑

a∈C−
la. (1)

On the other hand, if some sa are given for each activity a ∈ A that satisfy the
conditions (i) and (ii) one can construct a feasible timetable with slack times sa:

Lemma 2. Let s ∈ IR|A| be given such that (i) and (ii) of Lemma 1 are satisfied.
Let i ∈ E be an (arbitrary) event and let Pij be any path from i to j. Then Π
given as

Πi = 0

Πj =
∑

a∈P+
ij

(la + sa) −
∑

a∈P−
ij

(la + sa) for all j �= i (2)

is a feasible timetable with slack times sa.

Note that (1) ensures that the above definition of Π is independent of the specific
paths Pij used.

Before introducing the nominal objective function and the robustness of a
timetable, let us describe the application which motivates our research in more
detail. It stems from the following railway timetabling problem: given a pub-
lic transportation network with a set of trains, the goal is to find arrival and
departure times for each train at each station. Hence, E consists of all arrival
and departure events of trains at stations. The activities are divided into driving
activities Adrive, stopping activities Astop (modeling the time a train stands at
the platform allowing passengers to board or un-board), and transfer activities
Atrans. The transfer activities model that passengers can transfer from an in-
coming train at a station into an outgoing train at the same station. A small
example of an event-activity network in timetabling is depicted in Figure 1. Al-
though the following results can be transfered directly to bus schedules, and can
be adapted also to other applications of project planning, we will refer to trains
and stations in the following.

The usual goal when designing a timetable Π is to minimize the overall trav-
eling time of the passengers. If wa passengers are traveling along activity a we
obtain

F̃ (Π) :=
∑

a=(i,j)∈A
wa(Πj − Πi) =

∑
a=(i,j)∈A

wa(Πj − Πi − la) +
∑
a∈A

wala

=
∑
a∈A

wasa +
∑
a∈A

wala =: F (s) +
∑
a∈A

wala,

i.e. the objective can be formulated either using the timetable Π or its slack
times sa = Πj − Πi − la. For the latter we use F (s) omitting the constant part∑

a∈A wala.
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g,v0,dep h,v0,arr

h,v0,depg,v0,arr
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of vehicle g

from vehicle h to g

from vehicle g to h

of vehicle h

waiting of vehicle h

of vehicle h

h,v3,dep

h,v4,arrg,v1,dep

g,v2,arr

Fig. 1. An event-activity network with two trains g and h meeting at the station v0. The
events are labelled with triples (train, v, arr/dep) indicate that a train arrives/departs
at station v.

Note that most authors assume that the weights wa are given. In our work we
will however go a step back and start with an origin-destination (OD) matrix
(wij)i,j∈E . For a departure event i and an arrival event j the value wij represents
the number of passengers traveling from i to j. For each OD-pair we define a
directed path Pij that passengers are likely to use and consequently obtain the
weight

wa =
∑

i,j∈E:
a∈Pij

wij (3)

for activity a ∈ A. We will utilize this fact in Theorem 4.
Summarizing, there are the following two equivalent formulations for the

timetabling problem:

(TT − Π) (Timetabling using variables Πi, i ∈ E)

min F̃ (Π) =
∑

a=(i,j)∈A
wa(Πj − Πi)

s.t. la ≤ Πj − Πi ≤ ua for all a = (i, j) ∈ A
Πi ∈ IN.

(TT − s) (Timetabling using variables sa, a ∈ A)

min F (s) =
∑
a∈A

wasa

s.t. 0 ≤ sa ≤ ma∑
a∈C+

sa −
∑

a∈C−
sa = −

∑
a∈C+

la +
∑

a∈C−
la.
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Lemma 3. (TT − Π) and (TT − s) are equivalent. In particular,

– Let Π be an optimal solution of (TT −Π). Then its slack times s are optimal
for (TT − s).

– Vice versa, if s is optimal for (TT − s), any timetable Π obtained by (2) is
optimal for (TT − Π)

3 The Robustness of a Timetable

Roughly speaking, the robustness of a timetable evaluates its sensitivity to un-
foreseen delays. Before presenting a definition of robustness we have to specify
how a timetable is updated in case a delay occurs.

Let a source delay V be given at some event i and consider a stopping or
driving activity a = (i, j) ∈ Astop ∪Adrive starting at i. Given the delay of V at
i, activity a will start at Πi + V . In order to keep up with the delay we allow
that the activity is performed faster than planned, but still respecting its lower
bound la. Hence we obtain max{Πj , Πi+V +la} as new end time of a. The delay
yj of event j is [V − sa]+, i.e. exactly the slack time sa is used to decrease the
delay. Note that the maximum is needed since no train is allowed to be ahead
of its schedule.

In case of a transfer activity a = (i, j) one has two possibilities:

– Either the outgoing train waits for the delayed incoming train to allow pas-
sengers to transfer. In this case, the transfer activity is treated analogously
to a driving or stopping activity. The new departure time at event j must
be at least max{Πj , Πi + V + la}, its delay can be reduced to [V − sa]+ (if
there is no other delayed transfer activity ending at j).

– Or, the train departs on time, i.e. without waiting for transferring passengers.
In this case, no delay is transferred.

The problem of determining which transfers should be maintained and which
need not be respected is known as delay management problem, see [23], [24],
[11], [22]. Its objective is to minimize the overall delay of the passengers. Here
we assume that the delay management problem has already been solved and
that some strategy given as a waiting time rule is at hand. We consider three
such waiting time rules (WTR) which will be described next.

Let i be an arrival event of train 1 and let a = (i, j) be a transfer activity to
train 2. Furthermore, let ã = (j, k) be the next driving activity of train 2, see
Figure 2 for an illustration. Assume that train 1 arrives at i with a delay of yi.
The following three rules determine if train 2 should wait for train 1 or depart
on time.

WTR1: Train 2 is not allowed to have a delay at its next station. Hence the
maximal allowed waiting time at event j is given by the slack time sã of
its next driving activity ã = (j, k). The transfer is maintained if and only if
yi ≤ sa + sã.
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i j

k

arrival of train 1

arrival of train 2

transfer from
train 1 to train 2

departure of train 2

driving of train 2

station A

Fig. 2. Train 1 arrives at station A with a delay. Should train 2 wait or depart on
time?

WTR2: The maximal allowed waiting time at event j is n minutes where n is
fixed beforehand. The transfer is maintained if and only if yi ≤ sa + n.

WTR3: Train 2 is not allowed to have a delay of more than m (minutes) at
its next station. Hence the maximal allowed waiting time at event j is given
by m plus the slack time sã of its next driving activity. The transfer is
maintained if and only if yi ≤ sa + sã + m.

Note that each transfer activity a = (i, j) is followed by exactly one driving
activity starting at event j which we call d(a) in the following.

Given a transfer activity a = (i, j) together with a timetable Πi, Πj and an
actual delay yi ≥ 0 at i as well as the slack time s of the next driving activity
d(a), WTR(yi, s) gives back the decision “drive on time” or “wait and maintain
transfer”. All other activities have to be performed as fast as possible in order
to reduce the delay. More precisely, given a timetable Π , a set of source-delayed
event Edel ⊆ E with delays Vi for i ∈ Edel and a waiting time rule WTR, we can
iteratively calculate the delays y similar to the critical path method of project
planning as follows:

Algorithm 1 to calculate the delayed timetable when a waiting time
rule is fixed

1. Order the events in E according to the timetable Π , i.e. such that Π1 ≤
Π2 ≤ . . . Π|E|.

2. For i = 1, . . . |E| do:
(a) Afix := { driving activities a = (j, i)} ∪ { waiting activities a = (j, i)}
(b) For each transfer activity a = (j, i) ∈ A its delay yj is already known.

Determine if the transfer is maintained or not according to WTR. If the
transfer is maintained add a to Afix.

(c) If i �∈ Edel set yi := maxa=(j,i)∈Afix [yj − sa]+,
if i ∈ Edel set yi := max{Vi, maxa=(j,i)∈Afix yj − sa}.

(Note that the waiting time rule together with Algorithm 1 is a recovery strategy
as defined within the concept of recovery robustness in [15,16].) Throughout
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this paper we assume that only one waiting time rule is used within a public
transport system. Combinations of different waiting time rules are investigated
in [13].

We are finally in the position of defining three robustness functions. The first
definition of robustness calculates the maximal size of the source delay for which
no passenger misses a transfer.

Definition 1. Let a fixed waiting time rule (according to WTR 1,2, or 3 above)
be given as well as a set of source-delayed events Edel ⊆ E. A timetable (given
by its slack values s ∈ IR|A|) has the robustness R(s) if all its transfers are
maintained whenever all source delays are smaller than or equal to R.

The other two definitions of robustness evaluate how badly the passengers are
affected by the source delays.

Definition 2. Let a fixed waiting time rule (according to WTR 1,2, or 3 above)
be given. Furthermore, let s ∈ IR|A| be a timetable and consider a set of source-
delayed events Edel with delays Vi ≤ V for all i ∈ Edel.

– Rno(s, V ) is defined as the maximal number of passengers who miss a transfer
if all source delays are smaller than V .

– Rdel(s, V ) is the maximal sum of all passengers’ delays if all source delays are
smaller than V . The delay of a passenger missing a transfer is approximated
as T assuming that the timetable is repeated after T minutes and that the
passenger can then use the transfer of the next period.

We hence obtain three problems, each of them bicriteria, and each of them can
be discussed for all three waiting time rules:

(P )
(

min F (s)
maxR(s)

)
s.t. s is a feasible timetable

(Pno) Given V ,
(

min F (s)
min Rno(s, V )

)
s.t. s is a feasible timetable

(Pdel) Given V ,
(

min F (s)
min Rdel(s, V )

)
s.t. s is a feasible timetable

The goal is to find Pareto solutions, i.e. timetables s such that there does not
exist another timetable s′ which is not worse in one of the two objectives and
strictly better in the other one. A timetable is called weak Pareto if there does not
exist another timetable which is strictly better in both objectives. Note that a
Pareto timetable is always weak Pareto, but the reverse does in general not hold.
The tuples (F (s), R(s)) (or (F (s), Rno(s)) in the case of (Pno), or (F (s), Rdel(s))
in the case of (Pdel), respectively) belonging to (weak) Pareto solutions are called
(weakly) non-dominated in multicriteria optimization.

In the next section we first illustrate these definitions at the basic example
of one single transfer. We show how to calculate the robustness R as well as
Rno, and Rdel w.r.t the three waiting time rules, set up the bicriteria models
and show their Pareto solutions. In the subsequent sections we study properties
of the models and present solution approaches.
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4 The Basic Example: A Single Transfer

We start with the simplest case, namely two trains, train 1 running from station
A to station B, and train 2 running from station B to station C. There is a
transfer activity possible at station B, see Figure 3. We assume that a delay of
size V occurs at station A.

i j

k

slack: s 1slack: s

with a delay

h

departure of train 1

arrival of train 1

arrival of train 2

driving of train 1

transfer from
train 1 to train 2

slack: s 2

departure of train 2

slack: s 3

driving of train 2

station B

station A station C

Fig. 3. The basic example: One single transfer

We first determine how long train 2 will wait for train 1 according to the three
waiting time rules WTR1, WTR2, and WTR3.

– With a delay of V at station A, train 1 will reach station B with a delay
of [V − s1]+. Passengers transferring to train B will hence arrive at train B
with a delay of [V −s1−s2]+. According to WTR1, train 2 will wait at most
s3 minutes, hence the transfer is maintained if and only if V − s1 − s2 ≤ s3,
or equivalently, if V ≤ s1 + s2 + s3.

– According to WTR2, train 2 waits up to n minutes, i.e. the transfer is main-
tained if and only if V − s1 − s2 ≤ n, i.e. if and only if V ≤ s1 + s2 + n.

– Analogously, we obtain for WTR3 that the transfer is maintained if and only
if V ≤ s1 + s2 + s3 + m.

With the help of these observations, we obtain

R(s1, s2, s3) = s1 + s2 + s3 in case of WTR1
R(s1, s2, s3) = s1 + s2 + n in case of WTR2 (4)
R(s1, s2, s3) = s1 + s2 + s3 + m in case of WTR3

For the calculation of Rdel and Rno let wAB, wAC , and wBC be given. The
customers traveling from A to C are the only ones who can miss their transfer
(in case V > R(s)). We hence obtain

Rno(s, V ) =
{

wAC if V > R(s1, s2, s3)
0 if V ≤ R(s1, s2, s3)
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covering all three waiting time rules. Finally, for the calculation of Rdel we
have to consider all three OD-pairs: The passengers from A to B gain a delay
of [V − s1]+, the passengers from A to C get a delay of T if they miss their
transfer, otherwise they get the same delay as the passengers from B to C,
namely [V − s1 − s2 − s3]+. Note that the delay of the latter is zero if train 2
does not wait for train 1. Summarizing, we obtain

Rdel(s, V ) =
{

wAB [V − s1]+ + TwAC if V > R(s1, s2, s3)
wAB [V − s1]+ + (wAC + wBC)[V − s1 − s2 − s3]+ if V ≤ R(s1, s2, s3)

We remark that in case of WTR1 train 2 will never be delayed since R(s) =
s1 +s2+s3 (or, since train 2 never waits longer than its slack time). The formula
hence simplifies to

Rdel(s, V ) =
{

wAB [V − s1]+ + TwAC if V > s1 + s2 + s3
wAB [V − s1]+ if V ≤ s1 + s2 + s3

in the case of WTR1.

The Bicriteria Problems for the Basic Example

In order to formulate the robustness problem as a bicriteria decision problem we
use the slack times sa as variables (as in [(TT − s)] on page 123). We further
assume that wAC > 0 otherwise no transfer needs to be maintained.

The first objective function in all thee bicriteria problems is the minimization
of the traveling time, given as

F (s1, s2, s3) = (wAB + wAC)s1 + wACs2 + (wAC + wBC)s3.

This function is linear in the three variables s1, s2, s3 and is independent of the
waiting time rule and the particular robustness definition used.

Solving (P ): Maximizing the Robustness R. Using (4) we obtain the linear
bicriteria model

min F (s1, s2, s3)
max R(s1, s2, s3) (5)
s.t. 0 ≤ si ≤ mi for i = 1, 2, 3

for all three waiting time rules WTR1, WTR2, and WTR3. The set of Pareto
solutions can be precisely described for all three waiting time rules. To this end,
we use the following lemma.

Lemma 4. Consider the following bicriteria problem(
min

∑m
a=1 wasa

max
∑m

a=1 sa

)
s.t. 0 ≤ sa ≤ ma, a = 1, . . . , m
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where 0 ≤ w1 ≤ . . . ≤ wm and ma ≥ 0, a = 1, . . . , m. Then the following holds:
s = (s1, . . . , sm) is weakly Pareto if and only if there exists k ∈ {1, . . . , m}

such that s1 = m1, . . . , sk−1 = mk−1 and sk+1 = 0, . . . , sm = 0. If all wa > 0
the condition yields a Pareto solution.

Proof. s is a Pareto solution if and only if s is an optimal solution to the problem

min
∑m

a=1 wasa

s.t. 0 ≤ sa ≤ ma, a = 1, . . . , m∑m
a=1 sa ≥ R

This is a continuous knapsack problem with unit weights and hence has the solu-
tion as claimed. If all weights are strictly positive, any improvement in R leads to
an increase of the objective, hence the corresponding solution is Pareto. ��

Lemma 4 allows to derive the following characterization of Pareto solutions for
the basic example.

Theorem 1. Let 0 ≤ si ≤ mi for i = 1, 2, 3. (s1, s2, s3) is a Pareto solution of
(5) if and only if the following conditions hold:

for WTR1:

– in case that wBC < wAB:
s3 = s1 = 0 or (s1 = 0 and s2 = m2) or (s2 = m2 and s3 = m3)

– in case that wAB < wBC :
s3 = s1 = 0 or (s3 = 0 and s2 = m2) or (s2 = m2 and s1 = m1)

for WTR2: s1 = 0 or s2 = m2,
for WTR3: the same condition that applies for WTR1.

Proof. First, note that w2 = wAC < wAC + wAB = w1 and w2 = wAC <
wAC + wBC = w3 and that wi > 0, i = 1, 2, 3.

For WTR1 (and WTR3) we hence have to consider two cases: either w2 ≤
w1 ≤ w3 which is the case if and only if wAB ≤ wBC , or we have w2 ≤ w3 ≤ w1
which occurs if and only if wBC ≤ wAB. Applying Lemma 4 yields the results.

For WTR2 it is even simpler since we have to consider(
min w1s1 + w2s2 + w3s3
max s1 + s2 + n

)
s.t. 0 ≤ sa ≤ ma, a = 1, 2, 3

where 0 < w2 < w1. Since w3 > 0 any solution with s3 > 0 is dominated by
the solution obtained by setting w3 = 0. We are hence left with a problem of
Lemma 4 with m = 2 and the result follows. ��

The interpretation of the basic example is that slack should be put on the transfer
and not on the driving activities.
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Solving (Pno): Minimizing Rno. In order to formulate the minimization of
Rno we introduce a binary variable z with value zero if train 2 waits for train 1
and value one otherwise. This leads to the following formulation.

min F (s1, s2, s3)
min z wAC

s.t. V z + R(s1, s2, s3) ≥ V
0 ≤ si ≤ mi for i = 1, 2, 3
z ∈ {0, 1}.

(6)

Note that the resulting problem is again a bicriteria linear optimization program
which is correct due to the following observation:

Lemma 5. Let (s1, s2, s3, z) be a Pareto solution of (6). Then z = 0 if no
passenger misses a transfer, and z = 1 if the passengers traveling from A to C
miss their transfer.

Proof. First, let z = 0. This means that R(s1, s2, s3) ≥ V , hence no passenger
misses his or her transfer. On the other hand, if z = 1 in an optimal solution, we
know that z = 0 is not feasible for the same values s1, s2, s3 (due to wAC > 0).
This yields R(s1, s2, s3) < V , i.e. the transfer from train 1 to train 2 is missed. ��

Theorem 2. Let V > n in case of WTR2 and V > m in case of WTR3. Then
(Pno) has exactly two non-dominated points, one corresponding to the Pareto
solution s = 0 and the other being (F (s), 0), where s can be found as an optimal
solution to

min
∑m

a=1 wasa

s.t. 0 ≤ sa ≤ ma, a = 1, . . . , m
R(s) ≥ V

If V ≤ n (for WTR2) or V ≤ m (for WTR3) there exists exactly one non-
dominated solution, namely (0, 0), corresponding to the Pareto solution s = 0.

Proof. For any s we have that Rno(s) ∈ {wAC , 0}, i.e. the second objective can
only obtain two different values, hence there exist at most two non-dominated
solutions.

– The first case, Rno = 0 minimizes Rno and hence is non-dominated since
it is lexicographically optimal. Due to wAC > 0 it yields z = 0, hence
the corresponding Pareto solution can be found by solving the optimization
problem in which z is fixed to zero.

– The second case, z = 1 equals the lexicographic solution if we first minimize
F (s): Since wAC > 0 we obtain s = 0 as unique optimal solution. If V > n
(for WTR2) or V > m (for WTR3) the transfer is missed and we obtain
the non-dominated solution (0, wAC). If V ≤ n (for WTR2) or V ≤ m (for
WTR3) then the transfer is maintained even in the case of no slack time and
the two lexicographic solutions coincide. ��

The result can be interpreted as follows: either distribute no slack at all or take
the minimal amount of slack such that the transfer is maintained.
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Solving (Pdel): Minimizing Rdel. For the calculation of Rdel we use the same
variable z but need furthermore to take the delay of the passengers from A to
B and from B to C into account. This delay also depends on z.

Lemma 6. Let s1, s2, s3 be a Pareto solution of the bicriteria problem
min F (s1, s2, s3) and min Rdel (min Rno, respectively). Then s1 + s2 + s3 ≤ V .

Proof. Assume the contrary, that s1 + s2 + s3 > V . Define a feasible timetable t
through t1 = min{V, s1}, t2 = min{V − t1, s2}, and, t3 = min{V − t1 − t2, s3}. It
can easily be shown that F (t) < F (s) and R(t) = R(s), hence t dominates s. ��

Note that Lemma 6 is a special case of Lemma 10, see also there for a detailed
proof. Here we use Lemma 6 to obtain the following model for (Pdel) in the basic
example.

min F (s1, s2, s3)
min (V − s1)wAB + zTwAC + (1 − z)(wAC + wBC)(V − s1 − s2 − s3)
s.t. V z + R(s1, s2, s3) ≥ V

s1 + s2 + s3 ≤ V
0 ≤ si ≤ mi for i = 1, 2, 3
z ∈ {0, 1}.

(7)

This model is quadratic. In the following we present linear formulation for the
three waiting time rules.

Linear formulation for WTR1. Note that z = 0 yields R(s) ≥ V , i.e. for WTR1
we obtain s1 + s2 + s3 ≥ V such that [V − s1 − s2 − s3]+ = 0 and the model
simplifies to the following linear formulation:

min F (s1, s2, s3)
min (V − s1)wAB + zTwAC

s.t. V z + s1 + s2 + s3 ≥ V
s1 + s2 + s3 ≤ V

0 ≤ si ≤ mi for i = 1, 2, 3
z ∈ {0, 1}.

Linear formulations for WTR2 and WTR3. For the other two rules we obtain
the following linearization of (7).

min F (s1, s2, s3)
min (V − s1)wAB + zTwAC + (wAC + wBC)q
s.t. q + V z + s1 + s2 + s3 ≥ V

V z + R(s1, s2, s3) ≥ V
s1 + s2 + s3 ≤ V

0 ≤ si ≤ mi for i = 1, 2, 3
z ∈ {0, 1}.
q ≥ 0

(8)
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Lemma 7. (7) and (8) are equivalent.

Proof. We consider the two cases z = 0 and z = 1 separately.

z = 1 : If (s1, s2, s3, 1) is feasible for (7), then (s1, s2, s3, 1) and q = 0 is feasible
for (8) with the same objective values. On the other hand, if a solution
s, z = 1, q of (8) is given, then s, z = 1 is a feasible solution of (7) and due
to q ≥ 0 we obtain that it has the same or a better objective value in both
objective functions.

z = 0 : If (s1, s2, s3, 0) is feasible for (7), then (s1, s2, s3, 0) and q = V − s1 −
s2 − s3 is feasible for (8) with the same objective values. Again, if a solution
s, z = 0, q of (8) is given, then s, z = 0 is a feasible solution of (7). Its
objective values are the same or better than the objective values of (8) since
q ≥ V − s1 − s2 − s3. ��

Instead of deriving general results about the Pareto solution we illustrate the
Pareto space for WTR1 and WTR2 in the following example: Let wAB = wAC =
wBC = 1 be unique passengers’ weights and define m1 = m3 = n, m2 = 2n and
T = 12n (a realistic value for n can be 5). In both Figure 4 and Figure 5 the
x-axis contains the objective values of Rdel and the y-axis contains F . Figure 4
uses WTR1 and shows the set of weakly non-dominated solutions (also called the
efficient frontier) for two source delays: V = 3

2n (lower line) and Ṽ = 3n (upper
line). As expected, both sets of weakly non-dominated solutions are piecewise
linear curves. In Figure 5 the weakly non-dominated solutions for WTR2 are
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Fig. 4. Weakly non-dominated solutions for (Pdel) in case of WTR1. Two different
examples of source delays are depicted: V = 3

2
n (lower line) and Ṽ = 3n (upper line).
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Fig. 5. Weakly non-dominated solutions for (Pdel) in case of WTR2. The source delay
of the example is V = 3

2
n.

depicted for a source delay of V = 3
2n. Also in this case the efficient frontier is

piecewise linear.

5 Subsequent Transfers

In this section we consider another basic substructure, namely a network N
which is a path. We assume E = {i1, i2, . . . , iK} and A = {aj = (ij , ij+1) : j =
1, . . . , K − 1} are ordered along the path. As usual, A may consist of driving,
waiting and transfer activities. Let us call the transfer activity with smallest
index the first transfer activity.

Furthermore, assume that i1 is the only source-delayed event. The following
result will be useful in the next section.

Lemma 8. Let N be a path and let its first node i1 be delayed. Let s be a feasible
timetable and R ∈ IR. For all three waiting time rules we have:

R(s) ≤ R if and only if the first transfer activity is maintained for a delay of
Vi1 = R.

Proof. Let a = (i, j) be the first transfer activity and d(a) = (j, l) be the next
driving activity. First note that a is maintained for all delays V ≤ R if and
only if it is maintained for V = R. We hence have to show that also all other
transfers are maintained if a is maintained. Let us consider the waiting time
rules separately.



134 A. Schöbel and A. Kratz

In case of WTR1, a is maintained if yi − sa ≤ sd(a). This yields yl = 0, hence
there is no delay at all subsequent events, such that all subsequent transfers will
be maintained.

For WTR2, a is maintained if yi − sa ≤ n, hence yl ≤ n and also yk ≤ n
for all events k following l. Hence, according to WTR2, the next transfer (and
hence all others) will be maintained.

In case of WTR3, we obtain that no event after l has a delay larger than m
and hence all subsequent transfers are again maintained. ��

The following corollaries use this observation to describe Pareto solutions for the
problems (P ) and (Pno).

Corollary 1. Let N be a path and let its first node i1 be delayed. Let wa > 0
for all a ∈ A. Let ak be the first transfer activity. If s is a Pareto timetable for
(P ) or (Pno), we have sal

= 0 for all l > k + 1 in case of WTR1 and WTR3,
sal

= 0 for all l > k in case of WTR2.

Proof. Assume s is a timetable with sal
> 0 for some l > k + 1 (l > k in case

of WTR2). Then the timetable t with tal
:= 0, ta = sa for all a �= al is feasible

and has a better objective F (t) < F (s) if wal
> 0. It remains to show that its

robustness does not increase.

– Due to Lemma 8 we know that s is robust with R(s) = V if and only if ak

is maintained for all Vi1 ≤ V . Further, the first transfer ak is maintained for
the timetable s if and only if it is maintained for the timetable t, hence also
t is robust with R(t) = V .

– For (Pno), let Vi1 = V be given.
• If ak is missed for s it is also missed for t. In this case everything is on

time for all events after aK , hence all subsequent transfers are maintained
and we obtain Rno(t) = wak

= Rno(s).
• On the other hand, if ak is maintained for s it is also maintained for

t. From Lemma 8 we know that in this case also all other transfers are
maintained. Hence Rno(s) = Rno(t) = 0.

Summarizing, the robustness of both timetables is the same. ��

Note that the corollary needs not hold for (Pdel), a counterexample is provided
in Section 6 (page 139).

Corollary 2. Let N be a path and let its first node i1 be delayed. There exist
at most two non-dominated timetables for problem (Pno).

Proof. The result follows since Rno(s) ∈ {0, wak
} only can obtain two different

values. ��

Further results about two subsequent transfers in special cases can be found in
[13].
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6 Pareto Solutions in General Networks

Intuitively one might think that we only have to look at the worst delays that
can occur when determining the robustness of a timetable. This is true in linear
graphs and has already been used in the proof of Lemma 8. However, if s is robust
with delays Vi = V for all i ∈ Edel then s need not be robust with respect to
delays Vi ≤ V for all i ∈ Edel. This is due to the fact that transfers might be
maintained “accidentally” as the following counterexample (see Figure 6) shows:
Here we have two trains, both with source delays, namely V1 at station A and
V2 at stations B. Both trains meet at station C where passengers can transfer
from train 1 to train 2. We assume that all slack times are 2. Let e.g. V = 20 and
n = m = 5. Although the waiting time rules would not maintain the transfer
from train 1 to train 2, it is maintained accidentally if both trains have the
(same) maximum delay V1 = V2 = V = 20. On the other hand, if only train
1 has a delay of V1 = 20, but the delay of train 2 is smaller than 12, then the
transfer is not maintained for all three waiting time rules. Hence the timetable
s is robust for V1 = V2 = V = 20, but it is not robust for V1 = V = 20 and
V2 ≤ 12.

The example shows that each train must be able to reduce its delay by itself
before a transfer activity is reached. This will be formalized next.

We first analyze how a delay spreads out. Let us call a path P in N a main-
tained path if all its transfers are maintained. For idel ∈ Edel and j ∈ E let
mpath(idel, j) denote the set of all maintained paths starting in idel and ending
at j. Finally, for a path P let s(P ) =

∑
a∈P sa be the sum of slacks gathered

along P .
The next lemma follows from Algorithm 1.

Lemma 9. Let Edel be a set of source-delayed events with delays Videl for idel ∈
Edel. Then

i j

k

with a delay

h

departure of train 1
arrival of train 2

driving of train 1

driving of train 2

departure of train 2
with a delay

slack: 2

slack: 2

arrival of train 1

station A

station B station D

slack: 2
driving of train 2

station C

slack: 2
stopping of train 2

transfer from
train 1 to train 2

departure of train 2

lg

arrival of train 2

slack: 2

Fig. 6. Counterexample
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yi = max
idel∈Edel,P∈mpath(idel,i)

[Videl − s(P )]+.

Let us consider the subnetwork N̄ = (E ,Await ∪ Adrive) that is obtained by
deleting all transfer activities. It consists of a set of paths, one for each train.
Let P̄ij denote the unique path from i to j in N̄ (if it exists).

First, we reduce the set of events that need to be considered. It is obvious that
only events need to be considered that can get a delay, i.e. events which can be
reached by a path from a source-delayed event. In our case we can restrict the
set of relevant events even further, namely to such events which can be reached
by a path in N̄ :

Erel := {j ∈ E : there exists a directed path in N̄ from idel ∈ Edel to j}.

For all j ∈ Erel we further define

s̄j := min{s(P ) : P is a directed path in N̄ from idel ∈ Edel to j}. (9)

Note that the path P for which the minimum is obtained, is unique.
For the next lemma, recall that d(a) denotes the unique driving activity that

directly follows the transfer a.

Theorem 3. Let Edel be the set of potential source-delayed events and let s be
a feasible timetable. R(s) = R if and only if for all transfers a = (i, j) ∈ Atrans

with i ∈ Erel we have:

R − s̄i ≤ sd(a) + sa in the case of WTR1, (10)
R − s̄i ≤ n + sa in the case of WTR2, (11)
R − s̄i ≤ m + sd(a) + sa in the case of WTR3. (12)

Proof.

– Let the conditions (10), (11), or (12), respectively, be satisfied. Let a set of
source-delayed events Edel be given with source delays Vi ≤ R for all i ∈ Edel.
We want to show that all transfers are maintained. Let a = (i, j) ∈ Atrans.
According to Lemma 9 we know that

yi = max
idel∈Edel,P∈mpath(idel,i)

[Videl − s(P )]+.

Let P be the path from idel to i for which the maximum is obtained. The
following cases can occur:
• yi = 0. Then the transfer is maintained.
• P is a path in N̄ . Then i ∈ Erel such that we obtain yi = Videl −

s(P ) ≤ R − s̄i and the transfer is maintained due to (10) (or (11),(12),
respectively).

• P is a path which is not in N̄ . It hence contains at least one transfer
activity ã which is maintained. Lemma 8 yields that all transfers that
follow ã on a path are also maintained, in particular we conclude that a
is maintained.
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– Conversely, assume that s is robust with level R(s) = R. Assume that (10),
(11), or (12), respectively, are not satisfied for some transfer activity a =
(i, j) ∈ Atrans with i ∈ Erel. Then there exists l ∈ Edel such that
• s(P̄li) = s̄i < R − sa − sd(a) for WTR1
• s(P̄li) = s̄i < R − sa − n for WTR2,
• s(P̄li) = s̄i < R − sa − sd(a) − m for WTR3.

Set Vl = R and Vk = 0 for all k ∈ Edel\{k}. Then a = (i, j) is not maintained,
hence R(s) > R. ��

The lemma will be the basis for the algorithms provided in Section 7. For the
other two problems (Pno) and (Pdel) we obtain the following results. Again we
assume that wa > 0 for all a ∈ A, i.e. there is at least one passenger traveling
along all of the activities.

Lemma 10. Let a maximum delay V be given and let s be a Pareto solution
w.r.t Rno or Rdel, respectively. Let j ∈ E. Let Pj be a shortest path w.r.t the
weights sa from a source delayed event idel ∈ Edel to j. Then we have s(Pj) ≤ V .

Proof. Assume s(Pj) > V for some shortest path Pj from a source-delayed event
idel ∈ Edel to another event j ∈ E . Let ã = (̃i, j̃) be the last activity of Pj with
sa > 0. Without loss of generality we can assume that ã = (i, j), otherwise we
continue with Pj̃ . Define a new timetable t through tã := [sã − (s(Pj) − V )]+,
ta := sa for all a ∈ A \ {ã}. We want to show that t dominates s.

Note that due to s(Pj) − V ≥ 0 we have 0 ≤ ta ≤ sa for all a ∈ A, hence t is
a feasible timetable and F (t) ≤ F (s). It remains to show that Rno(t) ≤ Rno(s)
and that Rdel(t) ≤ Rdel(s). To this end, we calculate the delays yj for both the
timetables s and t. According to Lemma 9 we get for the timetable s that

yj = max
idel∈Edel,P∈mpath(idel,j)

[Videl − s(P )]+

≤ [V − min
idel∈Edel,P∈mpath(idel,j)

s(P )]+

= [V − s(Pj)]+ = 0.

For t we analogously obtain

yj ≤ [V − min
idel∈Edel,P∈mpath(idel,j)

t(P )]+

= [V − t(Pj)]+ since Pj is also a shortest path w.r.t t

= 0,

where the last step holds because t(Pj) = s(Pj) + tã − sã ≥ s(Pj)− (s(Pj)− V )
= V .

Changing the slack on activity ã hence has no effect on the delay when reaching
j and hence also no effect on any of the other delays yi. Consequently, none of
the robustness functions changes, i.e. we obtain Rno(t) = Rno(s) and Rdel(t) =
Rdel(s) and the result follows. ��
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Note that calculating s(Pj) can be done easily by starting at j and backwards
determining the shortest distance to all i ∈ Edel. The lemma has two direct
consequences, the second of them showing Lemma 6.

Corollary 3. Let s be a Pareto solution w.r.t Rno, or, Rdel, respectively. Then:

1. sa ≤ V for all a ∈ A
2. Let N be a linear graph. Then the sum of all slack variables is smaller than

V .

We conclude this section with the following result about the distribution of the
slack times in a Pareto solution. It says that for each driving activity either its
slack is zero or one of its preceding activities uses the maximal allowed slack.

Theorem 4. Let ã ∈ Adrive. Let a0 ∈ Astop its preceding stopping activity and

prec(ã) = {a ∈ Atrans : d(a) = ã} ∪ {a0}

be the set of all its preceding activities.

1. Let s be a Pareto solution for (P ) or (Pno). Then for all three waiting time
rules s satisfies:
sã = 0 or sa = ma for some a ∈ prec(ã).

2. If s is a Pareto solution for (Pdel), the result holds for WTR1.

Proof. Let ã = (̃i, j̃) ∈ Adrive and assume that sã > 0 and sa < ma for all
a ∈ prec(ã) ∪ {a0}. This means,

ε := min{sã, min
a∈prec(ã)

ma − sa} > 0.

We define the following timetable t:

ta := sa + ε for all a ∈ prec(ã)
tã := sã − ε

ta := sa otherwise.

We show that t dominates s. Due to the choice of ε, t is feasible. Note that the
passengers are provided as OD-pairs between some departure event and some
arrival event; hence no passenger leaves the system at the departure event ĩ.
(Each path between two stations that contains a transfer or a stopping activity
also contains the subsequent driving activity). For the objective F we hence first
calculate

wã =
∑

P :ã∈P

wP ≥
∑

a∈prec(ã)

∑
P :a∈P

wP =
∑

a∈prec(ã)

wa

and hence conclude that
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F (t) = F (s) +
∑

a∈prec(ã)

(ta − sa)wa + (tã − sã)wã

= F (s) + ε︸︷︷︸
>0

⎛⎝ ∑
a∈prec(ã)

wa − wã

⎞⎠
︸ ︷︷ ︸

≤0

< F (s).

We finally have to show that the robustness of t is not worse than the robustness
of s. Given a delay V , we use Theorem 3 to show that all transfers a = (i, j)
with i ∈ Erel that are maintained in s are also maintained in t. This shows that
the robustness functions R and Rno do not increase.

To this end, let a = (i, j) be a transfer that is maintained in s, i.e.

R − s̄i ≤ sd(a) + sa in the case of WTR1,
R − s̄i ≤ n + sa in the case of WTR2,
R − s̄i ≤ m + sd(a) + sa in the case of WTR3.

Since sa0 + sã = ta0 + tã we know that s̄i = t̄i for all i �= ĩ. We further obtain
s̄ĩ < t̄̃i. Moreover, sa′ + sã′ = ta′ + tã′ for all a′ with d(a′) = ã′ and ta > sa for
all transfer activities a. Together we obtain that

R − t̄i ≤ R − s̄i ≤ sd(a) + sa = td(a) + ta in the case of WTR1,
R − t̄i ≤ R − s̄i ≤ n + sa ≤ n + ta in the case of WTR2,
R − t̄i ≤ R − s̄i ≤ m + sd(a) + sa ≤ m + td(a) + ta in the case of WTR3.

For Rdel the theorem only holds in the case of WTR1: Given some source delays,
let yt be the delays corresponding to t and ys be the delays corresponding to s.
For WTR1 we obtain that ys ≥ yt. Since all transfers that are maintained in s
are also maintained in t we conclude that Rdel(t) ≤ Rdel(s) in this case. ��

We remark that the idea of the proof cannot be used for WTR2 (or WTR3) in
the case of (Pdel) which can be seen at the following example: Let ã = (̃i, j̃) be
a driving activity that is used by 100 passengers all boarding at ĩ and getting
off at j̃. Let a′ = (j′, ĩ) be the only transfer activity with d(a′) = ã and let only
one passenger use this transfer, also getting off at j̃. The slack of a′ should not
be bounded from above; here we choose ma′ ≥ 4. Let the period be T = 60
minutes. Finally, let one source delay V = 4 be given at the start event of a′ and
consider WTR2 with n = 2.

Now consider a timetable sa′ = 0, sã = 2. In the proof of Theorem 4 we
improve F and the robustness by shifting the slack to the preceding activities
which in our example yields a timetable t with ta′ = 2, tã = 0. We obtain
F (t) < F (s) but the robustness of t increases:

– For s the transfer is not maintained and ys
ĩ

= ys
j̃

= 0. This yields Rdel(s) =
Twa′ + ys

j̃
wã = 60.
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– On the other hand, we obtain for t: yt
ĩ
= 2, hence the transfer is maintained

and yj̃ = 2. This yields Rdel(t) = yj̃wã = 202.

Hence, Rdel(t) > Rdel(s). This example also shows that in the case of Rdel it
may be better not to maintain all transfers.

7 Finding Pareto Solutions for (P)

In this section we discuss solution approaches for problem

(P )
(

min F (s)
maxR(s)

)
s.t. s is a feasible timetable

for the three waiting time rules.
In order to determine Pareto solutions we use the ε-constraint method. We

hence fix a robustness R(s) := R and consider the resulting single criteria prob-
lem (SiP) of finding slack variables s such that

a) s is a feasible timetable,
b) R(s) ≤ R, and
c) F (s) is minimal.

It is well known that every optimal solution of (SiP) is a weak Pareto solution
of (P).

We start with the first waiting time rule WTR1. We know from Theorem 3
that the timetable is robust with robustness R ∈ IR if and only if the slack
variables satisfy for any transfer activity a = (i, j) that the accumulated slack
time s̄i between the closest event to i is at least R − sd(a) − sa, i.e. if

sa + sd(a) + s̄i ≥ R for all a = (i, j) ∈ Atrans with i ∈ Erel. (13)

To simplify the notation let us define Arel := {a = (i, j) ∈ Atrans : i ∈ Erel} as
the set of transfers that have to be considered.

Now consider one fixed activity a = (i, j) ∈ Arel. Using (9) we know that
s̄i = s(P̄li) for some event l ∈ Edel of the same train. We define the set of edges
used in (13), i.e.

Pa := P̄li ∪ {a, d(a)}.

Note that Pa is a path. It can be used to reformulate (13) as∑
a′∈Pa

sa′ ≥ R for all a = (i, j) ∈ Arel

and we are left with a multi covering problem if we neglect the feasibility con-
dition (1) for the slack variables. Its covering matrix A is an |Arel| × |A| matrix
with coefficients

Aa,a′ =
{

1 if a′ ∈ Pa

0 otherwise , (14)
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hence we obtain min{wts : As ≥ R}. Since the constraints in (1) only appear if
the network contains cycles, they can be neglected if N is a tree. The following
algorithm uses this fact:

Algorithm 2 to calculate a Pareto solution for (P) with R(s) = R in
the case of a tree

1. Determine Pa for all a ∈ Arel. Define the covering matrix A according to
(14).

2. Solve the multi covering problem min{cts : As ≥ R}, let s∗ be an optimal
solution.

3. Set s∗̄a := 0 for all ā �∈ ∪a∈ArelPa. Output: s∗ is a Pareto solution.

If sa ∈ IR are allowed, step 2 can be solved by linear programming. If integer
values for sa are required the multi-covering problem in general is NP hard.
Furthermore, if N is not a tree, the solution of the covering problem will usually
not be a feasible timetable since it does not respect (1). Surprisingly, adding the
condition simplifies the problem; it even can be solved efficiently if integer values
are required. This will be shown next.

The idea is the following. We use the timetabling model (TT − Π) based on
the variables Π , but add an additional activity for each constraint of type (13)
as follows: Let a = (i, j) ∈ Arel and let∑

a′∈Pa

sa′ ≥ R

its corresponding constraint. Let starta and enda be the first and the last node
of the path Pa, i.e. starta is the source-delayed event closest to a and enda is the
arrival event of the driving activity which follows a. We then additionally require
that Πenda − Πstarta ≥

∑
a′∈Pa

la′ + R in the formulation of the timetabling
model.

min
∑

a=(i,j)∈A wa(Πj − Πi)

s. t. la ≤ Πj − Πi ≤ ua for all a = (i, j) ∈ A (15)
Πenda − Πstarta ≥

∑
a′∈Pa

la′ + R for all a = (i, j) ∈ Arel

Πi ∈ IN.

Before we show the equivalence of (15) to (SiP) in Theorem 5 let us remark that
the additional constraints

Πenda − Πstarta ≥
∑

a′∈Pa

la′ + R

in (15) can be interpreted as lower and upper bounds on a new set of (virtual)
activities Anew := {(starta, enda) : a ∈ Arel} such that problem (15) turns out
to be an aperiodic timetabling problem on the network Nnew = (E ,A ∪ Anew)
and hence can be solved efficiently by shortest path techniques.
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Theorem 5. Let Π∗ be optimal solution of (15). Then its slack times s∗a :=
Π∗

j − Π∗
i − la are optimal for (SiP) and hence are a Pareto solution of (P) for

WTR1.

Proof. Let Π∗ be an optimal solution of (15) and s∗ its slack times. We want
to show that s∗ satisfies properties a), b), and c) of (SiP). Since Π is a feasible
timetable, according to Lemma 1 we have that s∗ satisfies property a). Further,
R(s∗) ≤ R if and only if R−s̄i ≤ sd(a)+sa for all transfers a ∈ Arel (Theorem 3).

Consider a transfer a ∈ Arel. We know that Πenda −Πstarta ≥
∑

a′∈Pa
la′ +R.

Note that for any path P from i to j we have that

Πi − Πj =
∑
a∈P

la +
∑
a∈P

sa. (16)

Using (16) for the path Pa we obtain∑
a′∈Pa

la′ +
∑

a′∈Pa

sa′ = Πenda − Πstarta ≥
∑

a′∈Pa

la′ + R,

and hence
∑

a′∈Pa
sa′ ≥ R and b) holds.

It remains to show that s∗ is minimal. Assume that s′ is a feasible timetable
for (SiP) with strictly smaller objective F (s′) < F (s). Determine a feasible
timetable Π ′ for s′ according to Lemma 2. From Lemma 3 we then know that
F̃ (Π ′) < F̃ (Π∗). Since R(s′) ≤ R we obtain

R ≤
∑

a′∈Pa

sa′ = Πenda − Πstarta −
∑

a′∈Pa

la′ ,

hence Π ′ is a feasible solution to (15) with a strictly better objective value, a
contradiction. ��

The waiting time rules WTR2 and WTR3 can be treated analogously to the
above approach. For WTR3 we just replace R be R′ = R − m and can use (15)
as for WTR1. For WTR2, constraints (13) have to be changed to

sa + s̄i ≥ R − n for all a = (i, j) ∈ Arel (17)

For a fixed activity a = (i, j) ∈ Arel, we again use (9) to obtain that s̄i = s(P̄li)
for some event l ∈ Edel of the same train. The set of edges used in (17) then has
to be changed to

Pa := P̄li ∪ {a}
since the slack of d(a) is not relevant for WTR2. Again, Pa is a path that can
be used to reformulate (17) as∑

a′∈Pa

sa′ ≥ R − n for all a = (i, j) ∈ Arel

and the equivalence to the modified problem (15) still applies. Note that in
case of WTR2 Arel can be further reduced since we only have to consider the
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“earliest” transfer activities for each source-delayed train, i.e. for WTR2 it is
sufficient to use the set

Erel := {j ∈ E : there exists a directed path in N̄ from idel ∈ Edel to j

not containing any other path from jdel ∈ Edel to j as subpath}.

8 Conclusion

In the paper we suggest to model robust optimization problems as bicriteria prob-
lems with one objective describing the original (undisturbed) objective function
and the other objective modelling the robustness of the problem. We illustrate
the approach using a timetabling problem. It turned out that determining Pareto
solutions can be reduced to a timetabling problem with modified data and hence
be solved efficiently for any given level of robustness.

More properties of Pareto solutions for the specific problem considered here
are currently under research. The goal is to collect essential properties of such
solutions such that in practice one can quickly judge if the solution is non-
dominated or not. Moreover, a combination of different waiting time rules and
an extension to semi-robustness (taking into account that missing a transfer is
not too bad if the next possible connection is provided e.g. in only half of the
period length) have been sketched in [13].

The bicriteria model presented in this paper can be applied to any robust
optimization problem. Extensions to other problems than timetabling are inter-
esting. A general investigation on how to model and solve robust optimization
problems as bicriteria problems are under research.
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Universidad Politécnica de Valencia

{fbarber,lingolotti,msalido}@dsic.upv.es, {allova,ptormos}@eio.upv.es

1 Introduction

This chapter is devoted to recent advances in heuristic and metaheuristic pro-
cedures, arising from the areas of Computer Science and Artificial Intelligence,
which are able to cope with large scale problems as those in single-line rail-
way timetable optimization. Timetable design is a central problem in railway
planning. In the basic timetabling problem, we are given a line plan as well
as demand and infrastructure information. The goal is to compute timetables
for passengers and cargo trains that satisfy infrastructure capacity and achieve
multicriteria objectives: minimal passenger waiting time (both at changeovers
and onboard), efficient use of trains, etc. Due to its central role in the planning
process of railway scheduling, timetable design has many interfaces with other
classical problems: line planning, vehicle scheduling, and delay management.

In this chapter, we focus our attention on the development of metaheuristic
and constraint-based techniques for solving the single-line Train Timetabling
Problem (TTP). This problem is related to obtaining and optimizing timetables
of periodic and non-periodic heterogeneous trains that share a railway line with
single and double track sections. Thus, in section 2, we describe the problem
and present the notation used to describe the problem (parameters, constraints,
objective functions, etc).

Section 3 is focused on solving the Train Timetabling Problem from the per-
spective of Constraint Satisfaction Problems. This approach has been applied to
solve the Train Timetabling Problem (TTP) using different partitioning tech-
niques. Furthermore, the performance of distributed approaches with respect to
centralized ones has been tested, showing that distributed approaches outper-
form the centralized ones. These new algorithms are especially useful for solving
distributable, large-scale problems such as those arising in railway optimization.

In section 4, we focus on solving the Train Timetabling Problem using a
metaheuristic approach based on variable ordering. A constructive approach
is detailed under the assumption that the TTP is a special type of job-shop
problem.

In section 5, we focus on solving the Train Timetabling Problem using a meta-
heuristic approach based on Genetic Algorithms (GAs) that have been designed

R.K. Ahuja et al. (Eds.): Robust and Online Large-Scale Optimization, LNCS 5868, pp. 145–181, 2009.
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and successfully applied to solve real world Train Timetabling. The schedule for
the new trains is obtained using a Genetic Algorithm that includes a guided
process to build the initial population. This algorithm has been used to solve
real-world instances, and its performance has been compared against construc-
tive approaches. This approach is an appropriate method for exploring the search
space of this complex problem. Thus, further research in the design of efficient
GA is justified.

We present an alternative approach to solve the periodic railway timetabling
problem in section 6. This approach is based on the topological properties of the
line. Finally, we present conclusions for the above sections.

2 The Single-Line Train Timetabling Problem (TTP)

Given a railway single-line that may have single as well as double-track sections,
the Train Timetabling Problem (TTP) consists of computing timetables that
satisfy existing constraints and that optimize a multicriteria objective function
for both, passenger and cargo trains. The railway line may be occupied by other
trains whose priority is higher than that of the new ones, and the new trains to
be added may belong to different train operators. The locations to be visited by
each train may also be different from each other. The timetable given to each
new train must be feasible, that is, it must satisfy a given set of constraints. Of
the constraints that may arise in this problem, is the requirement for periodicity
of the timetables. Periodicity leads to the classification of TTP as (i) Periodic
(or cyclic) Train Timetabling and (ii) Non-Periodic Train Timetabling.

In Periodic Timetabling, each trip is operated in a periodic way. That
is, each period of the timetable is the same. One advantage of a periodic rail-
way system is the timetable is easy for the passengers to remember. One draw-
back is that the system is expensive to operate from the point of view of re-
sources such as crews and rolling stock. The mathematical model called Periodic
Event Scheduling Problem (PESP) by Serafini and Ukovich [30] is the most
widely used in the literature. In PESP, a set of repetitive events is scheduled
under periodic time window constraints. Hence, the events are scheduled for
one cycle in such a way that the cycle can be repeated. The PESP model has
been used by Nachtigall and Voget [21], Odijk [23], Kroon and Peeters [18],
Liebchen [20], etc.

Non-Periodic Train Timetabling is especially relevant on heavy-traffic,
long-distance corridors where the capacity of the infrastructure is limited due
to great traffic densities. This timetabling allows the Infrastructure Manager
to optimally allocate the train paths requested by the Train Operators and
proceed with the overall timetable design process, possibly with final local re-
finements and minor adjustments made by the planner. Many references con-
sider Mixed Integer Problem formulations in which the arrival and departures
times are represented by continuous variables and there are binary variables ex-
pressing the order of the train departures from each station. The non-periodic
train timetabling problem has been considered by several authors: Szpigel
[32], Javanovic and Harker [15], Cai and Goh [8], Carey and Lockwood [10],



Meta-heuristic and Constraint-Based Approaches 147

Higgins et al. [13], Silva de Oliveira [31], Kwan and Mistry [19], Caprara et al.
[9], Ingolotti et al. [14].

One of the main problems that railway managers face is the allocation of the
paths requested by transport operators and the process of designing the overall
timetable. These timetables are generally non-periodic and have to meet a wide
set of constraints as well as achieve a multicriteria objective function. A detailed
formal description of both the constraints and the objective function is given
in the following subsections. First, we introduce the notation that will be used
hereafter.

2.1 Notation

In this subsection, the TTP is formally described. The notation used to describe
the problem is the following.

Parameters

– T: finite set of trains t considered in the problem. T = {t1, t2, ..., tk}
– TC ⊂ T: subset of trains that are in circulation and whose timetables cannot

be modified (TC can be empty).
– Tnew ⊆ T: subset of non-scheduled trains that do not yet have a timetable

and that must be added to the railway line with a feasible timetable. Thus,
T = TC ∪ Tnew and TC ∩ Tnew = ∅

– li: location (station, halt, junction). The types of locations considered are
described as follows:

• Station: Place for trains to park, stop or pass through. Each station is
associated with a unique station identifier. There are two or more tracks
in a station where crossings or overtaking can be performed.

• Halt: Place for trains to stop, pass through, but not park. Each halt is
associated with a unique halt identifier.

• Junction: Place where two different tracks fork. There is no stop time.

– Ni: number of tracks in location li.
– NPi: number of tracks with platform (necessary for commercial stops) in

location li.
– L = {l0, l1, ..., lm}: railway line that is composed by an ordered sequence of

locations that may be visited by trains t ∈ T . The contiguous locations li
and li+1 are linked by a single or double track section.

– Jt = {lt0, lt1, ..., ltnt
}: journey of train t. It is described by an ordered sequence

of locations to be visited by a train t such that ∀t ∈ T, ∃Jt : Jt ⊆ L. The
journey Jt shows the order that is used by train t to visit a given set of
locations. Thus, lti and ltnt

represent the ith and last location visited by train
t, respectively.

– TD: set of trains travelling in the down direction.
t ∈ TD ↔ (∀lti : 0 ≤ i < nt, ∃lj ∈ {L \ {lm}} : lti = lj ∧ lti+1 = lj+1).

– TU: set of trains travelling in the up direction.
t ∈ TU ↔ (∀lti : 0 ≤ i < nt, ∃lj ∈ {L \ {l0}} : lti = lj ∧ lti+1 = lj−1). Thus
T = TD ∪ TU and TD ∩ TU = ∅
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– Ct
i minimum time required for train t to perform commercial operations

(such as boarding or leaving passengers) at station i (commercial stop).
– Δt

i→(i+1): running time for train t from location lti to lti+1.

– ItL, ItU�: interval for departure time of train t ∈ Tnew from the initial station
of its journey.

– Ft
L, F

t
U�: interval for arrival time of train t ∈ Tnew to the final station of its

journey.

Variables

– dept
i departure time of train t ∈ T from the location i, where i ∈ Jt \ {ltnt

}.
– arrt

i arrival time of train t ∈ T to the location i, where i ∈ Jt \ {lt0}.

Planners usually use running maps as graphic tools to help them in the plan-
ning process. A running map is a time-space diagram like the one shown in
Figure 1 where several train crossings can be observed. The names of the sta-
tions are presented on the left side, and the vertical line represents the number of
tracks between stations (one-way or two-way). Horizontal dotted lines represent
halts or junctions, while solid lines represent stations. On a railway network, the
planner needs to schedule the paths of nk trains going in one direction and mk

trains going in the opposite direction for trains of a given type. The trains to
schedule may or may not require a given frequency.

Fig. 1. Running Map
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2.2 Feasibility of a Solution - Set of Constraints

In order to be feasible, a timetable has to fulfill a set of constraints that can be
classified in three main groups, depending on whether they are concerned with:
(i) user requirements (parameters of trains to be scheduled), (ii) traffic rules, (iii)
railway infrastructure topology. The constraints described in this work have been
defined together with the Manager of Railway Infrastructure of Spain (ADIF)
in such a way that the resulting timetable is feasible and practicable.

User Requirements:

– Interval for the Initial Departure: Each train t ∈ Tnew should leave its initial
station lt0 at a time dept

0 such that,

ItL ≤ dept
0 ≤ ItU . (1)

– Interval for the Arrival Time: Each train t ∈ Tnew should arrive to its final
station ltnt

at a time arrt
nt

such that,

Ft
L ≤ arrt

nt
≤ Ft

U . (2)

– Maximum Delay: A maximum delay Λt and a minimum running time Mt

are specified for each train t ∈ Tnew; thus, the upper bound for the running
time of t ∈ Tnew is given by the following expression:

(arrt
nt

− dept
0 − Mt)

Mt
≤ Λt . (3)

Traffic constraints:

– Running Time: For each train and each track section, a running time is
given by Δt

i→(i+1), which represents the time the train t should employ to
go from location lti to location lti+1. Therefore, the following expression must
be fulfilled

arrt
i+1 = dept

i + Δt
i→(i+1) . (4)

– Crossing: According to the following expression, a single-track section
(i → i+1, down direction) cannot be occupied by two trains going in opposite
directions (t ∈ TD and t′ ∈ TU).

dept′
i+1 > arrt

i+1 ∨ dept
i > arrt′

i . (5)

– Commercial Stop: Each train t ∈ Tnew is required to remain in a station lti
at least Ct

i time units
dept

i ≥ arrt
i + Ct

i . (6)

– Overtaking on the track section: Overtaking must be avoided between any
two heterogeneous (different speeds) trains, {t, t′} ⊆ Tnew, going in the same
direction on any track section, k → (k + 1), of their journeys:

(arrt
k+1 > arrt′

k+1) ↔ (dept
k > dept′

k ) . (7)
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Fig. 2. (a)Crossing conflict. (b) Train in Down direction waits. (c) Train in Up direction
waits.

– Delay for unexpected stop: When a train t stops in a station j to avoid
conflicts with other trains (overtaking/crossing) and no commercial stop was
planned (Ct

j = 0) in this station, the running time of train t that corresponds
to the previous (ltj−1 → ltj) and next (ltj → ltj+1) track sections of j must be
increased by Γt time units. This increase represents the speed reduction of
the train due to the braking and speeding up in the station.

dept
j−arrt

j > 0∧Ct
j = 0 → Δj−1→j = Δj−1→j+Γt∧Δj→j+1 = Δj→j+1+Γt .

(8)
In crossing and overtaking operations, the reception and expedition times
are required for trains which are detoured from the main track.

– Reception Time: The difference between the arrival times of any two trains
{t, t′} ⊆ Tnew in the same station l is defined by the expression below, where
Rt is the reception time specified for the train that arrives to l first.

arrt′
l ≥ arrt

l → arrt′
l − arrt

l ≥ Rt . (9)
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– Expedition Time: The difference between the departure and arrival times of
any two trains {t, t′} ⊆ Tnew in the same station l is defined by the expression
below, where Et is the expedition time specified for t.

|dept′
l − arrt

l | ≥ Et . (10)
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– Simultaneous Departure: When two trains going in opposite directions stop
in the same station, the difference between their departure times from that
station must be at least S. This constraint is formulated as:

∀t, t′ ∈ Tnew : dept
i−arrt

i > 0∧dept′
i −arrt′

i > 0 → |dept
i−dept′

i | ≥ S . (11)

Infrastructure constraints:

– Finite Capacity of Stations : A train t ∈ Tnew could arrive to a location lti if
and only if it has at least one available track (with platform, if Ct

i > 0). In
order to formulate this constraint, consider:

∀x ∈ Tnew : Tx = {t ∈ T : t �= x, Jt ∩ Jx �= ∅} and

Meet(x, t, l) =
{

1 if [arrx
l , depx

l ] ∩ [arrt
l , dept

l ] �= ∅ ∧ Ct
l = 0

0 else

MeetP(x, t, l) =
{

1 if [arrx
l , depx

l ] ∩ [arrt
l , dept

l ] �= ∅ ∧ Ct
l > 0

0 else

Hence, the constraint of finite capacity of stations is formulated as follows:

∀x ∈ Tnew, ∀l ∈ Jx : ((
∑

t∈Tx

Meet(x, t, l) +
∑

t∈Tx

MeetP(x, t, l) < Nl)∧

(Cx
l > 0 →

∑
t∈Tx

MeetP(x, t, l) < NPl
)) . (12)

– Closing Time: Let [H1
l , H

2
l ] be the closing time interval for maintenance oper-

ations of station l. The closing time imposes constraints over regular opera-
tions -trains can pass but cannot stop in the station (see the next expression).
Closing time can even forbid regular operations; for example, trains can nei-
ther pass nor stop (i.e., the number of tracks in the station is decreased to
one (see (12)).

dept
l < H1

l ∨ arrt
l > H2

l . (13)

– Headway Time: If two trains, {t, t′} ⊆ Tnew, travelling in the same direction
leave the same location lk towards the location lk+1, they are required to
have a difference in departure times of at least ϕd

k and a difference in their
arrival times of at least ϕa

k. When the blocking type in the track section is
Automatic, then ϕa

k = ϕd
k. Consider the following expression

|dept
k − dept′

k | ≥ ϕd
k . (14)

|arrt
k+1 − arrt′

k+1| ≥ ϕa
k . (15)
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According to the company requirements, the method proposed should obtain
the best available solution so that all the above constraints are satisfied. As
we pointed out above, the line could be previously occupied by other trains
whose timetable have not been changed. That is to say ∀t ∈ TC, the variables
arrt

i and dept
i have been previously instantiated with given values. This means

∀t ∈ TC, ∀i ∈ Jt, arrt
i ∈ CONSTANT, dept

i ∈ CONSTANT. It also means that
the process generates the constraints so that the arrival and departure time
of trains in circulation are constants. It does not generate constraints that only
involve variables corresponding to trains in circulation. Next, the process verifies
that each new train satisfies each constraint taking into account the remaining
new trains as well as all the trains already in circulation. In other words, if a
constraint is violated and it relates new trains with trains in circulation, the only
timetables that should be modified are those corresponding to new trains.

Note that this set of constraints corresponds specifically to the Spanish railway
company requirements and does not match exactly with other published works.

Several criteria can exist to assess the quality of the solution, for exam-
ple: minimize travel time, minimize the passenger waiting time in the case of
changeovers, balance the delay of trains in both directions, etc. The objective
function considered in this work is described in the next section.

2.3 Optimality of a Solution - Objective Function

In order to assess the quality of each solution, we assess the optimal solution
(optimal travel time) for each specific train t ∈ Tnew. The optimal solution of
train t is computed by the scheduling of the new train t (verifying all problem
constraints) on the line being occupied only by trains in circulation (TC). This
optimal solution for train t (Γ t

opt) is the lowest time required by t to complete
its journey. The other trains to be scheduled in Tnew are ignored.

Once the optimal time for each new train to be scheduled has been computed,
the criterion to measure the quality of each solution will be the average delay of
new trains with respect to their optimum (δ). That is:

δt =
(arrt

nt
− dept

0) − Γ t
opt

Γ t
opt

; δU =

∑
t∈TU∩Tnew

δt

|TU ∩ Tnew|
; δD =

∑
t∈TD∩Tnew

δt

|TD ∩ Tnew|
; δ =

δU + δD

|Tnew|

Finally, assuming that TTABLE is a solution for the TTP problem (there-
fore, the timetable for all new trains), the objective function of this problem is
formulated as:

f (TTABLE) = MIN(δ) (16)

If there are no trains in circulation in L (T = Tnew), the optimal time of a new
train t would be:

Mt = Γ t
opt =

nt−1∑
i=0

Δt
i→(i+1) +

nt−1∑
i=0

Ct
i (17)
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3 The TTP from the Constraint Satisfaction Problem
Perspective

The research in the field of constraint satisfaction problems (CSP) has incor-
porated new ways of dealing with optimization problems, including scheduling
problems, by providing flexibility and robustness through constraint propaga-
tion [22]. In practical applications, there are many more parameters and side
constraints than the ones considered in theoretical studies, and that can be han-
dled as CSP in a flexible way. Another advantage of CSPs is that they can be
represented and solved in a distributed way (distributed CSP).

A CSP consists of a set of variables X = {x1, x2, ..., xn}; each variable xi ∈ X
has a set Di of possible values (its domain) and a finite collection of constraints
C = {c1, c2, ..., cp} restricting the values that the variables can simultaneously
take. A solution to a CSP is an assignment of values to all the variables so that
all constraints are satisfied; a problem is satisfiable or consistent when it has at
least one solution. A partition of a set C is a set of disjoint subsets of C whose
union is C. The subsets are called the blocks of the partition.

A distributed CSP (DCSP) is a CSP in which the variables and constraints are
distributed among automated agents. Each agent has one or more variables and
attempts to determine their values. However, there are interagent constraints,
and the value assignment must satisfy these constraints. In our model, there are
k agents 1, 2, ..., k. Each agent knows a set of constraints and the domains of
variables involved in these constraints.

Distributed-CSP is a promising area for coping with large-scale problems such
those arising in a real-life railway instance. Specifically, new models for distribut-
ing CSPs, both as general-oriented and problem-oriented approaches, can be
developed for solving railway scheduling problems [26].

With regard to robustness, there are several previous works that analyze the
stability of solutions in dynamic-CSPs, in which constraints, variables or do-
mains change over time [34], [2]. With the aim of obtaining stable solutions,
CSP techniques have been developed to avoid re-computing new solutions when
the constraints changes. These techniques are based on preference management
at the level of individual constraints [6], at the level of variables [7], or at the so-
lution level [24]. There are also techniques based on the management of distances
between the ideal and acceptable solution. Finally, it is important to point out
the techniques based on the fuzzy-CSP [11], probabilistic-CSP Fargier, 1993),
weighted-CSP [5], and other techniques that take into account the trade-off be-
tween optimality and stability [34]. Most of the latter techniques are founded
on the soft-computing paradigm. This paradigm focuses on stochastic, vague,
empirical and associative situations, which are typical features of industrial and
manufacturing environments. For that very reason, in this kind of dynamic envi-
ronments, the available data is often numerical and the desired solutions should
be obtained in real time and should be reliable; therefore robust and stable
solutions are required.

With regard to the distributed paradigm, distributed constraint satisfaction
problems arise when it is important to separate by means of communicating
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agents [35] information that is related to a variable and/or constraints of the
problem. Distributing provides a promising setting for dealing with a wide variety
of real problems that are inherently distributed, including large-scale problems.

The new challenges posed by the scientific community working on distributed
CSPs include constraint management on the resources, exploiting cooperation
opportunities, as well as the design of strategies to solve complex problems.

3.1 The Railway Scheduling Problem as a Distributed CSP

The train scheduling problem can be modeled as a distributed CSP by con-
sidering the scheduling process as a collection of interacting, autonomous and
flexible components (distributed CSPs), which are aimed at representing the
problem among several distributed processes, solving sub-problems incremen-
tally and aggregating sub-problem solutions in order to achieve a global solution
[26]. Therefore, constraints should be distributed among several CSPs. Different
approaches can be applied to distribute the problem.

Approach 1. The first way to distribute the problem can be carried out follow-
ing a general-oriented approach. This approach is based on distributing the CSP
by means of trees so that the resulting sub-CSPs are efficiently solved without
backtracking [27]. The main difficulty of this approach is how to obtaining the
selected trees. To carry out this partition, METIS, a well-known graph parti-
tioning tool [16] can be used. METIS provides two programs, metis and kmetis,
for partitioning an unstructured graph into k equal size parts. However, this
software does not take into account additional information about the railway
infrastructure or the type of trains to guide the partition; therefore, the gen-
erated clusters may not be the most appropriate and the results may not be
appropriate.

Figure 6 shows the distribution carried out by METIS. The red agent is com-
mitted to assigning variables to train 0 and train 1 at the beginning and end
of their respective journeys. The green agent studies these two trains in disjoint
parts of each train. METIS carries out a partition of the constraint network
generated by the corresponding CSP. However, it can be observed visually that
the best partition generated by a well-known software is not the most appropri-
ate for this problem. To improve the partition procedure, we extract additional
information from the railway topology to obtain better partitions as shown in
the following approaches.

Approach 2. Problem-oriented approaches provide the opportunity to refine
the general distributed technique into a domain-dependent distributed model.
One way of distributing the problem following a problem-oriented approach is
to distribute the original railway problem by means of train type. Each agent
is committed to assigning values to variables with respect to a train or trains
in order to minimize the running time. Depending on the number of partitions
selected, each agent will manage one or more trains. Figure 7 left, shows a run-
ning map with 20 partition, where each agent manages one train. This partition
model has two important advantages:
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Fig. 6. Railway Scheduling Problem distributed by METIS (Approach 1)

Fig. 7. Railway Scheduling Problem distributed by trains (left) and by contiguous
stations (right)

– Firstly, this model allows us to improve privacy. Currently, due to the policy
of deregulation in the European railways, trains from different operators
work in the same railway infrastructure. Thus, the partition model gives us
the possibility of partitioning the problem so that each agent is committed to
an operator. Thus, different operators can maintain privacy about strategic
data.

– Secondly, this model allow us to efficiently manage priorities between differ-
ent types of trains (regional trains, high speed trains, freight trains). Thus,
agents committed to priority trains (high speed trains) will first carry out
value assignment to variables in order to achieve better running times [1].

Approach 3. Another model is based on distributing the original railway prob-
lem by means of contiguous stations. Therefore, a logical partition of the railway
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network can be carried out by means of regions (contiguous stations). To carry
out this type of partition, it is important to analyze the railway infrastructure
and detect restricted regions (bottlenecks). An agent can manage many stations
if they are not restricted stations, whereas an agent can manage only a few
stations if they are bottlenecks. Furthermore, the agents with bottleneck have
preferences in assigning values to variables since their domains are reduced (vari-
able ordering).To balance the problem, each agent handles a different number of
stations. The set of stations will be partitioned into sets of contiguous stations,
and a set of agents will be coordinated in order to achieve a global solution. Thus,
it is possible to obtain very useful results such as railway capacity, consistent
timetable, etc.

The performance of the different distributing models should be analyzed using
real-life instances. The main conclusions indicate that general graph partitioning
applications work well in general graphs. However, in the railway scheduling
problem, these softwares do not obtain good results. In the partitions generated
by METIS, the journey of a train is partitioned into several clusters, and each
cluster is composed by tracks for trains going in opposite directions. This cluster
is easy to solve, but it is very difficult to propagate to other agents. Furthermore,
the following partition proposals do the opposite, that is, they never join tracks
of trains going in opposite directions.

3.2 Evaluation

In this section, we present an evaluation between our distributed model and a
centralized model. We also evaluate the behavior of a distributed model gener-
ated by a general software program called METIS and two proposed partition
models. To this end, we have used a well-known CSP solver called Forward
Checking (FC)1.

This empirical evaluation was carried out for two different types of problems:
random problems and benchmark problems.

Random Problems. In our evaluation, each set of random CSPs was defined
by the 3-tuple < n, a, p >, where n was the number of variables, a the arity of
binary constraints, and p the number of partitions. The problems were randomly
generated by modifying these parameters.

Table 1 compares the execution time of the model distributed by METIS
with the centralized model. In Table 1 left, the arity of binary constraints and
the size of the partition were fixed, and the number of variables was increased
from 100 to 500. The table shows that the execution time for small problems
was worse for the distributed model than for the centralized model. However,
when the number of variables increased, the behavior of the distributed problem
improved. In Table 1 right, the number of variables and the arity of binary
constraints were fixed, and the size of the partition was increased from 3 to 20.
The table shows that the size of the partition is important for the distributed
1 Forward Checking was obtained from CON’FLEX. It can be found at: http://www-

bia.inra.fr/T/conflex/ Logiciels/adressesConflex.html
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Table 1. Random instances < n, a, p >, n: variables, a: arity and p: partition size

Problem Distributed Centralized Problem Distributed Centralized
Model (sc.) Model (sc.) Model (sc.) Model (sc.)

< 100, 25, 10 > 12 14 < 200, 25, 3 > 26 75
< 200, 25, 10 > 16 75 < 200, 25, 5 > 19 75
< 300, 25, 10 > 19 140 < 200, 25, 7 > 14 75
< 400, 25, 10 > 30 327 < 200, 25, 9 > 16 75
< 500, 25, 10 > 42 532 < 200, 25, 20 > 22 75

model. For small problems, the number of partitions must be low. However, for
large CSPs (railway Scheduling Problems), the size of the partition must be
higher. In this case, the appropriate number of partitions was 7.

As can be observed, the distributed model using METIS works well for random
instances. However, in real scheduling problems, domain-dependent distributed
models are necessary to optimize execution times.

Benchmark Real-Word Railway Problems. This empirical evaluation was
carried out over a real railway infrastructure that joins two important Spanish
cities (La Coruña and Vigo). The journey between these two cities is currently
divided by 40 stations. In our empirical evaluation, each set of random instances
was defined by the 3-tuple < n, s, f >, where n was the number of periodic trains
in each direction, s the number of stations, and f the frequency. The problems
were randomly generated by modifying these parameters.

General graph partitioning software programs work well in general graphs.
However, in the railway scheduling problem, we did not obtain good results
using these programs. We evaluated partition approach 1 by using METIS in
several instances < n, 20, 120 >. Figure 9 (left) shows that the obtained results
were even worse in the distributed model than in the centralized model. For a low
number of trains, the behavior was better than the complete model. However,
with more than 8 trains, the distributed model was unable to solve the problem
in 1,000,000 seconds, so the program was aborted. We studied the partitions
generated by METIS and we observed that the journey of a train was partitioned
in several clusters, and that each cluster was composed by tracks of trains going
in opposite directions. This cluster was easy to solve, but it was very difficult to
propagate to other agents. In contrast, partition approaches 2 and 3 never join
tracks of trains going in opposite directions.

Figure 8 shows the behavior of partition approach 2, where the number of
partition/agents was equal to the number of trains. In both graphs, it can be
observed that the execution time increased when the number of trains increased
(Figure 8 right) and when the number of stations increased (Figure 8 left).
However, in both graphs, the distributed model maintained better behavior than
the centralized model.

Partition approach 2 (distributed by trains) was similar to partition approach
3 (distributed by stations) but had better behavior, mainly when the number of
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trains increased (see Figure 9 right). However, partition proposal 3 maintained
a uniform behavior.

4 The TTP from a Metaheuristic Approach Based on
Variable Ordering

The problem that was described in Section 2 is NP-hard. Therefore, uninformed
(i.e., non-heuristically guided) search is not appropriate due to the huge search
space and the exponential temporal complexity. Thus, we use an irrevocable
heuristic-driven search. The intermediate states are discarded because keeping
them would be unfeasible in terms of spatial cost.

In this problem, a solution is different from other solutions when the same
conflict is solved in different ways. A conflict exists when a constraint that refer-
ences the timetable of two trains is violated. This conflict usually appears when
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Function Get_Train_Timetabling() As Timetabling

begin

Set_Occupation_Fixed_Trains (TC)

While Not (end cond) do

begin

Topen = Tnew; Tclosed = ∅; prune = FALSE

While( Topen �= ∅ AND prune = FALSE) do

begin

(ti, sj) = Select_Node()

TTABLE = TTABLE + Set_Timetable(ti, sj)

δest = Estimate_Cost(TTABLE)

if(δest ≥ δbest)

then prune = TRUE

elseif(Last_St(ti , sj) then Topen = Topen \ {ti}
end

if(prune = FALSE) then

begin

δ = Evaluate_Timetabling(TTABLE)

if δ < δbest then TTABLEbest = TTABLE; δbest = δ
end

end

return TTABLEbest
end

Fig. 10. An outline of SOBM

two trains simultaneously require the same track. We solve each conflict by de-
laying one of these trains until the conflict disappears by means of crossing or
overtaking operations. Therefore, the problem consists of deciding which of the
two trains must be delayed.

Using a Search Tree to Model the Train Timetabling Problem

We consider the problem as a search tree whose root node represents the empty
timetable (initial in Figure 11a). For each node where no successor is possible,
there is an artificial terminal node (final in Figure 11a). Each intermediate node
is composed by a pair (ti, sj), which indicates that a feasible timetable must be
found for the train ti ∈ Topen in its track section sj . When the timetable of a
train ti is completed, (i.e., procedure Last_St(ti, sj) in Figure 10 is TRUE), this
train is eliminated from the set Topen. Each level of the search tree indicates
which part of the timetable of each train can be generated (see Figure 11a).
Given a node n = (ti, sj) in a given level l; its brothers in l and the node
(ti, sj+1) (if sj is not the last track section of ti) are the successors of the node
n in the next level l + 1.

The problem consists of finding a path in the search tree, from the initial
node to a final node, so that the order of priorities established by this path
produces the minimum average delay. Figure 10 shows the algorithm followed
by the method to produce feasible solutions. If we take Figure 11a into account,
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Fig. 11. A model for the problem and a solution obtained

the procedure Select_Node() decides which node of each level will form part of
the final path. Each iteration of the inner loop in Figure 10 corresponds to one
level in the search tree of Figure 11a. The heuristic that is used by the procedure
Select_Node() is given in the next subsection.

Each time a new node (ti, sj) is chosen, the procedure Set_Timetable(ti, sj)
assigns a feasible timetable to train ti in the track section sj . Then, this pair
(ti, sj) with its corresponding timetable is added to the set TTABLE. Once
TTABLE has been updated with the new pair, an estimated cost is computed
(δest) for the current path. If δest is greater or equal to the best solution found
at the time (δbest in Figure 10), then the current path is pruned (prune=TRUE in
Figure 10), and a new path is started from the initial node. Given that a feasible
timetable was assigned to t from its initial station lt0 until the station ltit

, and
M t

i→nt
is the minimum running time possible for the train t to travel from ltit

until ltnt
, the procedure Estimate_Cost(TTABLE) in Figure 10 computes the

value for δest according to the following expression:

δest =
∑

t∈Tnew
δt
est

|Tnew| where δt
est =

arrt
it
−dept

0+Mt
it→nt

−Γ t
opt

Γ t
opt



162 F. Barber et al.

Heuristic for Choosing a Node for Each Level of the Tree

Here, we detail how the method determines the node that must be chosen at
each level of the tree. Given that a feasible timetable was assigned to t from its
initial station lt0 until the station ltit

, for each level, we measure the partial delay
of each train t ∈ Topen according to the following expression:

δt
partial =

arrt
it

− dept
0 − Γ t

opt

Γ t
opt

. (18)

Given that the minimum partial delay is δmin = mint∈Topen
(δt

partial), the proba-
bility ρt of train t being selected is computed according to the following expres-
sion:

ρt =
(δt

partial − δmin + ε)α∑
t∈Topen

(δt
partial − δmin + ε)α

. (19)

A train is chosen according to the parameterized Regret-Based Biased Random
Sampling (RBRS), [28] and [33], in such a way that the train with higher priority
is not necessarily the train chosen, due to the random component of the RBRS
method. The parameter α determines the deterministic degree of the heuristic,
while the parameter ε determines the selection probability for the train with
minimum delay.

An example of the method is provided in Table 2 where function Select_Node
(Figure 10) has been applied. In this case, 4 trains are the candidates to be
selected (column Trains t). The delay with respect to their minimum running
time is given in column Partial delay, and the probability of selection in the
following columns for α = 2, α = 1, and α = 0, respectively.

Once the probability of selection has been computed, the next step consists
of obtaining a random value between 0 and 1. For each train, its probability of
selection is added until the sum is greater than the random value. When this
condition is satisfied, the last train whose selection probability has been added
is the selected train.

As can be observed in this table, the higher the α value, the more deterministic
the Select_node function. If we consider the example in Table 2, the partial
delay for the trains is the same for all the cases of α; however the gap between
their probability of selection increases as the α value increases. Therefore, it is

Table 2. Example of calculation of selection probabilities

Trains Partial delay ρt ρt ρt

(t) (δt
partial) (α = 2) (α = 1) (α = 0)

1 10 10.152

10.152+1.152+0.152+5.152 = 0.78 0.61 0.25
2 1 0.01 0.067 0.25
3 0 0.0001 0.009 0.25
4 5 0.2 0.31 0.25
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more probable that train t1 be selected when α = 2 than when α = 1. The
other parameter, ε, influences on the selection probability of the train with the
minimum delay. The higher the ε value, the higher the probability of selection
for this train.

4.1 Evaluation

In this subsection: (i) the SOBM and RANDOM approaches are compared with
respect to their objective function cost in a given execution time; (ii) different
combinations for the parameters (α and ε) of SOMB heuristic are evaluated;
and (iii) an example of anytime behavior of SOBM is shown. The Manager of
Railway Infrastructure of Spain (ADIF) provides us with real instances in order
to obtain a realistic evaluation of the proposed heuristic. The algorithm has been
implemented using C++, and the tests have been evaluated on a Pentium IV
3,6 Ghz.

The difference between the SOBM and RANDOM approaches consists in the
way that instantiation of variables is ordered. In the first case, we use the heuris-
tic described in subsection 4; in the second case, the order is determined in a
random way.

In Figure 12.a (columns 2 to 9), we defined a set of test cases by means of the
following: the length of the railway line; number of single/double track sections;
number of stations; number of trains and track sections (TS) corresponding to
trains already in circulation and new trains, respectively. The results correspond-
ing to these test cases are shown in Figure 12.b. This Table presents the best
value of the objective function and the number of feasible solutions that were ob-
tained for each problem (columns 2 and 3 for the RANDOM approach; columns
4 and 5 for the SOBM approach). The execution time was of 300” for all the
problems, and the parameters of the RBRS were set to α=1 and ε=0.05.

Tables 3 and 4 show another group of tests to indicate how the values of pa-
rameters α and ε influence the selections made by the SOBM heuristic.
Table 3 shows the objective function cost for the case when α = {0, 1, 2} and

1 209,1 25 11 22 40 472 53 543

2 129,4 21 0 15 27 302 30 296

3 177,8 37 4 25 11 103 11 146

4 225,8 33 0 23 113 1083 11 152

5 256,1 38 0 28 80 1049 15 235

6 256,1 38 0 28 81 1169 16 159

7 96,7 16 0 13 47 1397 16 180

8 96,7 16 0 13 22 661 40 462

9 298,2 46 0 24 26 330 11 173

10 401,4 37 1 24 0 0 35 499

Problems
Infrastructure Despcription

Km 1-Way 2-Way Stat Trains TS Trains TS

In Circulation New Trains

(a) (b)

1 169 8,6 168 5,9

2 611 10,1 608 10

3 2185 21,1 3101 16

4 311 13,2 445 5,5

5 396 19,3 452 17,5

6 424 14,7 521 14,1

7 267 18 263 15,4

8 67 50,9 85 45,5

9 1112 11,5 1129 8,7

10 405 19,2 397 17,9

Problems
RANDOM

Obj%

SOBM

#of Solutions #of Solutions Obj%

Fig. 12. Results obtained with the SOBM method
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Table 3. Objective Function cost according to the pair < ε, α >

Cases
α = 0 α = 1 α = 2

ε = 0.05 ε = 0.15 ε = 0.30 ε = 0.05 ε = 0.15 ε = 0.30

1 79,15 68,10 71,50 69,50 67,80 71,00 75,50
2 78,69 75,90 67,90 75,90 74,30 70,20 71,50
3 6,2 6,50 6,70 6,50 6,60 6,50 6,80
4 7,76 7,76 7,76 7,76 7,76 7,76 7,76
5 65,6 54,80 57,20 58,00 58,00 51,90 56,00
6 12,6 12,10 13,00 13,00 12,40 12,60 12,80
7 38,8 35,70 35,70 34,40 35,70 34,40 34,40
8 19,1 18,70 19,00 19,10 18,90 19,20 18,70
9 3,6 3,60 3,60 3,60 4,00 4,10 3,60
10 14,5 12,20 13,70 13,20 14,70 13,20 13,80
11 18,9 19,40 18,90 18,80 18,20 18,80 18,20
12 19,1 18,90 17,20 19,60 18,10 18,40 18,20
13 30,7 27,30 25,70 29,50 28,50 28,60 28,00

Prom. 30,37 27,77 27,53 28,37 28,07 27,44 28,10

Table 4. Objective Function cost according to the pair < ε, α >

Cases
α = 3 α = 4

ε = 0.05 ε = 0.15 ε = 0.30 ε = 0.05 ε = 0.15 ε = 0.30

1 65,21 71,60 64,80 71,60 64,20 64,17
2 59,88 71,90 73,10 64,30 64,50 72,91
3 6,55 6,50 6,40 6,70 6,50 6,66
4 7,76 7,76 7,76 7,76 7,76 7,76
5 54,95 52,00 53,60 55,00 52,20 56,34
6 11,84 12,30 11,90 12,80 12,60 12,31
7 34,84 34,50 36,00 36,40 32,90 31,25
8 18,24 19,10 18,00 18,70 19,20 18,27
9 3,62 3,60 4,10 3,60 3,90 4,04
10 13,67 13,60 12,70 14,50 14,40 13,75
11 16,68 19,40 19,40 18,10 17,40 18,96
12 17,53 18,00 19,60 19,50 17,20 17,99
13 25,51 27,30 28,10 27,90 24,50 28,49

Prom. 25,87 27,50 27,34 27,45 25,94 27,15

ε = {0.05, 0.15, 0.3}, and Table 4 shows the objective function cost for the cases
when α = {3, 4} and ε = {0.05, 0.15, 0.3}. Note that when α = 0, the order
instantiation is completely random.

The cost of each test case is determined by the duration of the technical stop
corresponding to each train in Tnew.
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Fig. 14. Objective function cost in function of execution time

The last row of Tables 3 and 4 show the average cost, considering all the test
cases for each combination of < α, ε >.

Each point in Figure 13 represents the average cost obtained with a deter-
mined combination of < α, ε >. All the points in a same line share the same
value of α. If we compare the SOBM approach with the RANDOM approach,
we can conclude that it is better to use the criteria based on RBRS than to
use a completely random criteria, especially when the execution time is limited
and results that tend to the optimality as soon as possible are needed. The
combination α = 3 and ε = 0.05 was the best combination for the test cases.

One of the main properties of SOBM is its anytime behavior. The compu-
tational effort to obtain a satisfactory optimized solution depends on the num-
ber of trains, the railway infrastructure and its capacity (tracks in stations,
single/double-way tracks), the required traffic operations due to the load of the
network, etc. Typically, the computational time required for very complex and
real problems varies between a few seconds and 2-5 minutes. For instance, a
railway timetabling problem that implies the scheduling of 95 new trains, with
37 trains already in circulation (with fixed timetables), on a line of 271.1 Kms,
with 51 single-way track sections can be obtained in less than 60 seconds. This
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scheduling problem implies the solution of 136 crossing conflicts. In this case,
the search space is composed of 8.7 E+40 possible solutions. The maximum op-
timization level obtains higher quality timetables when the computational time
is longer. Figure 14 shows the anytime property of the proposed method: the
longer the execution time, the more optimal the solution. Moreover, it is pos-
sible to interrupt the execution at any time, and a solution will be obtained.
In addition, in the tests performed, it was observed that high quality solutions
were obtained even with short execution times when compared with solutions
obtained with longer execution times.

5 The TTP from a Metaheuristic Approach Based on
Genetic Algorithms

Genetic Algorithms (GAs) have been successfully applied to combinatorial prob-
lems and are able to handle huge search spaces such as those arising in real-life
scheduling problems. GAs perform a multidirectional stochastic search on the
complete search space, and this search is intensified in the most promising areas.

The Train Timetabling Problem (TTP) is a difficult and time-consuming task
in the case of real networks. The huge search space to explore when solving real-
world instances of the TTP problem makes GAs a suitable approach to efficiently
solve it. A feasible train timetable should specify the departure and arrival times
for each train to each location of the network in such a way that the line capacity
and other operational constraints are taken into account. Traditionally, plans
were generated manually and adjusted so that all constraints were met. However,
the new railway framework of strong competition, privatization, and deregulation
along with the increase in computer speed are reasons that justify the need
for automatic tools that are able to efficiently generate feasible and optimized
timetables.

Assuming TTP to be a very complex problem and GA a suitable procedure to
cope with it, we have designed a GA for this train scheduling problem. Once the
problem was formally described, a Genetic Algorithm was designed and validated
through its application on a set of real-world problem instances provided by the
Manager of Railway Infrastructure of Spain (ADIF). In addition, the heuristic
technique described in this work has been embedded in a computer-aided tool
that is being successfully used by ADIF.

Figure 15 shows the general scheme of a generic genetic algorithm. First, the
initial population (P in Figure 15), whose size is POP SIZE, is generated and
evaluated following a scheduling scheme that is described in the subsection Ini-
tial Population. The following steps are repeated until the terminating condition
end cond (execution time, number of feasible solutions or number of genera-
tions) is reached. Some individuals that compose the population P in Figure
15 are modified by applying the procedures Selection(), Crossover(), and
Mutation(). Thus, a new population P is obtained in each generation. Each
iteration of Figure 15 corresponds to a new generation of individuals.
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Function Genetic_Algorithm(POP_SIZE, end_cond) As Timetabling

begin

P =Generate_Initial_Population(POP_SIZE)

While NOT (end_cond) do

begin

P =Selection(P )

P =Crossover(P )

P =Mutation(P )

BEST_L =Evaluate_Population(P )

end

return BEST_L

end

Fig. 15. General Genetic Algorithm

5.1 Definition of Individuals: Solution Encoding

In order to apply a GA to a particular problem, an internal representation for
the solution space is needed. The choice of this component is one of the critical
aspects for the success/failure of the GA for the problem under study. In the
literature, we have found different types of representations for the solution of
different scheduling problems. In this work, we have used an activity list as the
representation of a solution. This solution representation has been widely used in
project scheduling. The solution is encoded as a precedence feasible list of pairs
(t, st

i), that is, if (t, st
x) and (t, st

y) are the jth and kth gene of a chromosome of
the same individual and x < y, then j < k.

The corresponding train schedule is generated by applying a modified version
of the Serial Schedule Generation Scheme used in Project Scheduling [17]. In the
list of pairs, all trains are merged in order to obtain a feasible solution. In our
implementation, the new trains are scheduled following the order established by
the list. Each individual in the population is represented by an array that has
as many positions as there are pairs (t, st

i) in the railway scheduling problem
considered. Figure 16 shows the activity list representation for a problem with
N pairs (t, st

i).
According to this list, (t, st

k) is the ith pair to be scheduled. Considering
that st

k = ltk → ltk+1, the departure time of train t from ltk will be the earliest
feasible time from arrt

k+Ct
k. Note that when applying the de-codification process

),(
0

t
st ),( t

k
st ),( t

n
t

st

i N1

Fig. 16. Activity List Representation
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described in subsection 5.1, one and only one schedule can be deduced from
a given sequence, but different sequences could be transformed into the same
schedule.

Fitness Computation

When applying the GA, we need to define an evaluation function that deter-
mines the probability of survival of an individual to the next generation. In this
chapter, the average deviation with respect to the optimal solution for the train
is returned as the fitness value. In other words, an individual χ will have the
fitness value obtained from the objective function defined in section 2.3.

Initial Population

The GA starts with the generation of an initial population, that is, a set of
POP SIZE feasible solutions. This set of feasible solutions can be obtained with
different scheduling techniques. For the design of a GA, the initial population
should include a variety of medium to good feasible solutions in order to increase
the quality of the best solution in the evolutionary process. In this work, the
value of the POP SIZE is 50. The initial population has been obtained with
an iterative heuristic that is based on random sampling methods and that is
repeated POP SIZE times (Figure 17). N is the total number of track sections
for all trains t ∈ TNS . It is also shown how the activity list is created by selecting
a train (t) and a set of track sections s ∈ Jt for each iteration until all the (N)
track sections have been scheduled for each new train. A solution is obtained
once N iterations have been completed. Each solution gives a scheduling order,
L = (tx, stx

0 ), ..., (tz , stz

j ), ..., (ty , s
ty
nty) , which represents a new individual of the

initial population.
The scheduling method developed implies the search of a path in a tree as

the one shown in Figure 11b. At each decision point, a train with unscheduled
track-sections is selected. This process obtains a feasible timetable with a value
of the fitness function.

The main decision in the procedure Select_Train() is to determine which
train has to be scheduled at each decision point. Even though a random decision
(RANDOM) could be taken by selecting the train to schedule randomly, we
have applied a Regret-Based Biased Random Sampling (RBRS) procedure that
makes the selection of a train dependent on its deviation with respect to the
optimal solution (optimal running time of the train calculated as indicated in
Section 2.3). This approach guides the scheduling process in order to obtain
better solutions.

The Parameterized Regret-Based Biased Random Sampling (RBRS) selects
trains of TNS through a random device. The use of a random device can be
considered as a mapping ψ : i ∈ TNS → [0..1] where a probability ψ(i) of being
selected (with

∑
i∈TNS

ψ(i) = 1) is assigned to each t ∈ TNS. The regret value (ρi)
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Function Generate_Initial_Population(POP_SIZE) As Population

begin

ref =Get_Low_Bound_Opt_Sol()

i =0

P =""

While (i <POP_SIZE)

begin

L = "" //L is a new list of chromosomes

j =0

While (j <N)

begin

t =Select_Train() //using the RBRS method

s =Select_Track_Section(t )

d =Get_Departure(t ,s)

Set_Timetable((t ,s ),d )

L =L +(t ,s ) //(t ,s ) is inserted in L

j =j +1

end

Set_Fitness_To_Individual(L , ref )

P =P +L

i=i+1

end

return P

end

Fig. 17. Procedure to obtain the Initial Population

for each train i ∈ TNS compares the priority value of train i −ν(i)− with the
worst priority value ν(j) of the trains of TNS and is calculated as follows:

ρi : max
j∈TNS

(νj) − (νi) (20)

Therefore, the parameterized probability mapping ψ(i) is calculated as:

ψ(i) :
(ρj + ε)α∑

j∈TNS

(ρj + ε)α
(21)

This parameterized Regret-Based Biased Random Sampling has been widely and
successfully used in project scheduling (Schirmer and Riesenberg [28], Tormos
and Lova [33]). The priority value of each train is calculated according to its
current delay with respect to the scheduled timetable. Trains with higher delays
have more probabilities of being selected. We have implemented the procedure
Generate_Initial_Population() using the RBRS method to select the next
train to be scheduled, with α = 1 and ε = 0.5.
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Function Random_Crossover_Point()

begin

//Draw a random integer k , with 1<= k <= N

//k is the random crossover-point

//Generation of the daughter

for i=1 to k do

Di = Mi

for i=k+1 to N do

begin

I = lowest index 1<= I<= N and Fi not in {D1, ..., D(i-1)}
Di = Fi

end

//Generation of the son

........

end

Fig. 18. Crossover Procedure

Crossover

One of the unique and important aspects of the techniques involving Genetic
Algorithms is the important role that recombination (traditionally, in the form
of crossover operator) plays. Crossover combines the features of two parent chro-
mosomes to form two offspring that inherit their characteristics. The individuals
of the population are mated randomly and each pair undergoes the crossover
operation with a probability of Pcross, producing two children by crossover. The
parent population is replaced by the offspring population. The crossover is one of
the most important genetic operators and must be correctly designed. Crossover
must combine solutions to produce new ones. Crossover must preserve and com-
bine ”good building blocks” to build better individuals [12]. Given two individ-
uals selected for crossover, a mother M, a father F, two offspring (a daughter D
and a son S) are produced.

We have implemented the well-known one point crossover with Pcross = 0.8.
First we draw a random crossover-point k, with k between 1 and N (number
of Train-Track Sections in the problem). The first k positions in D are directly
taken from M, in the same order. The rest of the activities in D are taken with
their relative order in the father’s sequence. In this way, the solution generated,
the daughter, is a precedence feasible solution. Obviously, the generation of S is
similar to the daughter’s but S inherits the first positions directly from F, and
the rest of the Train-Track Sections from M. The pseudocode for this crossover
technique is shown in Figure 18.
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Mutation

Once the crossover operator has been applied and the offspring population has
replaced the parent population, the mutation operator is applied to the offspring
population. Mutation alters one or more genes (positions) of a selected chromo-
some (solution) to reintroduce lost genetic material and introduce some extra
variability into the population.

The mutation operator that we have implemented works as follows: for each
pair (t, st

i) in the sequence, a new position is randomly chosen. In order to gen-
erate only precedence feasible solutions, this new position must be higher than
its predecessor and lower than its successor. The chromosome is inserted in the
new position with a probability Pmut. In our implementation, Pmut =0.05.

Selection

Selection is an artificial version of the natural phenomenon called the survival
of the fittest. In nature, competition among individuals for scarce resources and
for mates results in the fittest individuals dominating over weaker ones. Based
on their relative quality or rank, individuals receive a number of copies. A fitter
individual receives a higher number of offspring and, therefore, has a higher
probability of surviving in the subsequent generation. There are several ways of
implementing the selection mechanism.

We have implemented 2-tournament selection. This selection mechanism im-
plies that two individuals are randomly chosen from the population and compete
for survival. The best one (the one with the best fitness value) will appear in
the subsequent population. This procedure is repeated POP SIZE times until
POP SIZE individuals are selected to appear in the next population.

Decodification Process

In this subsection, we detail the procedure Evaluate_Population() of
Figure 15. This procedure receives a population P from which it should ob-
tain POP SIZE solutions. Each solution will be evaluated according to the ob-
jective function that is defined in Section 2.3 (Set_Fitness_Individual() in
Figure 19).

For each pair p = (t, st
i) ∈ L, a departure time is computed by means of the

function Get_Departure(), which returns d = arrt
i + Ct

i if i > 0, otherwise
d = m such that m is the initial departure time given by the user.

Considering that st
i starts at station lti and ends at station lti+1, the procedure

Set_Timetable() assigns a possible departure and arrival time to train t in
each location between lti and lti+1, according to the running time (Δt

i→(i+1))
defined for this train from lti to lti+1. The next step consists of verifying whether
all the constraints defined in 2.2 are satisfied by the timetable given for t in
st

i. If any constraint is not satisfied, the departure time in lti is increased until
that constraint is satisfied. This increment in the departure time in lti causes
a technical stop of the train t at this station. A backtracking may occur if the
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Procedure Evaluate_Population(P )

begin

i =0

While(i <|P |) do

begin

L =Get_Individual(i ,P )

k =0

while(k <|L |)

begin

p =Get_Chromosome(L ,k )

d =Get_Departure(p )

Set_Timetable(p ,d )

k =k +1

end

i =i +1

Set_Fitness_Individual(L )

end

end

Fig. 19. Decodification Process

station is closed for technical operations or if the station does not have enough
tracks.

Once a feasible timetable has been found in this track section for train t, the
same procedure is repeated with the next chromosome (t′, st′

k ).
The priority of the trains in each track section, that is, which train should

be delayed if a conflict appears, is determined by the order in which each gene
is numbered in the activity list. When a conflict occurs between two trains in
the same track section, the priority is for the train whose timetable in this track
section was assigned first. Since different individuals define different priorities
among the trains, different solutions may be obtained.

The parameter setting of the proposed GA results from previous computa-
tional experiments.

5.2 Evaluation

The performance of the developed GA has been tested using a set of real-world
problems provided by the Manager of Railway Infrastructure of Spain (ADIF).
The description of the instances is given in Table 1 (columns 2 to 10) by means of
the following: length of the railway line, number of single/double track sections,
number of locations and stations, number of trains and track sections (T-ts)
corresponding to trains in circulation and new trains, respectively.

Each problem has been solved by using the two constructive methods used to
generate the Initial Population that differs in the criterion to select the trains:
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Table 5. Real railway problem instances provided by ADIF

Problems
Infrastructure Description Trains in Circulation New Trains
Km 1-Way 2-Way Loc Stat Trains T-ts Trains T-ts

1 96 16 0 13 13 47 1397 16 180
2 129 21 0 22 15 27 302 30 296
3 256 38 0 39 28 81 1169 16 159
4 401 37 1 39 24 0 0 35 499

Table 6. Results of the RANDOM, RBRS and the GA scheduling methods

Problems RANDOM RBRS GA
# of Solutions ADOS # of Solutions ADOS # of Solutions ADOS

1 267 18 263 15.4 255 15.1
2 611 10.1 608 10.0 313 9.6
3 424 14.7 521 14.1 382 12.4
4 405 19.2 397 17.9 285 16.0

– Random selection of each train to be scheduled in each iteration (RAN-
DOM).

– Selection of each train using the Parameterized Regret Biased Based Random
Sampling method (RBRS).

– The results obtained by means of these constructive methods are compared
against those achieved by the GA with the same computational time.

Table 6 summarizes the results for each solving method with respect to the
number of solutions generated and the Average Deviation with respect to the
Optimal Solution (ADOS). The tests have been carried out on a Pentium IV 3.6
Ghz processor, and the execution time was of 300 seconds for all the problems.
α = 1 and ε = 0.5. The different number of solutions generated (depending on
the method used) is mainly due to the fact that when the RANDOM and RBRS
approaches are used, a prune procedure is applied. That is, when a partial sched-
ule produces a value of the objective function that is worse than the best value
obtained at the time, the current iteration is interrupted and the construction of
a new one starts. However with the GA approach, the prune is not possible be-
cause each iteration must be completed to obtain a fitness value for the solution.
This fitness value is necessary to obtain the next generation of individuals.

The results shown in Table 6 indicate that the GA proposed outperforms both
the RANDOM and RBRS methods for all the problem instances considered.
These results demonstrate the efficiency of the GA to solve Railway Scheduling
problems over other constructive algorithms and also support the idea of devel-
oping more sophisticated and powerful GAs to solve complex problems such as
the Train Timetabling Problem.



174 F. Barber et al.

6 A Topological Heuristic Approach for Periodic
Timetabling

In the previous sections, we have presented general purpose metaheuristics and
constraint-based techniques for solving railway timetabling. In this section, we
focus our attention on a simplified problem: the periodic timetabling on single
track lines, where each trip is operated in a periodic way.

As was pointed out above, the majority of authors use models that are based
on the Periodic Event Scheduling Problem (PESP) introduced by Serafini and
Ukovich ([29]). The PESP considers the problem of scheduling as a set of pe-
riodically recurring events under periodic time-window constraints. The model
generates disjunctive constraints that may cause the exponential growth of the
computational complexity of the problem depending on its size.

An alternative method was presented in [25]. Salido et al. propose a topologi-
cal constraint optimization technique for solving periodic train scheduling. This
technique has been inserted in the system [4] and is committed to solving the
cyclic timetabling problem in order to obtain timetables that are as good and
feasible as possible.

In this method, the railway timetabling problem is formulated as a Con-
straint Optimization Problem (COP). The variables are the frequencies, arrival
and departure times of trains at stations. Constraints are composed by user
requirements and intrinsical constraints (railway infrastructures, rules for traf-
fic coordination, etc.). The objective function is to minimize the running time
of all trains. The problem formulation is (traditionally) translated into a for-
mal mathematical model to be solved for optimality by means of mixed integer
programming techniques. In this framework, the formal mathematical model is
partitioned in two different subproblems: an integer programming problem com-
posed by the constraints with integer variables, and a linearized problem in which
there are now continuous variables remaining to be assigned. The most restricted
constraints are considered to be composed of integer variables. In this way, the
system studies the integer programming problem first, and then it solves the
linearized problem. The integer programming problem will be partitioned into
a set of subproblems so that the solution of each subproblem will generate a
traffic pattern. Each block of the partition is composed by contiguous stations,
so each traffic pattern represents the running map corresponding to each block
of constraints.

The objective is to solve this problem by previously assigning values to integer
variables so that the mixed-integer programming problem is transformed into a
linear programming problem. Then, the linearized problem is easily solved. Thus,
the topological constraint optimization technique is committed to assigning val-
ues to integer variables.

The topological constraint optimization technique generates the traffic pat-
terns based on several features such as identification of bottlenecks, periodicity of
running maps, number of stations, distance among stations, possible wide-paths
for trains, etc.
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Fig. 20. First traffic pattern generation

The main idea of this technique is to generate a traffic pattern for each set
of stations so that the union of these contiguous traffic patterns determines the
journey of each train. Figure 20 shows a possible set of stations (block).

The block of stations will be selected taking into account the speed of the
trains, the distance between stations and the frequency inserted into the problem.
Each traffic pattern covers the block of stations necessary for a train to go
from the first station of the block to the last station of the block and return
from the last station to the first one (round trip). This round trip must arrive
to the first station (St.1) as close as possible but always before the following
train’s departure (Train 2). Thus, our objective is to minimize the time remaining
between the frequency and the round trips. Each possible round trip will involve
a different set of constraints. The round trip that minimizes the remaining time
will be selected as the pattern. This traffic pattern will be composed by a higher
number of stations than the rest of the possible round trips.

Once the first traffic pattern has been generated, we study the following pat-
tern with the remaining stations. Figure 21 shows the generation of the second
pattern using the same strategy.

Therefore, when the second traffic pattern is generated, the topological tech-
nique studies the next traffic pattern until there is no station left. Figure 22
shows an example of a running map with three complete traffic patterns and
some stations without traffic patterns (it is common for some stations to not be
involved in any traffic pattern). These stations are not involved in any traffic
pattern. We must take into account that the best traffic pattern in a block of
stations implies starting the following block of stations in the last station of the
previous block. We must check all traffic patterns together in order to obtain the
journey. Moreover, the first combination of traffic patterns may not be the best
solution due to the existence of certain combinations of traffic patterns. This
first combination depends on the number of stations that are not involved in a
traffic pattern. Thus, we explore all possible combinations in order to obtain the
best set of traffic patterns.
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Figure 22 shows an example in which three stations are not involved in any
traffic pattern. Therefore, some combinations are possible, and they are re-
stricted to the set of stations involved in the first traffic pattern. These three
stations can be sorted between the first and the last traffic pattern. The first
traffic pattern may start at the second or third station and the last traffic pat-
tern may finish in the penultimate or the third to the last station. However,
due to efficient use of resources, or depending on the importance of the station,
it is more appropriate for the first traffic pattern (last traffic pattern) to start
(finishes) at the first (last) station.

This heuristic technique has been inserted in the system used by the Manager
of Railway Infrastructure of Spain [4]. The topological method just described
has been tested on different problem sets. The random generated instances are
defined over a real railway infrastructure with single track sections. Each set
of random instances was defined by the 3-tuple < n, s, f >, where n was the
number of trains in each direction, s the number of stations/halts and f the
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frequency. The number of trains was increased from 5 to 50, the number of
stations was increased from 10 to 60 and the frequency was increased from 60 to
140 minutes. In conclusion, the execution times were lower using the topological
technique than other standard optimization tools such as CPLEX. Furthermore,
the topological technique was independent of the number of trains due to the
fact that it first generates the corresponding traffic patterns and then replicates
these patterns according to the number of trains.

6.1 Evaluation

The application and performance of this system depends on several factors:
Railway topology (locations, distances, tracks, etc.), number and type of trains
(speeds, starting and stopping times, etc.), frequency ranges, initial departure
interval times, etc.

In this section, we compare the performance of our topological technique
with some well-known tools: LINGO, which is an Operational Research tool,
and ILOG Concert Technology (CPLEX 8.0), which combines techniques of
constraint programming and mathematical programming. Both are appropri-
ate tools for solving these types of problems. However, in order to significantly
reduce the size of these problems, the system carried out important preprocess-
ing heuristics [3] before executing these well-known tools. Therefore, CPLEX
and LINGO were combined with some heuristics, and they obtained the optimal
solutions for their relaxed problems.

This empirical evaluation was carried out integrating two different types of
problems: benchmark (real) problems and random problems. The computer used
in our tests was a Pentium IV 2.8Mz with 512 Mb. of memory. Thus, we defined
random instances over a real railway infrastructure that joins two important
Spanish cities (La Coruña and Vigo). The journey between these two cities
consists of 40 locations (23 stations and 17 halts).

In our empirical evaluation, each set of random instances was defined by
the 3-tuple < n, s, f >, where n was the number of trains in each direction, s
the number of stations/halts and f the frequency. The problems were randomly
generated by modifying these parameters. Thus, each of the tables shown sets two
of the parameters and varies the other one in order to evaluate the performance
of the algorithm when this parameter increases.

In Table 7, we present the execution time in seconds and the running time
for problems where the number of trains was increased from 5 to 50 and the
number of stations/halts and the frequency were set at 40 and 90, respectively
(< n, 40, 90 >). The results show that CPLEX obtained a better execution time
and a better running time than LINGO. However, it can be observed that the
execution time is lower using the topological technique than the other two COP
tools. Furthermore, our technique always obtained the same running time (lower
than CPLEX and LINGO) due to the fact that it generates the corresponding
traffic patterns and is independent of the number of trains.

Table 8 shows the execution time in seconds and the running time in problems
where the number of stations was increased from 10 to 60 and the number of
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Table 7. Execution time (sec.) and running time in problems with different trains

< n, 40, 90 > CPLEX+heuristics LINGO+heuristics TOPOLOGICAL
Trains runtime running time runtime running time runtime running time

5 5” 2:29:33 8” 2:30:54 3” 2:22:08
10 8” 2:26:04 17” 2:31:37 4” 2:22:08
15 13” 2:26:18 24” 2:31:51 5” 2:22:08
20 16” 2:26:25 35” 2:31:58 5” 2:22:08
50 55” 2:31:09 1302” 2:32:11 10” 2:22:08

Table 8. Execution time (sec.) and running time in problems with different numbers
of stations

< 10, s, 90 > CPLEX+heuristics LINGO+heuristics TOPOLOGICAL
Stations runtime running time runtime running time runtime running time

10 2” 0:58:36 4” 0:58:06 1” 0:57:36
20 3” 1:04:11 20” 1:04:11 2” 1:04:11
30 15” 1:45:08 42” 1:45:38 4” 1:45:08
40 56” 2:23:16 28” 2:24:36 7” 2:20:22
60 340” 3:44:28 326” 3:44:22 40” 3:32:15

Table 9. Execution time (sec.) and running time in problems with different frequencies

< 20, 40, f > CPLEX+heuristics LINGO+heuristics TOPOLOGICAL
Frequency runtime running time runtime running time runtime running time

60 > 43200” - > 43200” - 36” 2:32:11
90 17” 2:26:25 32” 2:31:58 5” 2:22:08
100 18” 2:23:10 34” 2:22:55 3” 2:19:09
120 16” 2:16:17 27” 2:18:47 4” 2:16:00
140 17” 2:20:18 27” 2:16:19 4” 2:17:03

trains and the frequency were set at 10 and 90, respectively (< 10, s, 90 >). In
this case, only stations were included to analyze the behavior of the techniques.
It can be observed that the execution time was lower using our technique in all
instances. The running time was also improved using our topological technique.
It is important to note the difference between the instance < 10, 40, 90 > of
Table 7 and the instance < 10, 40, 90 > of Table 8. These tuples represent the
same instance, but in Table 8 we only used stations (no halts), so the number of
possible crossing between trains was much more larger. This item reduced the
running time from 2:22:08 to 2:20:22, but the number of combinations increased
the execution time from 4” to 7”. Furthermore, CPLEX and LINGO maintained
similar behaviors.

In Table 9, we present the execution time in seconds and the running time
in problems where the frequency was increased from 60 to 140 and the number
of trains and stations were set at 20 and 40, respectively (< 20, 40, f >). It can
be observed that the topological technique improved the running time when the
frequency increased. As in previous results, the execution time of the topological
technique was lower than CPLEX and LINGO.
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7 Conclusions

Optimizing a train schedule on a single line track is known to be NP-Hard.
This makes it difficult to determine optimum solutions to real-life problems in
reasonable time and raises the need for good heuristic techniques. The Train
Timetabling Problem considered in this work implies the optimization of new
heterogeneous trains on a railway single-line that may or may not be occupied
(or not) by other trains with fixed timetables.

In this chapter, we have presented several approaches to manage this prob-
lem. The first one is based on distributed constraint satisfaction techniques. We
model the TTP as a distributed CSP. Several approaches have been developed
to distribute the problem into a set of sub-problems that are as independent
as possible. The second approach uses meta-heuristic models based on variable
ordering. It is a constructive grasp-based approach that obtains optimized so-
lutions with very low computational times. The third approach is based on the
application of Genetic Algorithms for TTP. Finally, a topological constraint op-
timization technique is presented. This technique is committed to solving the
cyclic timetabling problem in order to obtain timetables that are as good and
feasible as possible.

All of these heuristics methods are embedded in a computer-aided tool called
MOM (http://www.dsic.upv.es/grupos/gps/MOM/) which is currently being
successfully used by the Manager of Railway Infrastructure of Spain (ADIF). The
results obtained by these methods for solving real-world timetabling problems
allow us to justify their utility and application in solving real-world instances.
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Abstract. We present an extension of the well-known time-expanded
approach for timetable information. By remodeling unimportant sta-
tions, we are able to obtain faster query times with less space consump-
tion than the original model. Moreover, we show that our extensions
harmonize well with speed-up techniques whose adaption to timetable
networks is more challenging than one might expect.

1 Introduction

During the last years, many speed-up techniques for computing a shortest path
between a given source s and target t have been developed. The main motivation
is that computing shortest paths in graphs is used in many real-world applica-
tions like route planning in road networks or timetable information for railways.
Although Dijkstra’s algorithm [6] can solve this problem, it is far too slow to
be used on huge datasets. Thus, several speed-up techniques have been devel-
oped (see [5] for an overview) yielding faster query times for typical instances.
However, recent research focused on developing speed-up techniques for road
networks, while only few work has been done on adapting techniques to graphs
deriving from timetable information systems. In general, two approaches exist
for modeling timetable information: The time-dependent and time-expanded ap-
proach. While the former yields smaller inputs (and hence, smaller query times),
the latter allows a more flexible modeling of additional constraints. It turns out
that adaption of speed-up techniques to each of these models is more challenging
than one might expect.

In this work, we use a different approach for obtaining faster query times.
Instead of applying a routing algorithm, e.g., plain Dijkstra, on the original
model, we improve the time-expanded model itself in such a way that a routing
algorithm does not exploit parts of the graph not necessary for solving the ear-
liest arrival problem (EAP). Interestingly, it turns out that those optimizations
are included in the time-dependent approach implicitely. By introducing those
techniques to the time-expanded approach, query times for the time-expanded
approach are comparable to the time-dependent approach.
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1.1 Related Work

The simple, i.e., without realistic transfers, time-expanded model has been in-
troduced in [22]. The model has been generalized in [19] in order to deal with
realistic transfers. Since then, this realistic model has been used for many ex-
perimental studies, e.g., [2, 15, 20]; most of them focusing on faster speed-up
techniques or multi-criteria optimization for timetable information. However,
[22] enriched the simple time-expanded graph by shortcuts and [20] introduced
minor changes to the time-expanded model itself by removing unnecessary nodes
with outgoing degree 1.

1.2 Our Contributions

This paper is organized as follows. Section 2 includes formal definitions and a
review of the time-expanded model for timetable information. Our main con-
tribution is Section 3. We show how the main ingredient for high-performance
speed-up techniques in road networks, i.e., contraction, can be adapted to time-
expanded graphs. Unfortunately, it turned out that this contraction yields a
tremendous growth in number of edges (unlike in road networks). However, by
changing the modeling of unimportant stations, a Dijkstra does not exploit
unnecessary parts of the network. The key observation is the following. Assume
T is a station with only one line stopping. A passenger traveling via T only
leaves the train if T is her target station, otherwise it never pays off to leave the
train. Moreover, we are able to generalize this approach to stations with more
lines stopping at that station. In Section 4 we introduce a new speed-up tech-
nique tailored to time-expanded graphs based on blocking certain connections.
Furthermore, we show how existing techniques have to be adapted to timetable
graphs. It turns out that certain pitfalls exist that one might not expect. How-
ever, those adapted techniques harmonize well with our new approaches, which
we confirm by an experimental evaluation in Section 5. We conclude our work
in Section 6 with a summary and future work.

A preliminary version of this paper has been published in [4]. Besides some
minor improvements, we here provide detailed proofs of correctness.

2 Preliminaries

Throughout the whole work, we restrict ourselves to the earliest arrival problem
(EAP), i.e., find a connection in a timetable network with lowest travel time. In
the following we often call this single-criteria search in contrast to multi-criteria
search that also minimizes number of transfers and further criteria [15, 20].
Moreover, we restrict ourselves to periodic timetables with a time-period of 1440
minutes (one day).

Moreover, we restrict ourselves to simple, directed graphs G = (V, E, length)
with positive length function length : E → �

+. The reverse graph G = (V, E) is
the graph obtained from G by substituting each (u, v) ∈ E by (v, u). A partition
of V is a family P = {P0, P1, . . . , Pk} of sets Pi ⊆ V such that each node v ∈ V
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is contained in exactly one set Pi. An element of a partition is called a cell. The
boundary nodes BP of a cell P are all nodes u ∈ P for which at least one node
v ∈ V \ P exists such that (v, u) ∈ E or (u, v) ∈ E.

The Condensed Model is a basic representation of the network structure.
Here, a node is introduced for each station and an edge is inserted iff a di-
rect connection between two stations exists. The edge weight is set to be the
minimum travel time over all possible connections between these two stations.
Unfortunately, several drawbacks exist regarding timetable information. First
of all, this model does not incorporate the actual departure time from a given
station. Even worse, travel times highly depend on the time of the day and the
time needed for changing trains is also not covered by this approach. As a result,
the calculated travel time between two arbitrary stations in such a graph is only
a lower bound of the real travel time. However, in Section 4 we show that the
condensed model is helpful for certain speed-up techniques.

The (Realistic) Time-Expanded Model. Throughout this work, we use
the realistic time-expanded model allowing realistic queries. Therefore, three
types of nodes are used to represent certain events in the timetable. Departure
and arrival nodes are used to model elementary connections in the timetable.
Thus, for each elementary connection c ∈ C one arrival and departure node
is created and an edge is inserted between them. To model transfers, transfer
nodes are introduced. For each departure event one transfer node is created
which connects to the respective departure node having weight 0. To ensure a
minimum transfer time transfer(S) at a specific station S, an edge from each
arrival node u is inserted to the smallest (considering time) transfer node v where
Δ(time(u),time(v)) ≥ transfer(S). Here Δ(·, ·) denotes the time difference
between two points in time and time : V → T maps each node to its timestamp
with respect to the timetable. Due to the periodic nature of our timetables Δ is
defined by

Δ(t1, t2) :=
{

t2 − t1 if t2 ≥ t1,
t2 + 1440 − t1 otherwise.

To ensure the possibility to stay in the same train when passing through a sta-
tion, an additional edge is created which connects the arrival node with the ap-
propriate departure node belonging to this same train. Further to allow transfers
to an arbitrary train, transfer nodes are ordered non-decreasingly. Two adjacent
nodes (w.r.t. the order) are connected by an edge from the smaller to the bigger
node. Furthermore, to allow transfers over midnight, an overnight-edge from the
biggest to the smallest node is created. For further details, see [20].

For each edge e = (u, v) in the expanded graph the weight w(e) is defined as
the time difference Δ(time(u),time(v)) of the nodes the edge connects. Hence,
we call the graph consistent in time, meaning for each path from u to v in the
graph, the sum of the edge weights along the paths is equal to the time difference
Δ(time(u),time(v)).

For future considerations the following notation will be helpful. Let ≺ ⊆ V ×V
be a relation which compares two events in time. Since in the expanded model
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nodes correspond to events with a certain timestamp, our relation is defined on
the set of nodes of the graph. We say for two nodes u, v ∈ V that u ≺ v if
the event of u is happening before the event of v. Please note that it cannot
be determined for u and v whether u ≺ v just by comparing time(u) and
time(v) due to the periodic nature of the timetable and the fact that times are
always expressed in minutes after midnight. If for example time(u) = 400 and
time(v) = 600 there are two possibilities. Either u ≺ v with Δ(u, v) = 200 or
v ≺ u with Δ(v, u) = 1640. As a consequence, the Δ function applied to a tuple
(u, v) is only valid if u ≺ v.

3 Engineering the Time-Expanded Model

In this section, we present approaches how to enhance the classic time-expanded
model. Our first attempt applies a technique deriving from road networks, i.e.,
contraction, to railway graphs. However, it turns out that this approach yields
a too high number of edges. Hence, we also introduce the Route-Model which
changes the modeling of “unimportant” stations.

3.1 Basic Contraction

All speed-up techniques developed during the last years have one thing in com-
mon. During preprocessing they apply a contraction routine, i.e., a process that
removes unimportant nodes from the graph and adds shortcuts to the graph to
keep the distances between the remaining nodes correct. Interestingly, the fastest
hierarchical technique for routing in road networks, Contraction Hierarchies [7],
relies only on such a routine. The key observation is that in road networks, the
average degree of remaining nodes does not explode.

At a glance, one could be optimistic that contraction also works well in railway
networks. Like in road networks, some nodes in time-expanded graphs are more
important than others. However, contraction does not exploit the special struc-
ture of time-expanded timetable graphs. For example, departure nodes have an
outgoing degree of 1. Thus, we can safely remove such nodes and add a shortcut
between the corresponding transfer and arrival node. More precisely, we propose
a new contraction routine consisting of three steps. In the following we explain
each step separately.

Omitting Departure Nodes. The first step of our contraction routing by-
passes all departure nodes. In [20], the authors state that departure nodes
can be omitted in time-expanded graphs which can be interpreted as bypass-
ing those nodes.

Omitting Arrival Nodes. In a second step, we bypass all arrival nodes within
the network. As a consequence, the degree of transfer nodes highly increases.
By these two steps we reduce the number of nodes by approximately a factor
of 3. However, the graph still contains all original transfer nodes of which
some are more important than others.
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Bypass Transfer Nodes. The final step of our contraction bypasses nodes
according to their degree. We bypass nodes with low degree first yielding
changes in the degree of its neighbors. Our contraction ends if all transfer
nodes have a total degree at least of δ, which is a tuning parameter. We
suggest to use a min-heap to determine the next node to be bypassed. The
key of a node x shall be degin(x) + degout(x).

Note that we need not apply all three steps. While the first step reduces both
number of nodes and edges, the following two steps yield higher edge counts.
In the following, we call a time-expanded model with shortcut departure nodes,
the phase 1 model. The phase 2 model has neither arrival nor departure nodes.
If we also remove (some) transfer nodes, we call the resulting graph a phase 3
graph. For an experimental evaluation of this contraction routine, see Section 5.

3.2 Route-Model

In our experimental studies, it turned out that our contraction routine from
the last section suffers from a dramatic growth in number of edges. Already
our phase 2 model has up to 3.6 times more edges than the original graph (cf.
Section 5). Hence, we here introduce a different approach, called the route model.
In contrast to contraction, we exploit certain semantic properties of the time
expanded graph regarding transferring which eventually leads to a reduction of
the number of shortest paths. The classic time-expanded model allows transfers
at a station from each arriving train to all subsequent departing trains. However,
when planning an itinerary by hand, we would probably do the following intuitive
pruning: During the way from the source to the target station assume we find
a route which leads to some station S on the way, arriving there at time tS .
Then, we would not need to examine paths toward station S with an arrival
time t′S > tS , since computing these paths is redundant as we already arrived at
S earlier, and we could achieve the same result by taking the earlier computed
path arriving at S at tS and then waiting at S until t′S . This observation is the
basic idea behind the route model.

Remodeling of Stations. The modifications to the (original realistic) time-expan-
ded graph are done locally and independently for each station S, and involve
the following three steps:

1. Remove all outgoing edges from all arrival nodes. This includes edges to
transfer nodes as well as edges to the departure node of the same train.

2. Insert a minimal number of new transfer-edges directly from the arrival
nodes to departure nodes. This allows us to model transfers more specifically
without losing any optimal shortest paths in comparison to the original time
expanded model.

3. Keep the transfer nodes and their interconnecting edges as well as departure-
edges from transfer to departure nodes.

Although, there are no more edges in the graph to get from an arrival
node to a transfer node, the transfer nodes are still used as source nodes for
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the actual Dijkstra query. A possible alternative approach would be to use
a set of departure nodes as source nodes. However, in this case these sets
have to be either precomputed (which again consumes space) or computed
during the query (which yields a penalty regarding query time). Thus, we
decide on using the existing transfer nodes as source nodes.

The only non-trivial modification is the second one, where for each arrival node
we need to find a minimal set of departure nodes which shall become reachable
from the particular arrival node. For that reason let S be the currently consid-
ered station and NS all neighbors of S. A station T ∈ NS is called a neighbor of
S if at least one elementary connection from S to T exists. Thus, we can speak
of routes between S and each neighbor from NS . We now use the following no-
tation. u denotes an arbitrary but fixed arrival node of S from which outgoing
edges are inserted. v denotes the departure node toward which the edges (u, v)
are inserted. Furthermore, w denotes the arrival node corresponding to the el-
ementary connection to which the departure node v belongs. The basic idea is
to insert (at least) one edge per route toward a departure node belonging to
the particular route. So, let us consider some fixed station T ∈ NS with T �= R
where R is the station where we just came from through u. Of all departure
nodes v belonging to an elementary connection (v, w) from S to T we insert an
edge (u, v) in S according to the following criteria.

1. The node w is the smallest (regarding time) possible (meaning it is not in
violation with the second criterion) arrival node at T that is after u, i.e.
w � u.

2. The node v respects the transfer time criterion at S. For that reason it has
to hold that v � u + transfer(S) if u and v belong to different trains, or
v � u if they share the same train.

Obviously, by this strategy we select the edge (u, v) according to the earliest
possible arrival event at the target station T . This yields a transfer to a train
which arrives at T by the earliest possible time. Note that if we instead would
have chosen v according to the earliest possible departure node at S, we could
have missed a different train that departs at S later, but arrives at T earlier. Such
a scenario is called overtaking of trains. Also note, that if the train belonging to
u utilizes the route toward station T , it does not necessarily have to be the case,
that the inserted edge (u, v) corresponds to the departure event of that specific
train. It simply corresponds to the train arriving at T first, which may well be
a different train.

Transfer Times at Neighboring Stations. While we did respect the transfer time
criterion of S, we also have to respect the transfer time criterion at T . Figure 1
shows why this is important.

On the left side the train Z2 is required for the optimal path. However, Z2 is
arriving at T just slightly after Z1 and it can not be transferred to, because at S
only an edge toward Z1 is inserted and at T the transfer time is too big to reach
Z2 from Z1. On the right picture the scenario is even worse. While the train
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Fig. 1. Two problems concerning the transfer time criterion at station T

Z1 is the earliest train regarding the arrival time at T , the optimal route again
contains Z2 which departs at S earlier than Z2, but it is not reachable because
it arrives at T slightly after Z1. Again the transfer time at T is too big to enter
Z2 at T . In both cases we have to ensure that Z2 can be entered somewhere.
Since our modifications should remain local in the sense that modifications at S
should not involve modifications at some other stations, we ensure that Z2 can
be reached at S.

By adding some more edges to the graph, we are able to allow those con-
nections as well. Let wearl denote the earliest arrival node at T as computed
before. Then, we insert edges (u, v) (belonging to connections (v, w)) satisfying
the following properties.

1. Consider all trains arriving after wearl but no later than the transfer time at
T , meaning w � wearl and w ≺ wearl + transfer(T ).

2. Still respect the transfer time criterion at S, i.e. v � u + transfer(S) if u
and v belong to different trains and v � u otherwise.

This routine ensures that (a) it is possible to arrive at T as early as possible and
(b) all trains that go through T within the margin between the earliest arrival
time and the transfer time at T can be reached by entering them at S.

Uncommon Routes. Despite these modifications, we additionally have to deal
with another phenomenom in railway networks. In very few cases, it might pay
off to use an itinerary with a sequence of stations R → S → T → S → R′ instead
of R → S → R′. This odd situation may arise if T and S are close to each other, a
train runs from R to T , another from T to R′, and transfer(S) < transfer(T )
holds. While in railway networks this case is extremely rare, it occurs more
frequently in bus networks, since the average travel time between stations is
significantly smaller in such networks. Moreover, we use randomly generated
transfer times in our experiments (cf. Section 5) which might turn out too high
for critical stations. Using real world transfer times might reduce or eliminate
such paths. Figure 2 gives an example.

Our Route-Model does not allow such connections by the definitions up to
now. However, we may overcome this problem by introducing edges at arrival
nodes u of T toward departure nodes leading back to S if and only if the following
inequation holds:
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Station S Station T
Z1

Z1

Z2
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transfer(S)
too big

transfer(T )
small enough

Fig. 2. Situation where it is necessary to go forth and back along the same route in
order to transfer to train Z2

κS,T + κT,S + transfer(T ) < transfer(S).

Here κS,T denotes the best lower bound regarding travel time from S to T . By
this we ensure that no shortest paths get lost while in most cases we still get the
advantage of prohibiting cycles along the same route. Please note, that we can
not rule out cycles such as · · · → R → S → T → R → · · · , however cycles of
this type occur less often in general timetable networks. Generally, if we demand
simple paths (with respect to visited stations), we may omit the additional edges
introduced here at all.

Leaving Big Stations Untouched. It turns out that remodeling of stations with
many neighbors, e.g., major train hubs, lead to a disproportionately high increase
in additional edges, since for each neighbor (route) at least one edge must be
inserted for each arriving train. In the original time expanded model, however,
at most two edges existed for each arrival node (arrival-transfer and arrival-
departure). Since our modifications are only local we can choose for each station
individually whether we want to convert it to the Route-Model or not. For that
reason we introduce a tuning parameter γ indicating that stations with more
neighbors than γ should be left untouched. Hence, changing γ yields a trade-off
between a speed-up regarding the number of touched nodes against an increasing
size of the edge set of the graph.

A problem that arises when mixing Route-Model stations with classic stations
is that the main advantage of the Route-Model—subsequent connections on the
same route are not visited during the Dijkstra search—may fade. Analyzing
the example in Figure 3, we observe a big station which has not been converted
followed by a route containing a few small stations. While at the small stations
no connections exist between connections of the same route, they are neverthe-
less visited, because they are all accessible through the big station. Hence, we
developed Node-Blocking which adopts the idea behind the Route-Model as a
speed-up technique, and blocks redundant connections of the same route, so they
are not visited. This technique is explained in Section 4.
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Big Station Small Station Small Station

Fig. 3. When a big station which is not converted is visited during a Dijkstra query,
all subsequent connections are visited as well, while only the red path should be rele-
vant. Unimportant nodes are omitted in the figure.

3.3 Correctness of the Route-Model

In this section we provide an extensive correctness proof of our Route-Model,
i.e. we show that applying Dijkstra on the Route-Model still yields correct
solutions to the earliest arrival problem.

In order to conduct our proof we need to introduce some notions first. Let
Π be a path in a time-expanded railway graph. Then Π covers a sequence of
stations S = S1 → S2 → · · · → Sn. A sequence of the form S1 → S2 → · · · →
Sk−1 → Sk → Sk−1 → · · ·S2 → S1 is called a cycle. Note, that there might
be more complicated “cycles” like for example S1 → S2 → S3 → S1, but we
restrict ourselves to the simple cycles as defined above. A sequence S′ is said to
be contained in a sequence S, if S′ is part of S, i.e. the sequence S′ occurs at
some place in S. A cycle S is called dispensable if it holds that

k−1∑
i=1

κSi,Si+1 + transfer(Sk) +
k−1∑
i=1

κSi+1,Si ≥ transfer(S1).

Here κR,S for two stations R and S, again, denotes the minimal travel time from
R to S. Now, a sequence S is called minimal, if it does not contain any dispensable
cycles. A minimal sequence can be constructed from any (non-minimal) sequence
by removing every dispensable cycle from it. Think of it as continuing the journey
at S1 (of the cycle) directly instead of going through the cycle first. Since the
minimal travel time of the cycle is longer than the transfer time at S1, this is
always possible.

First, we now prove the following lemma, which is essential to the proof of
correctness.

Lemma 1. Each minimal sequence of stations in the realistic time expanded
graph is also contained in the Route-Model graph.
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Proof. Let S be a minimal sequence in the time expanded graph. If S does
not contain any cycles, then it is trivially contained in the Route-Model by its
construction rules: At each station Si for each neighbor edges are introduced to
connect to them, just as well toward Si+1.

If there is a non-dispensable cycle in the sequence S, then the only place
where no edges might be in the Route-Model graph is at the turning point Sk

of the cycle. The sub-cycle Sk−1 → Sk → Sk−1 must be non-dispensable itself,
otherwise it would not be contained in S. For that reason, it must hold that

κSk−1,Sk
+ transfer(Sk) + κSk,Sk−1 < transfer(Sk−1).

But this is exactly the criterion for which edges back to Sk−1 are inserted in the
Route-Model. Hence, the path S is also contained in the Route-Model. ��

We can now deduce the main correctness theorem.

Theorem 1. Applying Dijkstra on the Route-Model yields correct solutions
to the earliest arrival problem.

Proof. We prove the theorem in two steps. First, we show that each shortest
path in the Route-Model is also contained in the original time expanded model
and second, we show the reverse, that for each shortest path in the expanded
model there is an equivalently long shortest path in the Route-Model.

Route Model → Classic Model. Let Π be an arbitrary (shortest) path in the
Route-Model covering a sequence S of stations. The first construction step,
namely the removal of edges does not create any new paths in the Route-Model,
so by that argument Π is also contained in the classic expanded graph. For the
second construction step (the appropriate insertion of new outgoing edges from
the arrival nodes) does not lead to any new shortest paths either. Since an edge
e = (u, v) at some station Si is only inserted if it does not violate the transfer
time criterion, it always corresponds to a valid path in the classic time expanded
graph. If no trains are changed through e, then e is exactly the train-edge from
the arrival to the departure node of that train. If trains are changed through e,
then by the construction rules it holds that u + transfer(Si) ≺ v. But, in this
case there is also a path (through some transfer nodes) from u to v in the classic
graph. By that reason, there are no shorter paths in the Route-Model than in
the classic model.

Classic Model → Route Model. We now show that no shortest paths get lost
by the Route-Model. We prove this by contradiction. Let Π be a shortest path
of length λ retrieved by some query from S1 to Sn at departure time td(S1).
Assume that the shortest path Π ′ computed in the Route-Model for the same
query has length λ′ > λ. Then there are two possibilities.

1. The sequence of stations covered by Π and Π ′ are identical.
Then it must hold that at some station Si in the classic model we entered a
train Zf that arrives at Sn earlier. We assume without the loss of generality
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that Si is the latest possible station (meaning the nearest from the target
station) where we entered the faster train Zf . Because there is no possibility
to enter Zf at a later point, for all subsequent stations Si+1, . . . , Sn it must
hold that either Zf arrives there before the slower train Zs (computed by
the Route-Model), or that it arrives after Zs but within the margin of the
transfer time at the particular station (otherwise Si would not be the latest
possible station to switch to Zf ).

Let wf be the arrival node of Zf and ws be the arrival node of Zs at
the next station Si+1. In the first case if wf ≺ ws there must have been an
edge inserted in the Route-Model to board Zf at Si, because there is always
an edge inserted to the train arriving at Si+1 earliest. In the second case if
ws + transfer(Si+1) � wf , there is also an edge inserted at Si to board
Zf , because edges to all trains along the route are inserted that arrive at
Si+1 within the margin of transfer(Si+1). Hence it is possible to board Zf

at Si in the Route-Model which is the desired contradiction.
2. The sequence of stations covered by Π and Π ′ are not identical.

Let us call the sequences S and S′. Because of Lemma 1 there must also exist
a (potentially longer) path along S in the Route-Model. If we substitute Π ′

for that path, this case can be reduced to the first one leading to the desired
contradiction.

Thus, the two models are equivalent in the sense that (a) no shorter itineraries
can be computed in the Route-Model and (b) for each (shortest) itinerary com-
puted in the classic model there is an equally short itinerary computable in the
Route-Model. ��

4 Speedup Techniques

In principle, we could use Dijkstra’s algorithm for solving the EAP. How-
ever, plain Dijkstra visits unnecessary parts of the graph, even if we use our
Route-Model. Hence, we introduce two approaches for obtaining faster query
times. We adapt existing techniques—developed for road networks—to timetable
graphs and introduce a new speed-up technique following the ideas from our
Route-Model.

4.1 Tailored Speed-Up Techniques

Node-Blocking is a speed-up technique tailored to time-expanded networks.
It basically incorporates the ideas behind the Route-Model as described in
Section 3.2: if we can reach a station S at some time tS we try to prune paths
reaching S at a later time t′S > tS . Recall that the Route-Model prunes the
search by removing certain edges from the graph. Node-Blocking, on the con-
trary, achieves a similar result by dynamically blocking departure nodes during
the Dijkstra query. The idea is as follows. If we visit a departure node v be-
longing to an elementary connection targeting some station T , we can prune all
future departure nodes b targeting T .
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Preprocessing. Formally, each departure node v of an elementary connection
between two stations S and T induces a set Bv of blocked nodes. A node b is
contained in Bv if and only if the following conditions hold.

1. b is a departure node at S belonging to an elementary connection targeting
the same station T as v.

2. b � v holds.
3. If w and c are the arrival nodes at T of the connections associated with v

and b, respectively, then w + transfer(T ) ≺ c must hold, i.e., we respect
the transfer time criterion at T .

Although the “blocked state” of each node is dynamic in the sense that it depends
on the shortest path query, and therefore must be computed during the query,
the set Bv of inducing blocked nodes can be precomputed for each node v by
iterating through all departure nodes of the station and checking whether the
above criteria apply to them.

Note that in contrast to the Route-Model, we do not have to deal with the
transfer time criterion at S, since we only block nodes, and hence never allow
a path to be taken which was forbidden by the transfer time criterion at S. In
worst case, we block departure nodes which cannot be reached anyway due to
the transfer time criterion of S. Moreover, all special cases are covered by our
third condition.

Query. The modifications to standard Dijkstra algorithm are simple. We intro-
duce an additional flag blocked(v) to all nodes of the graph, which is initialized
to false. Then, whenever we try to insert a node v into the queue, we mark all
nodes Bv as blocked. If v is marked as blocked, we prune the search.

Efficiently Storing Blocked Nodes. Storing the set Bv for each node is highly
redundant, i.e., one particular departure node w at a station S is an element of
many sets Bv of departure nodes at S. Thus, let for each departure node v the
node vb ∈ Bv be the minimum node for which v ≺ vb holds. In other words, vb

depicts the first blocked connection from the set Bv. Then for each node v we
only store vb as the block target of the node v, thus, reducing space consumption.

Regarding the query, when a node v is about to be inserted into the queue,
we set blocked(vb) to true, check for blocked(v), and do not insert v into the
queue if and only if blocked(v) = true. By these means, we do not block the
whole set Bv at once, but all nodes from Bv are eventually blocked bit by bit
during the execution of the algorithm. The main loop of Dijkstra only needs
the additions shown in red color at Algorithm 1.

Regarding correctness, we like to point out that we do not lose paths by this
approach. Since it holds for each node v that by blocking vb we always block
a node that would have also been blocked by the original approach (because
vb ∈ Bv), our proof of correctness is applied to the stronger variant of blocking
the whole set Bv.
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Algorithm 1. Excerpt of Dijkstra’s main loop

u ← a settled node1

forall outgoing edges e = (u, v) do2

if v is a new node then3

if vb �= nullnode then4

blocked(vb) ← 15

if blocked(v) = 1 then6

continue7

// insert operation here

else8

// decreaseKey operation here

Combination with Route Model. Although our Route-Model and Node-Blocking
follow the same ideas, the advantage of the Route-Model is the lower computa-
tional overhead during the query. However, as discussed in Section 3.2, it does
not pay off to remodel major hubs. Hence, Node-Blocking harmonizes well with
the Route-Model as we use Node-Blocking for pruning paths at such hubs.

Combination with Phase 1+ Models. Since from the Phase 1 model onwards de-
parture nodes are removed, Node-Blocking has to be altered slightly to conform
with these models. Instead of departure nodes blocking future departure nodes,
we simply let the corresponding arrival nodes (belonging to the respective de-
parture nodes) block each other. In this case, the arrival nodes assume the role
of the previous departure nodes regarding blocking, which allows us to continue
using the same query algorithm.

Correctness of Node-Blocking. We assume at this point that the reader is
familiar with the notions introduced during the correctness proof of the Route-
Model in Section 3.3, in particular with the terms sequence and cycle. However,
we do not restrict ourselves to simple cycles here. The term dispensable cycle
can be generalized to any cycle S = S1 → · · · → Sn → S1 if it holds that

n−1∑
i=1

κSi,Si+1 + κSn,S1 ≥ transfer(S1).

Please note, that this condition does not contain transfers along the cycle, be-
cause we do not necessarily have a unique “turning point” that induces a transfer.

Theorem 2. Applying Node-Blocking to Dijkstra’s algorithm yields correct
solutions to the earliest arrival problem.

Proof. We conduct this proof in two steps. First, we show that each shortest
path with Node-Blocking enabled is also a path without Node-Blocking. Second,
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we show that a shortest path without Node-Blocking due to a minimal sequence
of stations is also computable with Node-Blocking enabled.

Node-Blocking → Without Node-Blocking. This can easily be seen. Since Node-
Blocking blocks nodes when they are about to be inserted into the priority queue,
we can see this as dynamically deleting edges from the graph (namely the edges
pointing to blocked nodes) during the query. Obviously, the graph emerging at
the end of the query is a subgraph of the original graph, hence the computed
path is also contained in the original graph without Node-Blocking enabled.

Without Node-Blocking → Node-Blocking. Let Π be a shortest path covering a
minimal sequence of stations S computed by Dijkstra. Note again, that for
any shortest path Π ′ covering a non-minimal sequence S′ we can construct a
minimal sequence S by removing each dispensable cycle. This directly induces
the desired path Π . Then the following two statements hold.

1. A path ΠB with Node-Blocking enabled covering the same sequence exists.
The default blocked-state of all departure nodes is false. Therefore, when
we arrive at some station Si along the sequence S on our path, the first
departure node leading to Si+1 is not blocked when it is inserted into the
priority queue (Note, a node never blocks itself, so this is even true if only
one connection toward Si+1 existed). For that reason, there exists a path
from Si to Si+1. Note, that due to the minimal nature of the sequence S the
subsequence Si → Si+1 is not contained again in S at a future point with
one exception: The travel time of the cycle (beginning with Si+1) is longer
than transfer(Si+1), but in this case the departure node belonging to the
respective connection arriving within the margin of transfer(Si+1) is not
blocked.

2. ΠB is a shortest path. Assume td(Si) is the first time the Dijkstra algorithm
discovers a departure node u along the route Si → Si+1 in our sequence. Let
furthermore ta(Si) be the arrival time at Si+1 of the connection belonging to
that departure node. Now assume further, that the optimal route continues
at Si+1 at some point td(Si+1) � ta(Si+1) + transfer(Si+1). Then taking
the non-blocked connection through u and waiting at Si+1 yields an optimal
subpath from Si to Si+1. If the optimal journey continues at Si+1 within
the margin of transfer time, i.e. td(Si+1) ≺ ta(Si+1)+transfer(Si+1) then
we ensure that the respective connections arriving within that margin are
not blocked by u, hence the optimal subpath from Si to Si+1 is prevailed as
well. Since Si and Si+1 were arbitrary sections along the (optimal) sequence
S, the computed path ΠB is a shortest path.

From this follows that Node-Blocking yields correct shortest path queries w.r.t.
the earliest arrival problem. ��

4.2 Adapting Speed-Up Techniques

Although the adaption of many techniques may be promising, we choose ba-
sic goal-directed techniques for adaption. It turned out that adaption of more
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sophisticated techniques, e.g., Highway Hierarchies [21], Contraction Hierar-
chies [7], REAL [9], SHARC [1], is much more challenging than expected. The
main reason are either the need of a bidirectional query algorithm or the bad
performance of the contraction routine.

Arc-Flags. The classic Arc-Flag approach, introduced in [13, 14], first computes
a partition P of the graph and then attaches a label to each edge e. A label
contains, for each cell Pi ∈ P , a flag AFPi(e) which is true if a shortest path to
at least one node in Pi starts with e. A modified Dijkstra—from now on called
Arc-Flags Dijkstra—then only considers those edges for which the flag of the
target node’s cell is true. The big advantage of this approach is its easy query
algorithm. However, preprocessing is very extensive. The original approach grows
a full shortest path tree from each boundary node yielding preprocessing times
of several weeks for instances like the Western European road network. Recently,
a new centralized approach has been introduced [12]. However, it turns out that
this centralized cannot be used in time-expanded transportation networks due
to memory consumption. Hence, we use the original approach of growing full
shortest path trees from each node.

Adaption. The query algorithm can be adapted to time expanded railway graphs
very easily. We only have to consider that the exact target node is unknown (just
the target station is known). For that reason we simply abort the Dijkstra

algorithm as soon as a node belonging to the target station is settled. The
preprocessing of Arc-Flags, however, needs some extra attention. Since we do
not know the exact target node in advance, we have to ensure that all nodes
belonging to the same station also get the same cell-id of the partition assigned.
For that reason, we simply compute the partition on the condensed graph and
map it to the expanded graph by assigning for each node v ∈ V the cell-id due
to cell(v) := cell(station(v)).

Computing the backwards-shortest path trees from each boundary node of each
cell can then be done as described in [14]. However, this approach yields a problem
specific on time expanded graphs. Since the length of any path in the graph always
corresponds to the time needed to travel between the beginning and ending event
(node) of that particular path, any two different paths between the same nodes
always have the same length. Therefore, thenumber of shortest paths (in fact, there
are only shortest paths in time expanded graphs) is tremendous. Unfortunately, if
we set flags to true for everypath, we do not observe any speed-up (cf. Section 5). In
order to achieve a speed-up we have to prefer some paths over others. We examine
the following four reasonable strategies for prefering paths:

– Hop Minimization
For two paths of equal length, choose the one that has less hops (nodes) on
it. This approach is often used in road networks [1].

– Transfer Minimization
Choose the path that has less transfers between trains. While this is a
good strategy for querying, it sets too many arc-flags to true, since for
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different boundary nodes too many different paths lead a transfer-minimal
connection.

– Distance Minimization
Choose the path that is shorter (geographically).

– Direct Geographical Distance
Choose the path whose direct geographical distance is closer to the source
node of the shortest path tree, formally for some node v that is reached from
u we choose the new predecessor according to

pre(v)new := argmin
w∈{u,pre(v)}

{
√(

cdx(w) − cdx(s)
)2 +

(
cdy(w) − cdy(s)

)2},

where s is the source node of the shortest path tree and cd depicts the x,
respective y coordinate values for a given node. This optimization is very
aggressive, as it leads to the same result for different boundary nodes of the
same cell as often as possible.

Section 5 shows the huge difference in the query performance when the arc-flags
are computed with different strategies. Note that we can optimize query times
by setting as many flags as possible to false. However, we also loose the ability
to choose the “best” path during the query (e.g. due to a minimal number of
transfers, costs, etc.). This yields a trade-off between query time and the quality
of the computed itineraries.

Arc-Flags and Node-Blocking. Unfortunately, Node-Blocking does not harmonize
with Arc-Flags. This is due to the fact of Node-Blocking being a very aggressive
technique, leaving only very few connection arcs per station and route accessible.
The optimization criterion hereby, namely arriving as early as possible at the
next station does not necessarily match with our path selection during Arc-
Flags preprocessing. As a result, both techniques prune different shortest paths.
A possible solution would be to adapt the path selection for Arc-Flags according
to Node-Blocking. However, this turns out to be complicated as we have to grow
shortest path trees on the reverse graph. Hence, this path selection strategy is
not implemented yet.

ALT. Goal directed search, also called A∗ [11], pushes the search towards a
target by adding a potential to the priority of each node. The ALT algorithm,
introduced in [8], uses a small number of nodes—so called landmarks—and the
triangle inequality to compute such feasible potentials. Given a set L ⊆ V of
landmarks and distances d(�, v), d(v, �) for all nodes v ∈ V and landmarks � ∈ L,
the following triangle inequations hold: d(u, v) + d(v, �) ≥ d(u, �) and d(�, u) +
d(u, v) ≥ d(�, v). Therefore, π(u, t) := max�∈L max{d(u, �) − d(t, �), d(�, t) −
d(�, u)} provides a lower bound for the distance d(u, t) and, thus, can be used
as a potential for u.

Adaption. The query algorithm is, again, straight forward to adapt to time-
expanded railway graphs. Since the only difference to the standard Dijkstra
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algorithm is the key which is inserted into the priority queue, we can still simply
abort the search as soon as a node of the target station gets settled. However,
we cannot compute the landmarks on the expanded graph directly since then
we would have to know the target node t in advance. Hence, we compute the
landmarks on the much smaller condensed graph which still yields feasible po-
tentials because the edge weights in the condensed graph are defined as the lower
bounds regarding travel time. The potential function π during the query is then
computed as follows:

π(v) = max
�∈L

max{ dist(station(v), �) − dist(T, �),

dist(�, T ) − dist(�, station(v))},

where T is the target station of the query. We can think of this as using a “lower
bound of a lower bound” of the shortest path.

Former studies revealed that the selection of landmark nodes is crucial to the
performance of ALT. The quality of the lower bounds highly depends on the
quality of the selected landmarks. Thus, several selection strategies exist. To
this point, no technique is known how to pick landmarks yielding the smallest
search space for random queries. Thus, several heuristics exist. The best are
avoid and maxCover. The first tries to identify regions that are not well covered
by landmarks while the latter is basically the avoid routine followed by a local
optimization. For details, we refer to [10].

Due to the small size of the condensed networks, another strategy for obtain-
ing potentials seems promising. For each query, we use the target station T as
landmark and compute the distances of all stations to T on-the-fly. The advan-
tage of this dynamic-landmark-selection is a tighter lower bound. However, we
have to run a complete Dijkstra in the condensed graph for each query which
can take more time than using worse lower bounds from landmarks during the
query. Note that this approach for obtaining lower bounds for A∗ was already
proposed in [15].

Combining Arc-Flags and ALT. In [17], we observed that Arc-Flags (with
the direct geographical distance strategy) and ALT optimize in two different
ways. While Arc-Flags prunes paths that lead to the wrong direction geographi-
cally, ALT optimizes in time in the sense that fast trains are preferred over slow
trains. Fast trains (having less stops in between) tend to get near the target sta-
tion faster, yielding a lower key in the priority queue regarding the lower bound
function. For that reason, it is suggestive to examine the combination of the two
speed-up techniques. The implementation is straight-forward, since Arc-Flags
does not interfere with ALT—Arc-Flags simply ignores edges that do not have
their appropriate flag set, and ALT just alters the key in the priority queue.

5 Experiments

In this section, we present our experimental evaluation. Our implementation is
written in C++ using solely the STL. As priority queue we use a binary heap.
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Our tests were executed on one core of an AMD Opteron 2218 running SUSE
Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB
of L2 cache. The program was compiled with GCC 4.2, using optimization level 4.

Inputs. We use two inputs for our evaluation. The railway network of Central
Europe and a local bus network of greater Berlin. Both networks have been
provided by HAFAS for scientific use; the former network consists of 30,517
stations and 1,775,552 elementary connections. The corresponding figures for
the latter are 2,874 and 744,005, respectively. While the network of Europe
provides a good average structure for a railway network mixed of long-distance
trains supported by short-distance trains, the bus network of Berlin consists of
a very homogeneous structure, since there are almost no “long-distance” buses.
Because of this and the very dense operations of buses with their short travel
times between stations, it has already been shown [17] that this network seems
to be a very hard instance for timetable information queries.

It should be noted that, while our timetable data is realistic, the transfer times
at the stations were not available to us. Hence, we generated them at random
and chose between 5 and 10 minutes for the railway and between 3 and 5 minutes
for the bus network.

Default Settings. In the following, we report preprocessing times and the over-
head of the preprocessed data in terms of additional bytes per node. We evaluate
query performance by running 1 000 random s–t queries with source and target
station picked uniformly at random. We fix the departure time to 7:00 am. We
report the average number of settled nodes during the query as well as the av-
erage query time. The speed-up refers to the query time and is computed in
reference to the classic time expanded model without any speed-up technique
applied.

5.1 Models

Parameters. We start our experimental evaluation with parameter tests for our
Route-Model. Recall that in the Route-Model we may affect the conversion pro-
cess by the selection of γ which controls the maximum number of neighbors a
station may have in order to become a Route-Model station. In the following
we use values between 2 and 10 for γ. Table 1 reports for both our inputs: the
resulting size (in terms of number of edges) and query performance. Note that
we do not report number of nodes, as the remodeling routine does not add or
remove any nodes. We also enabled Node-Blocking (see Section 4.1).

We observe that for both instances the Route-Model yields a speed-up. In-
creasing γ up to 5 increases performance, while values > 5 do not pay off. This
is mostly due to the fact that for both graphs the majority of stations has less
or equal than 5 neighbors (91% for the Europe and even 99% for the Berlin
network).

Concerning Europe with γ < 5, we observe that the resulting graph has less
edges than originally. Recall in the original graph the number of outgoing edges
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Table 1. The effect of γ on the performance of the Route-Model with Node-Blocking
enabled

europe bvb
Size Query Size Query

γ-value #edges #settled [ms] speed-up #edges #settled [ms] speed-up
reference 8,505,951 1,161,696 534.7 1.00 3,694,253 151,379 37.6 1.00
2 7,912,584 411,836 202.4 2.64 3,785,680 91,591 27.4 1.37
3 8,035,324 359,294 171.7 3.11 4,292,849 74,963 25.2 1.49
4 8,332,816 329,413 158.3 3.38 5,059,228 63,438 25.1 1.50
5 8,729,619 313,046 154.1 3.47 5,437,647 59,670 25.4 1.48
6 9,071,974 303,460 153.9 3.47 5,625,277 57,990 25.6 1.47
7 9,396,276 297,831 155.1 3.45 5,768,926 56,994 25.8 1.46
8 9,712,940 292,482 156.4 3.42 5,782,375 56,921 25.7 1.46
9 9,936,119 289,036 158.7 3.37 5,782,375 56,921 25.8 1.46
10 10,195,050 285,103 159.3 3.36 5,782,375 56,921 25.8 1.46

per arrival node is at most 2 (one toward the nearest transfer node and one
toward the departure node of the same train). Hence, a decrease in number of the
edges can only result from merely one edge being inserted for many arrival nodes
at stations of degree 2. Interestingly, this observation of decreasing edges does not
hold for our bus network which is due to the high density of the network: Because
the stations are very close to each other, it often holds that the travel time to
go forth and back between some stations S1 and S2 is less than transfer(S1),
which results in back-edges being inserted for arrival nodes at S2 (coming from
S1). Second, the operation frequency of the buses is very high, such that it may
occur that edges toward more than the first bus of the route are inserted, when
they arrive at the next station within the margin of its transfer time.

Summarizing, a value of γ = 5 yields the best results for railway inputs. The
corresponding figure for the bus networks is 4.

Comparison to the Classic Time-Expanded Model. Next, we compare different
contraction steps (Section 3) and our route model with the classic time expanded
model. Table 2 shows the differences in graph size and query performance. While
the overall graph size decreases when switching from the classic expanded to the
phase 1 model, the number of edges significantely increases if applying our phase 2
model. Although the number of nodes decreases about 50%, this increase in num-
ber of edges leads to an worse query performance, since more edges are relaxed
during the query. We hence conclude that the phase 2 model—and therefore the
phase 3 model as well—is not the preferred choice for fast timetable queries.

Regarding the Route-Model, the increase in graph size is still reasonable
while the query time decreases. However, we see that the query performance
benefits from Node-Blocking as the speed-up more than doubles in the Europe
network with Node-Blocking enabled. The reason for the weak performance with-
out Node-Blocking is that paths through the graph that should be pruned by
the Route-Model approach, are still relaxed when they are not blocked in non-
converted big traffic hubs. In the bus network the general performance gain is



Engineering Time-Expanded Graphs for Faster Timetable Information 201

Table 2. Comparison of the different models. The Route-Model is computed with
γ = 5 for europe and γ = 4 for bvb.

Size Query

input Model #nodes #edges #settled [ms] spd-up
Classic expanded 5,207,980 8,505,951 1,161,696 534.7 1.00
Phase 1 3,472,022 6,769,991 768,181 426.5 1.25
Phase 2 1,736,064 15,571,190 431,274 631.1 0.85

europe Route 5,207,980 8,729,619 793,462 360.6 1.48
Route w/ blocking 5,207,980 8,729,619 313,046 154.1 3.47
Route + Phase 1 3,472,018 6,821,337 439,024 256.3 2.09
Route + Phase 1 w/ blocking 3,472,018 6,821,337 200,213 122.8 4.35
Classic expanded 2,232,016 3,694,253 151,379 37.6 1.00
Phase 1 1,488,011 2,950,248 99,253 29.1 1.29
Phase 2 744,006 13,229,482 60,218 56.8 0.66

bvb Route 2,232,016 5,059,228 97,978 32.6 1.15
Route w/ blocking 2,232,016 5,059,228 63,438 25.1 1.50
Route + Phase 1 1,488,011 3,918,788 51,210 22.7 1.66
Route + Phase 1 w/ blocking 1,488,011 3,918,788 34,032 18.6 2.02

not as big as with the railway network. Even Node-Blocking does not have such
a great impact, which is mostly due to the very dense structure of this network.

Because the Route-Model can be combined well with the phase 1 model (de-
parture nodes are simply removed after the conversion to the Route-Model),
this gives us a gain in graph size while still keeping the advantages of the Route-
Model. The query performance behaves as expected and increases by approxi-
mately one third compared to the Route-Model alone. If we then additionally
apply Node-Blocking on the route + phase1 model, we get the best query perfor-
mance of all the models which yields a speed-up of 4.35 in the railway network
of Europe and 2.02 in the Berlin bus network.

5.2 Speedup Techniques

Up to now, we showed that by remodeling stations and using additional pruning
techniques, we already achieve a speed-up of 4.35 over plain Dijkstra. Here,
we now show that this approach harmonizes well with other speed-up techniques
deriving from road networks.

Path-Selection during Arc-Flags Preprocessing. We already noted in Section 4.2
that in expanded timetable networks the number of shortest paths between two
nodes is enormously high. It turns out that setting arc-flags for all paths yields a
bad query performance. Hence, we have to favor some paths over the others. We
proposed four different reasonable strategies: Minimize hops, minimize transfers,
minimize accumulated geographic distance along the path and finally minimize
the direct geographic distance from the preceding node to the source of the
shortest path tree (see Section 4.2). Table 3 shows the impact of each strategy
on the performance of Arc-Flags. Note that due to the long preprocessing times
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of Arc-Flags, we use a subnetwork of our European instance, namely the German
railway network called de fern (6822 stations and 554996 connections).

While minimizing hops is useful in road networks [1] (which can be interpreted
there as preferring a route that has less road crossings) this results in a poor per-
formance in railway network. Almost all flags are opened during preprocessing,
thus the overhead of the Arc-Flags query algorithm outweighs the benefit from
the few remaining pruned arcs. Interestingly, using minimal transfer or minimal
distance strategies as path selection yields a poor query performance as well.
This is mostly due to too many different paths of boundary nodes of the same
cell being optimal, thus too many flags are set to true. Recall that the partition
is computed on the condensed graph, hence for one station that is at the border
of a cell, nodes belonging to all times of day are boundary nodes which may lead
to very different transfer or distance minimal routes in the graph.

The minimal direct geographic distance strategy overcomes this issue by al-
ways choosing the same preceding node for all times of the day. For that reason,
as many arc-flags as possible are kept false, which eventually yields a speed-
up of 3.87 on the German railway network. Since all other strategies actually
worsen the query performance, we choose the direct geographic distance strategy
for further experiments involving Arc-Flags on time expanded railway networks.

Speed-Up Techniques on our Models. In the next experiment we compare the
performance of the adapted speed-up techniques on the different models from
Section 3. Because of the bad performance of the phase 2 model, we only com-
pare the classic expanded model, the phase 1 model, the Route-Model and the
combination of the route and phase 1 models.

Furthermore, we tested the effect of dynamic-landmark-selection against a
precomputed set of landmarks. Table 4 shows our results. We show the query
performance as well as preprocessing-costs by preprocessing time and addition-
ally bytes per node required to store the preprocessed data. For each model we
tested the following speed-up techniques:

– BA: Node-Blocking with ALT.
– BdA: Node-Blocking with ALT and dynamic-landmark-selection.
– uFA: Unidirectional Arc-Flags with ALT.
– uFdA: Unidirectional Arc-Flags with ALT and dynamic-landmark-selection.

Table 3. Arc-Flags. Evaluation of different path-selection strategies. For each strategy
we apply a partition with 64 cells.

Prepro Query

Strategy [h:m] [B/n] #settled [ms] speed-up
reference — 0 152,998 58.1 1.00
hops 17:00 26.2 149,931 70.3 0.83
transfers 16:26 26.2 152,307 71.7 0.81
distance 20:53 26.2 134,462 61.8 0.94
geo. dist. to target 16:08 26.2 38,511 15.0 3.87
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Table 4. Comparing different models in conjunction with the classic speed-up tech-
niques. The parameter set used throughout: 128 cells, geographic distance to target
path-selection-strategy for Arc-Flags and 8 landmarks using maxCover for the classic
ALT algorithm.

europe bvb
Prepro Query Prepro Query

Model/Algo [h:m] [B/n] #settled [ms] spd [h:m] [B/n] #settled [ms] spd
Reference — 0 1,161,696 534.7 1.00 — 0 151,379 37.6 1.00
Classic (BA) ≈ 4 s 4.0 261,151 162.7 3.29 ≈ 2 s 4.1 96,533 33.6 1.12
Classic (BdA) ≈ 1 s 4.0 233,280 130.8 4.09 ≈ 1 s 4.0 94,345 29.1 1.29
Classic (uFA) 106:11 106.5 71,937 32.7 16.35 45:30 108.0 49,921 17.0 2.21
Classic (uFdA) 106:11 106.5 65,143 33.9 15.77 45:30 107.9 49,014 15.2 2.47
Phase 1 (BA) ≈ 5 s 4.5 208,579 145.5 3.67 ≈ 2 s 4.1 67,019 26.1 1.44
Phase 1 (BdA) ≈ 1 s 4.0 185,996 116.4 4.59 ≈ 1 s 4.0 65,488 22.8 1.65
Phase 1 (uFA) 77:52 127.2 30,583 14.0 38.19 31:59 129.0 15,004 5.4 6.96
Phase 1 (uFdA) 77:52 126.7 27,310 18.5 29.06 31:59 128.9 14,713 5.1 7.37
Route (BA) < 4 s 4.4 140,826 73.2 7.30 ≈ 2 s 4.1 49,591 22.3 1.69
Route (BdA) ≈ 1 s 4.0 127,444 65.4 8.18 ≈ 1 s 4.0 48,390 19.8 1.90
Route (uFA) 85:49 109.7 50,050 22.1 24.19 50:58 147.1 25,289 10.2 3.69
Route (uFdA) 85:49 109.3 45,180 25.3 21.13 50:58 147.0 24,785 9.3 4.04
Rt/Ph 1 (BA) ≈ 4 s 4.5 89,524 58.7 9.11 < 2 s 4.1 26,653 16.0 2.35
Rt/Ph 1 (BdA) ≈ 1 s 4.0 80,665 52.8 10.13 ≈ 1 s 4.0 26,007 14.8 2.54
Rt/Ph 1 (uFA) 83:58 128.2 20,044 9.5 56.28 34:56 170.6 6,195 2.6 14.46
Rt/Ph 1 (uFdA) 83:58 127.7 17,805 15.2 35.18 34:56 170.5 6,053 2.8 13.43

Regarding classic ALT we always used a set of 8 precomputed landmarks by the
maxCover [10] method. Arc-Flags were computed using a partition of 128 cells
obtained from SCOTCH [18]. The strategy for path-selection was geographic
distance to target. Note that for Arc-Flags, we turn off Node-Blocking (cf. Sec-
tion 4.2).

We observe, that for all speed-up technique our modifications to the classic
expanded model yield improvements regarding both query performance and pre-
processing time. While the transition from the classic to the phase 1 model is
more beneficial for Arc-Flags than ALT with Node-Blocking, the latter performs
better on the Route-Model where Node-Blocking fits the model considerably bet-
ter. The combination “Route + Phase 1” unifies the advantages of each model
yielding the best speed-ups.

In general, Arc-Flags has a higher impact on the query time than ALT to-
gether with Node-Blocking (about 5.5 times faster on both networks) which is
being paid for with very high preprocessing time and roughly 30 times more
required space per node. Note that the dynamic ALT comes for free, as it does
not require any preprocessing at all. With our modified models we can, however,
still achieve a speed-up of 10.13 in Europe and 2.54 in Berlin with dynamic ALT
and Node-Blocking, which is useful in a scenario where preprocessing is limited
or not allowed.
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Table 5. Performance of Dijkstraand uni-directional ALT using a time-dependent
variant of our European input. For comparison, the corresponding figure for the time-
expanded approach (route-model with phase 1) are given as well.

time-dependent time-expanded
Prepro Queries Prepro Queries

time #settled speed time speed time #settled speed time speed
technique [h:m] nodes up [ms] up [h:m] nodes up [ms] up
Dijkstra 0:00 260 095 1.0 125.2 1.0 0:00 200 213 1.0 122.8 1.0
uni-ALT 0:02 127 103 2.0 75.3 1.7 0:01 89 524 2.2 58.7 2.1

Comparing the standard ALT against ALT with dynamic landmarks, we ob-
serve, that regarding query time dynamic ALT only pays off as long as the
general speed-up (achieved through some other speed-up technique or model)
does not exceed the cost we pay for computing the distance table on-the-fly.
Since the condensed graph of Europe has about 11 times more stations than the
Berlin graph, the cost for computing the dynamic distance table carries much
more weight there—A one-to-all Dijkstra takes about 7 ms on the condensed
graph of Europe. Hence, it never pays off using dynamic landmarks together
with Arc-Flags here. The same effect can be observed in the Berlin network,
however, only with the combination of the route and phase 1 models due to the
much smaller condensed graph.

Summarizing, our modifications yield a speed-up of 3.5 if we apply ALT and
Arc-Flags to both of our time-expanded graphs. The corresponding figure for our
bus network is 5.5. This yields an overall speed-up of 56.28 for Europe and 14.46
for Berlin when compared to the classic model without any speed-up technique
applied.

5.3 Comparison to the Time-Dependent Model

Table 5 compares the performance of Dijkstra’s algorithm and ALT applied to
our route+phase 1 time-expanded model and the time-dependent model. We ob-
serve that by the introduction of our Route-Model (and Node-Blocking) query
performance of time-expanded queries are faster than for the time-dependent
approach. Hence, we are able to close the performance-gap between both mod-
els. Analyzing the time-dependent approach, we notice that Node-Blocking is
included implicitly: During a query we do not relax an edge more than once
although it represents several connections running from one station to another.
Hence, early connections block later ones. Our remodeling and Node-Blocking
technique introduces these optimizations to the time-expanded approach. As a
result the performance advantage of the time-dependent approach fades.

6 Conclusion

In this work, we introduced a local remodeling routine for the time-expanded
approach based on the intuition that at many stations in a network, the number
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of reasonable choices is little. It turns out that this approach leads to a closely
related speed-up technique harmonizing well with our remodeling. Moreover, we
adapted speed-up techniques to the time-expanded model and show that they
harmonize well with our new approach. Altogether, our approach yields query
times up to 56.28 times faster than pure Dijkstra.

Regarding future work, we are optimistic that our approach would also work
well for multi-criteria optimization. Although our pruning techniques may not
work as strict as for single-criteria search, the number of reasonable choices is
little in this scenario as well. Another very important problem is how to handle
updates in case of delays. It seems as if updating a time-expanded graph is rather
expensive, though possible [3, 16].
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Abstract. In this paper, we present an overview over existing speed-up
techniques for time-dependent route planning. Apart from only explain-
ing each technique one by one, we follow a more systematic approach.
We identify basic ingredients of these recent techniques and show how
they need to be augmented to guarantee correctness in time-dependent
networks. With the ingredients adapted, three efficient speed-up tech-
niques can be set up: Core-ALT, SHARC, and Contraction Hierarchies.
Experiments on real-world data deriving from road networks and public
transportation confirm that these techniques allow the fast computation
of time-dependent shortest paths.

1 Introduction

Finding the quickest connection in transportation networks is a problem familiar
to anybody who ever travelled. While in former times, route planning was done
with maps at the kitchen’s table, nowadays computer based route planning is
established: Finding the best train connection is done via the Internet while
route planning in road networks is often done using mobile devices.

An efficient approach to tackle this problem derives from graph theory. We
model the transportation network as a graph and apply travel times as a met-
ric on the edges. Computing the shortest path in such a graph then yields the
provably quickest route in the corresponding transportation network. In prin-
ciple, Dijkstra’s classical algorithm [13] can solve this problem. However, for
continental-sized transportation networks (consisting of up to 45 million road
segments), Dijkstra’s algorithm would take up to 10 seconds for finding a suitable
connection, which is way too slow for practical applications. Roughly speaking,
Dijkstra computes the distance to all possible locations in the network being
closer than the target we are interested in. Clearly, it does not make sense to
compute all these distances if we are only interested in the path between two
points. Hence, many speed-up techniques have been developed within the last
years. Such techniques split the work into two parts. During an offline phase,
called preprocessing, we compute additional data that accelerates queries during
the online phase. By exploiting several properties of a transportation network,
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the fastest techniques can obtain the quickest path in road networks within mi-
croseconds for the price of few hours of preprocessing. See Fig. 1 for an example
of the search space of a speed-up technique compared to Dijkstra’s algorithm.

Up to the year 2008, research on route planning focused either on efficient
speed-up techniques for time-independent route planning in road networks or on
modeling issues (combined with basic algorithms for determining the best con-
nection) in time-dependent networks deriving from public transportation. For
an overview on time-independent route planning, see [10], while [28] presents
the work for public transportation. Recently, the focus has shifted to the de-
velopment of efficient route planning algorithms for time-dependent networks,
both road networks and public transportation. It turned out that switching
from a static to a time-dependent scenario is more challenging than one might
expect: The input size increases drastically as travel times on time-dependent
connections change frequently during the day. Moreover, shortest paths heavily
depend on the time of departure, e.g., during rush hours it might pay off to avoid
highways. On the technical side, the most efficient time-independent speed-up
techniques rely on bidirectional search, i.e., a second search is started from the
target. However, this concept is complicated in time-dependent scenarios as the
arrival time would have to be known in advance for such a procedure.

Our Contributions. In this work, we recap the recent development on speed-up
techniques for time-dependent route planning covering work from [1,6,7,8,9,26].
Apart from only explaining the techniques one by one we take a step back and re-
analyze them. It turns out that the approach is the same for all time-dependent
speed-up techniques: Augment the basic subroutines of preprocessing and the
query algorithm such that correctness can still be guaranteed in time-dependent
networks. Interestingly, all efficient techniques rely on four basic ingredients: Di-
jkstra’s algorithm [13], landmarks [15,16], Arc-Flags [21,22], and contraction [29].
We here explain each ingredient in detail, how they are augmented, and how the
recently developed speed-up techniques from combining some of these ingredi-
ents are obtained. Summarizing, in this paper we not only give a survey on time-
dependent speed-up techniques but also reinterpret existing results so that the
field on the whole becomes clearer to somebody who is new to time-dependent
route planning.

Overview. This paper is organized as follows. First, we settle basic definitions
in Section 2. In Section 3, we identify basic concepts for accelerating shortest
path queries, show how they can be augmented so that correctness can be guar-
anteed in time-dependent networks, and analyze their drawbacks. Setting up effi-
cient speed-up techniques from the (augmented) ingredients is done in Section 4.
More precisely, we focus on three speed-up techniques: Core-ALT, SHARC, and
Contraction Hierarchies. All three approaches are evaluated in Section 5 with
real-world transportation networks and Europe. We conclude our work on time-
dependent route planning by a summary and a discussion on future work in
Section 6.
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Fig. 1. Search space of different algorithms for the same sample query in a road net-
work. The upper figure depicts the search space of Dijkstra, the lower one for a speed-up
technique, i.e., SHARC [2]. Black edges are touched by algorithms, grey ones stay un-
touched. The shortest path is drawn thicker. We observe that the speed-up technique
touches considerably fewer edges than Dijkstra.
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2 Preliminaries

An (undirected) graph G = (V, E) consists of a finite set V of nodes and a finite
set E of edges. An edge is an unordered pair {u, v} of nodes u, v ∈ V . If the
edges are ordered pairs (u, v), we call the graph directed. In this case, the node u
is called the tail of the edge, v the head. Throughout the whole work we restrict
ourselves to directed graphs which are weighted by a length function len. The
number of nodes |V | is denoted by n, the number of edges |E| by m. We say
a graph is sparse if m ∈ O(n). Given a set of edges H , tails(H) / heads(H)
denotes the set of all tails / heads in H . With degin(v) / degout(v) we denote
the number of edges whose head / tail is v. The reverse graph ←−

G = (V,
←−
E ) is the

graph obtained from G by substituting each (u, v) ∈ E by (v, u). The 2-core of
an undirected graph is the maximal node induced subgraph of minimum node
degree 2. The 2-core of a directed graph is the 2-core of the corresponding simple,
unweighted, undirected graph. A tree on a graph for which exactly the root lies
in the 2-core is called an attached tree. All nodes not being part of the 2-core are
called 1-shell nodes.

Time-Dependency. We model time-dependency by using functions for specify-
ing edge weights. Throughout the whole work, we restrict ourselves to a function
space � consisting of positive periodic functions f : Π → �

+, Π = [0, p], p ∈ �
such that f(0) = f(p) and f(x) + x ≤ f(y) + y for any x, y ∈ Π, x ≤ y. Note
that these functions respect the FIFO property (also called the non-overtaking
property) which states that if A leaves the node u of an edge (u, v) before
B, B cannot arrive at node v before A. Computation of shortest paths in
FIFO networks is polynomially solvable [20]. In non-FIFO networks, complex-
ity depends on the restriction whether waiting at nodes is allowed. If waiting
is allowed, the problem stays polynomially solvable; otherwise, the problem is
NP-hard [27].

In the following, we call Π the period of the input. We restrict ourselves to
directed graphs G = (V, E) with time-dependent length functions len : E → �.
We use len : E × [0, p] → �

+ to evaluate an edge for a specific departure time.
Note that our networks fullfill the FIFO-property if we interpret the length of
an edge as travel times due to our choice of �. The composition of two functions
f, g ∈ � is defined by f ⊕ g := g ◦ f . Moreover, we need to merge functions,
which we define by min(f, g) with min(f, g)(x) := min{f(x), g(x)}, x ∈ Π . The
upper bound of f is noted by f = maxx∈Π f(x), the lower by f = minx∈Π f(x).
An underapproximation ↓f of a function f is a function such that ↓f(x) ≤ f(x)
holds for all x ∈ Π . An overapproximation ↑f is defined analogously. Bounds and
approximations of our time-dependent edge function len are given by analogous
notations. Obviously, one can obtain a time-independent graph G from a time-
dependent graph G by substituting the time-dependent length function by len.
We call G the lower bound graph of G.

We use piecewise linear functions for modeling time-dependency in transporta-
tion networks. Each edge gets a number of interpolation points assigned that
depict the travel time on this edge at the specific time. Interestingly, evaluating
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departure time

travel time

departure time

travel time

Fig. 2. Examples of piecewise linear travel time functions, the left figure shows a func-
tion used for road networks, while the right one is applied to railway networks. Inter-
polation points are depicted by dots. Note that the evaluation between two points is
done in a different manner.

a function depends on the type of network we use. In road networks, evaluating
a function at time τ is done by linear interpolation between the points left and
right to τ . In railway networks, we identify the point p right to τ and return the
travel time at p plus the waiting time. Figure 2 gives an example.

Paths. A path P in G is a sequence of nodes (u1, . . . , uk) such that (ui, ui+1) ∈ E
for all 1 ≤ i < k. In time-independent scenarios, the length of a path is given
by

∑k−1
i=1 len(ui, ui+1). A path between two nodes s and t with minimum length

is called a shortest s–t path. By d(s, t) we denote the length of such a path. In
time-dependent scenarios, the length γτ (P ) of a path P departing from u1 at
time τ is recursively given by

γτ

(
(u1, u2)

)
= len

(
(u1, u2), τ

)
γτ

(
(u1, . . . , uj)

)
= γτ

(
(u1, . . . , uj−1)

)
+ len

(
(uj−1, uj), γτ

(
(u1, . . . , uj−1)

))
In other words, the length of the path depends on the departure time from s.
In a time-dependent scenario, we are interested in two types of distances. On
the one hand, we want to compute the shortest path between two nodes for a
given departure time. On the other hand, we are also interested in retrieving the
distance between two nodes for all possible departure times ∈ Π .

By d(s, t, τ) we denote the length of the shortest path s, t ∈ V if departing
from s at time τ . The distance-label, i.e., the distance between s and t for all
possible departure times ∈ Π , is given by d∗(s, t). Note that the distance-label
is a function ∈ �. In this work, we call a query for determining d(s, t, τ) an s-t
time-query, while a query for computing d∗(s, t) is denoted by s-t profile-query.

3 Ingredients and Their Augmentation

In this section, we identify basic ingredients all existing high-performance speed-
up techniques for time-dependent route planning rely on. These are Dijkstra’s
algorithm, landmarks, Arc-Flags, and contraction. In the following, we explain
each ingredient separately and show how they are augmented so that correctness
can also be guaranteed in time-dependent networks.



212 D. Delling and D. Wagner

3.1 Dijkstra’s Algorithm

The classical algorithm for computing the shortest path from a given source
to all other nodes in a directed graph with non-negative edge weights is due
to Dijkstra [13]. The algorithm maintains, for each node u, a label distance[u]
with the tentative distance from s to u. A priority queue Q contains all nodes
that depict the current search horizon around s. At each step, the algorithm
removes (or settles) the node u from Q with minimum distance from s. Then, all
outgoing edges (u, v) of u are relaxed, i.e., we check whether d(s, u)+ len(u, v) <
distance[v] holds. If it holds, a shorter path to v via u has been found. Hence, v
is either inserted to the priority queue or its priority is decreased.

Augmentation. Computing d(s, t, τ) can be solved by a modified Dijkstra [4]:
when relaxing an edge (u, v) we have to evaluate the weight of it for time τ +
d(s, u, τ). In our scenario, the running time for evaluating functions is negligible,
hence the additional effort for respecting the departure time is negligible as well.

However, computing d∗(s, t) is more expensive but can be computed by a
label-correcting algorithm [5], which can be implemented very similarly to Di-
jkstra. The source node s is initialized with a constant label d∗(s, s) ≡ 0, any
other node u with a constant label d∗(s, u) ≡ ∞. Then, in each iteration step,
a node u with minimum d∗(s, u) is removed from the priority queue. Then for
all outgoing edges (u, v) a temporary label l(v) = d∗(s, u)⊕ len(u, v) is created.
If l(v) ≥ d∗(s, v) does not hold, l(v) yields an improvement. Hence, d∗(s, v) is
updated to min{l(v), d∗(s, v)} and v is inserted into the queue. We may stop
the routine if we remove a node u from the queue with d(s, u) ≥ d(s, t). If we
want to compute d∗(s, t) for many nodes t ∈ V , we apply a label-correcting
algorithm and stop the routine as soon as our stopping criterion holds for all t.
Note that we may reinsert nodes into the queue that have already been removed
by this procedure. Also note that when applied to a graph with constant edge-
functions, this algorithm equals a normal Dijkstra. An interesting result from [5]
is the fact that the running time of label-correcting algorithms highly depends
on the complexity of the edge-functions.

In the following, we construct profile graphs (PG), i.e., compute d∗(s, u) for
a given source s and all nodes u ∈ V , with our label-correcting algorithm. We
call an edge (u, v) a PG-edge if d∗(s, u) ⊕ len(u, v) > d∗(s, v) does not hold. In
other words, (u, v) is a PG-edge iff it is part of a shortest path from s to v for
at least one departure time.

Bidirectional Profile Search. As already mentioned, bidirectional search is pro-
hibited for time-queries as the arrival time is unknown. However, we can directly
apply bidirectional search for profile-queries since we investigate all arrival times.
Compared to a time-independent bidirectional Dijkstra, we only need to adjust
the stopping criterion. Stop the search if the lower bound of the minimum label
in the forward queue added to the lower bound of the minimum label in the
backward queue is larger than the upper bound of the tentative distance label.
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3.2 A∗ Search Using Landmarks (ALT)

Next, we explain the known technique of A∗ search [17] in combination with
landmarks, called ALT [15,16]. The search space of Dijkstra’s algorithm can be
visualized as a circle around the source. The idea of goal-directed or A∗ search
is to push the search towards the target. By adding a potential π : V → R

to the priority of each node, the order in which nodes are removed from the
priority queue is altered. A ‘good’ potential lowers the priority of nodes that
lie on a shortest path to the target. It is easy to see that A∗ is equivalent
to Dijkstra’s algorithm on a graph with reduced costs, formally lenπ(u, v) =
len(u, v)−π(u)+π(v). Since Dijkstra’s algorithm works only on nonnegative edge
costs, not all potentials are allowed. We call a potential π feasible if lenπ(u, v) ≥ 0
for all (u, v) ∈ E. The distance from each node v of G to the target t is the
distance from v to t in the graph with reduced edge costs minus the potential
of t plus the potential of v. So, if the potential π(t) of the target t is zero, π(v)
provides a lower bound for the distance from v to the target t.

Preprocessing. There exist several techniques [31,32] to obtain feasible po-
tentials using the layout of a graph. The ALT algorithm however, uses a small
number of nodes—so called landmarks—and the triangle inequality to compute
feasible potentials. Given a set L ⊆ V of landmarks and distances d(l, v), d(v, l)
for all nodes v ∈ V . For a given landmark l ∈ L, the following triangle inequali-
ties hold:

d(l, u) + d(u, v) ≥ d(l, v) and d(u, v) + d(v, l) ≥ d(u, l)

Therefore, d(u, v) := maxl∈L max{d(u, l) − d(v, l), d(l, v) − d(l, u)} provides a
feasible lower bound for the distance d(u, v). See Figure 3 for an illustration.
The quality of the lower bounds highly depends on the quality of the selected
landmarks.

Landmark Selection. A crucial point in the success of a high speed-up when
using ALT is the quality of landmarks. Since finding good landmarks is difficult,
several heuristics [15,16] exist. We focus on the best known techniques: avoid and
maxCover.

Avoid [15]. This heuristic tries to identify regions of the graph that are not
well covered by the current landmark set S. Therefore, a shortest-path tree Tr

is grown from a random node r. The weight of each node v is the difference
between d(v, r) and the lower bound d(v, r) obtained by the given landmarks.

l1 l2

u v

Fig. 3. Triangle inequalities for landmarks. The landmarks are l1 and l2.
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The size of a node v is defined by the sum of its weight and the size of its children
in Tr. If the subtree of Tr rooted at v contains a landmark, the size of v is set
to zero. Starting from the node with maximum size, Tr is traversed following
the child with highest size. The leaf obtained by this traversal is added to S. In
this strategy, the first root is picked uniformly at random. The following roots
are picked with a probability proportional to the square of the distance to its
nearest landmark.

MaxCover [16]. The main disadvantage of avoid is the starting phase of the
heuristic. The first root is picked at random and the following landmarks are
highly dependent on the starting landmark. MaxCover improves on this by first
choosing a candidate set of landmarks (using avoid) that is about four times
larger than needed. The landmarks actually used are selected from the candidates
using several attempts with a local search routine. Each attempt starts with a
random initial selection.

Query. The unidirectional ALT-query is a modified Dijkstra operating on the
input graph, the only difference to plain Dijkstra is that the key within the
priority queue is not determined only by the distance to s but also by a lower
bound of the distance to the target, given by the landmarks.

It turns out that unidirectional ALT only provides mild speed-ups over Di-
jkstra’s algorithm [11]. The full potential of ALT is unleashed if applied bidi-
rectionally. At a glance, combining ALT and bidirectional search seems easy.
Simply use a feasible potential πf for the forward and a feasible potential πb

for the backward search. However, such an approach does not work due to the
fact that the searches might work on different reduced costs, so that the short-
est path might not have been found when both searches meet. This can only
be guaranteed if πf and πb are consistent, meaning lenπf

(u, v) in G is equal
to lenπb

(v, u) in the reverse graph. We use the variant of an average poten-
tial function [19] defined as pf(v) = (πf (v) − πb(v))/2 for the forward and
pb(v) = (πb(v)− πf (v))/2 = −pf (v) for the backward search. By adding πb(t)/2
to the forward and πf (s)/2 to the backward search, pf and pb provide lower
bounds to the target and source, respectively. Note that these potentials are
feasible and consistent but provide worse lower bounds than the original ones.

Augmentation. Based on observation that potentials stay feasible as long as
edge weights only increase and do not drop below their initial values, we can
adapt a unidirectional variant of the ALT algorithm to the time-dependent sce-
nario: We perform both landmark selection and distance computation in the
lower bound graph G. It is obvious that we obtain a feasible potential. How-
ever, ALT implemented as bidirectional search is much faster than the unidi-
rectional variant. As already mentioned, performing a bidirectional search in
time-dependent networks is non-trivial. In [26], we showed how bidirectional
ALT can be used in time-dependent networks anyway. The idea is as follows: A
backward search is performed in G and is only used to restrict nodes that need
to be visited by the forward search.
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Bidirectional Query. The query algorithm is based on restricting the scope of
a time-dependent A∗ search from the source using a set of nodes defined by a
time-independent A∗ search from the destination, i.e., the backward search is a
reverse search in G, which corresponds to the graph G weighted by the lower
bounding function len. More precisely, it works in three phases:

1. A bidirectional ALT is applied to G, where the forward search is performed
on the (time-dependent) graph, and the backward search is run on the lower
bound graph G. All nodes settled by the backward search are added to a set
M . Phase 1 terminates as soon as the two search scopes meet.

2. Suppose that v ∈ V is a node settled by both searches; then the time de-
pendent cost μ = γτ (pv) of the path pv going from s to t passing through v
is an upper bound to d(s, t, τ). Let β be the key of the minimum element of
the backward search queue; phase 2 terminates as soon as β > μ. Again, all
nodes settled by the backward search are added to M .

3. In the third phase, only the forward search continues, with the additional
constraint that only nodes in M can be explored. The forward search
terminates when t is settled.

Note that the time-dependent ALT algorithm also works in a dynamic time-
dependent scenario: The algorithm still performs accurate queries as long as
edge weights do not drop below their lower bound. Moreover, the bidirectional
query algorithm can also be used to find a K approximation of the shortest path.
Therefore, the second phase is already stopped as soon as β > Kμ (cf. [26] for
details).

3.3 Arc-Flags

The classic Arc-Flag approach, introduced in [21,22], first computes a partition
C of the graph and then attaches a label to each edge e. A label contains, for each
cell C ∈ C, a flag AFC(e) which is true if a shortest path to at least one node in
C starts with e. A modified Dijkstra—from now on called Arc-Flags Dijkstra—
then only considers those edges for which the flag of the target node’s cell is true.
The big advantage of this approach is its easy query algorithm. Furthermore,
we observed that for long-range queries in road networks, an Arc-Flags Dijkstra
often is optimal in the sense that it only visits those edges that are on the shortest
path. However, preprocessing is very extensive, either regarding preprocessing
time or memory consumption.

Preprocessing. Preprocessing of Arc-Flags is divided into two parts. First, the
graph is partitioned into k cells. The second step then computes k flags for each
edge.

Partition. The first approach for obtaining a partition is based on a grid par-
tition [22]. It turns out that the performance of an Arc-Flags query heavily
depends on the partition used. In order to achieve good speed-ups, several re-
quirements have to be fulfilled: cells should be connected, the size of the cells
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should be balanced, and the number of boundary nodes has to be low. A sys-
tematical experimental study of the impact of partitions on Arc-Flags has been
published in [25].

Setting Arc-Flags. The second step of preprocessing is the computation of arc-
flags. Throughout the years, several approaches have been introduced (see e.g.,
[18,21,22,23,24]). We here concentrate on two approaches which turned out to
be the most efficient. For both approaches, we have to perform an initialization
step, which sets the so-called own-cell flags of all edges not crossing borders to
true. Note that the own-cell flag of an edge (u, v) in cell C, i.e., u and v both are
in cell C, is AFC((u, v)). If u and v are in different cells, no flag is set to true
during the initialization phase.

Boundary Shortest Path Trees. A true arc-flag AFC(e) denotes whether e
has to be considered for a shortest-path query targeting a node within C.
The key observation of this approach is that all shortest paths ending in the
cell C must pass any of the boundary nodes BC of cell C. More precisely,
a node b ∈ C is called a boundary node of cell C if there exists an edge
(v, b) ∈ E with node v being part of a cell C′ �= C. With this observation,
arc-flags can be computed as follows: Grow a shortest path tree in ←−

G from
all boundary nodes b ∈ BC of all cells C. Then set AFC((u, v)) = true if
(u, v) is a tree edge for at least one tree grown from all boundary nodes
b ∈ BC .

Centralized Approach. The drawback of the first approach is that we have
to grow |B| shortest path trees yielding long preprocessing times for large
transportation networks. [18] introduces a new approach to computing flags.
A label-correcting algorithm (also called centralized tree) is performed for
each cell C. The algorithm propagates labels of size |BC | through the network
depicting the distances to all boundary nodes of the cell. The algorithm
terminates if no label can be improved any more. Then, AFC((u, v)) is set
to true if len(u, v) + d(v, b) = d(u, b) holds for at least one b ∈ BC .

Query. A unidirectional Arc-Flags query is a modified Dijkstra operating on
the input graph. For any s–t query, it first determines the target cell T , and
then relaxes only those edges e with AFT (e) = true. Note that compared to
plain Dijkstra, an Arc-Flags query performs only one additional check.

Note that AFC(e) is true for almost all edges e ∈ C due to the own-cell-flag.
Due to these own-cell-flags an Arc-Flags Dijkstra yields no speed-up for queries
within the same cell. Even worse, more and more edges become important when
approaching the target cell (called the coning effect) and finally, all edges are
considered as soon as the search enters the target cell.

Multi-Level Arc-Flags. While the coning effect can be weakened by a bidirec-
tional approach, the problem of inner-cell queries persists also for bidirectional
search. An approach to remedy this drawback is introduced in [25]: A second
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layer of arc-flags is computed for each cell. Therefore, each cell is again parti-
tioned into several subcells and arc-flags are computed for each. A multi-level
arc-flags query then first uses the flags on the topmost level and as soon as the
query enters the target’s cell on the topmost level, the low-level arc-flags are
used for pruning.

Preprocessing in a time-independent scenario is done as follows. Arc-flags on
the upper level are computed as described above. For the lower flags, grow a
shortest path for all boundary nodes b on the lower level. Stop the growth as
soon as all nodes in the supercell of C are settled. Then, we set a low-level arc-
flag to true if the edge is a tree edge of at least one shortest path tree. Note that
this approach can be extended to a multi-level approach in a straightforward
manner. Also note that multi-level Arc-Flags can be applied bidirectionally as
well.

Discusssion. The advantages of Arc-Flags is the easy concept combined with
exceptional query performance: Preprocessing is based on Dijkstra-searches and
the query algorithm performs only one additional check (per edge) compared to
plain Dijkstra. Stunningly, bidirectional Arc-Flags long-range queries are often
optimal—at least in road networks—in that sense that only shortest path edges
are relaxed. However, the most crucial drawback of Arc-Flags is its time consum-
ing preprocessing effort. Even the most advanced technique, i.e., the centralized
approach, needs more than 17 hours to preprocess a continental-sized road net-
work. Still, due to its superior undirectional query performance, Arc-Flags seemed
to be a good starting point for time-dependent shortest path computations.

Augmentation. In time-independent scenarios, a set arc-flag AFC(e) denotes
whether e has to be considered for a shortest-path query targeting a node within
C. In other words, the flag is set if e is important for (at least one target node) in
C. In a time-dependent scenario, we use the following intuition to set arc-flags:
an arc-flag AFC(e) is set to true, if e is important for C at least once during Π .
A straightforward adaption of computing arc-flags in a time-dependent graph
is to construct a profile graph in ←−

G for all boundary nodes b ∈ BC of all cells
C. Then we set AFC((u, v)) = true if (u, v) is a PG-edge for at least one PG
built from all boundary nodes b ∈ BC . In addition, we also set all own-cell flags
to true as well. The time-dependent query is a normal time-dependent Dijkstra
only relaxing edges with set flag for the target’s cell.

Approximation. Computing arc-flags as described above requires to build a com-
plete profile graph on the backward graph from each boundary node yielding
too long preprocessing times for large networks. Recall that the running time of
building PGs is dominated by the complexity of the function (cf. Section 3.1).
Hence, we may construct two PGs for each boundary node, the first uses ↑len
as length functions, the second ↓len. Since we use approximations, we may use
less interpolations points per label. By this, constructing two such PGs may
be faster than building one exact one. We end up in two distance labels per
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node u, one being an overapproximation, the other being an underapproxima-
tion of the correct label. Then, for each (u, v) ∈ E, we set AFC(u, v) = true if
len(u, v)⊕ ↑d∗(v, bC) >↓d∗(u, bC) does not hold.

If networks get so big that even setting approximate labels is prohibited due
to running times, one can even use upper and lower bounds for the labels. This
has the advantage that building two shortest-path trees per boundary node is
sufficient for setting correct arc-flags. The first uses len as length function, the
other len. Note that by approximating arc-flags (denoted by AF ), their quality
may decrease but correctness is untouched. Thus, queries remain correct but
may become slower.

Heuristic Arc-Flags. In [8], we proposed a third approach for computing flags.
The preprocessing is as follows: We grow k + 2 shortest-path trees from each
boundary node. The first uses len as metric, the second one len, and the re-
maining k trees are time-queries in ←−

G using a fixed arrival time at the boundary
node. We set a flag of an edge for a cell C if the edge is part of at least one
shortest path tree grown from the boundary nodes of C.

Unfortunately, this approach may yield incorrect queries as a shortest path
for a specific departure time may have been missed. However, it is obvious that
a path is found since at least for one departure time, flags are set to true for a
shortest path to the target’s cell. Experiments on the eventual error-rate can be
found in Section 5.

3.4 Contraction

One reason for the success of hierarchical speed-up techniques is the iterative
contraction of the input: Unimportant nodes are removed from the graph and ad-
ditional shortcuts are inserted to preserve distances between non-removed nodes.

Node-Reduction. The number of nodes is reduced by iteratively bypassing nodes
until no node is bypassable any more. To bypass a node v we first remove v,
its incoming edges I and its outgoing edges O from the graph. Then, for each
u ∈ tails(I) and for each w ∈ heads(O) \ {u} we introduce a new edge of the
length len(u, v) + len(v, w). If there already is an edge connecting u and w in
the graph, we only keep the one with smaller length. All nodes not removed by
the node-reduction are part of the so called core of the input.

Edge-Reduction. Note that this node-reduction routine potentially adds short-
cuts not needed for keeping the distances in the core correct. See Figure 4 for an
example. Hence, an edge-reduction is performed directly after node-reduction,
similar to [30]. We grow a shortest-path tree from each node u of the core. We
stop the growth as soon as all neighbors w of u have been settled. Then we
check for all neighbors w whether u is the predecessor of w in the grown partial
shortest path tree. If u is not the predecessor, we can remove (u, w) from the
graph because the shortest path from u to w does not include (u, w). In order
to remove as many edges as possible we favor paths with more hops over those
with few hops.
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Fig. 4. Example of contraction. The figure on the upeer left depicts the input, edge
labels indicate the weight of the edge. We contract, i.e., remove, node 2 and add an
shortcut from node 1 to 4 with weight 9 (upper right). However, the shortest path from
1 to 4 is via node 3 with length 4. Hence, we can safely remove the shortcut (1,4) from
the core in order to preserve distances between core nodes.
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Fig. 5. Time-dependent contraction in road networks. Recall that we interpolate lin-
early between interpolation points, i.e., the travel time on edge (u, v) at 7:45 is 15
minutes. It is obvious that we have to add interpolation points at 7:00 and 8:00 to
the function assigned to the shortcut (u, w). This would result in a travel time from
u to w of 30 minutes when departing at 7:45. However, we arrive at v at 8:00 when
departing from u at 7:45 and arrive at 8:16 at w. So, the travel time from u to w is
31 minutes instead of 30. Hence, we need to insert an additional interpolation point
at 7:45. The reason for this is that the responsible interpolation points for evaluating
len(v, w) changes when departing from u at 7:45.

Augmentation. Time-dependent contraction is similar to a time-independent
one. During node-reduction, new shortcuts (u, w), depicting the path from u via v
to w, get the function len(u, v)⊕len(v, w) assigned. While this is straightforward
in principle, one problem of node-reduction in time-dependent road networks is
the following: Let P (f) be the number of interpolation points of the function
f ∈ �. Then the composed function of len(u, v) ⊕ len(v, w), may have up to
P (len(u, v))+P (len(v, w)) number of interpolation points in the worst case. The
main problem is that the interpolation points needed for evaluating len(v, w)
may change between two interpolation points of len(u, v). Figure 5 gives an
example, for details we refer the interested reader to [7]. This is one of the
main problems when routing in time-dependent graphs: Almost all speed-up
techniques developed for static scenarios rely on adding long shortcuts to the
graph. While this is cheap for static scenarios, the insertion of time-dependent
shortcuts yields a high amount of preprocessed data.
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For edge-reduction, we build a PG (instead of a shortest path tree) from each
node u of the core. We stop the growth as soon as all neighbors v of u have their
final label assigned. Then we check for all neighbors whether d∗(u, v) < len(u, v)
holds. If it holds, we can remove (u, v) from the graph because for all possible
departure times, the path from u to v does not include (u, v).

4 Speed-Up Techniques

In this section, we show how to assemble efficient speed-up techniques from the
basic ingredients presented in Section 3. More precisely, we explain Core-ALT,
SHARC, and Contraction Hierarchies. Due to their clear foundation on basic
ingredients, the augmentation of these speed-up techniques is easier than for
other approaches.

4.1 Core-ALT

Core-ALT was introduced in [3] and augmented to the time-dependent sce-
nario in [9]. It is a combination of landmarks, bidirectional search, and con-
traction. As already discussed in Section 3, pure ALT suffers from two major
drawbacks. Space consumption is rather high and—even more important—ALT

cannot compete with hierarchical approaches—concerning query performance—
in transportation networks. In [3], we showed how to remedy both drawbacks
without violating the advantages of pure ALT, i.e., easy adaption to dynamic
scenarios and robustness to the input. The key idea is to perform an initial con-
traction step prior to ALT preprocessing. Landmarks are then chosen from the
core and landmark distances are also only stored for core nodes. This yields a
2-phase query. During the first phase, a plain bidirectional Dijkstra is performed
until the core is reached. Within the core, bidirectional ALT is applied.

Preprocessing. At first, the input graph G = (V, E) is contracted to a graph
GC = (VC , EC), called the core. Then, we compute landmarks on the core and
store the distances to and from the landmarks for all core nodes. After prepro-
cessing the core, we store the preprocessed data and merge the core and the
normal graph to a full graph GF = (V, EF = E ∪ EC). Moreover, we mark the
core-nodes with a flag.

Query. The s-t query is a modified bidirectional Dijkstra, consisting of two
phases, both performed on GF . During phase 1, we run a bidirectional Dijkstra
rooted at s and t not relaxing edges belonging to the core. We add each core
node, called entrance point, settled by the forward search to a set S (T for
the backward search). The first phase terminates if one of the following two
conditions hold: (1) either both priority queues are empty or (2) the sum of
the distances to the closest entry points of s and t is larger than the length of
the tentative shortest path. If case (2) holds, the whole query terminates. The
second phase is an ALT-query, initialized by refilling the queues with the nodes
belonging to S and T .



Time-Dependent Route Planning 221

Augmentation. In [9], we augmented Core-ALT to time-dependent networks.
The preprocessing is very similar to the time-independent variant. First, we
extract a core GC = (VC , EC) with a time-dependent contraction routine. Then,
we merge the core with the original graph to obtain GF = GC ∪G = (V, E∪EC)
since VC ⊂ V . Finally, we select landmarks from GC and compute landmark
distances in GC . The query algorithm again consists of two phases, performed
on GF . Due to the fact that the arrival time is unknown, the query algorithm is
slightly more complicated than in the time-independent case.

1. Initialization phase: start a Dijkstra search from both the source and the
destination node on GF , using the time-dependent costs for the forward
search and the time-independent costs len for the backward search, pruning
the search (i.e., not relaxing outgoing edges) at nodes ∈ VC . Add each node
settled by the forward search to a set S, and each node settled by the back-
ward search to a set T . Iterate between the two searches until: (i) S ∩T �= ∅
or (ii) the priority queues are empty.

2. Main phase: (i) If S∩T �= ∅, then start a unidirectional Dijkstra search from
the source on GF until the target is settled. (ii) If the priority queues are
empty and we still have S∩T = ∅, then start a bidirectional time-dependent
ALT (cf. Section 3) on the graph GC , initializing the forward search queue
with all leaves of S and the backward search queue with all leaves of T , using
the distance labels computed during the initialization phase. The forward
search is also allowed to explore any node v ∈ T , throughout the 3 phases
of the algorithm. Stop when t is settled by the forward search.

In other words, the forward search “hops on” the core when it reaches a node u ∈
S∩VC , and “hops off” at all nodes v ∈ T ∩VC . Moreover, we use time-dependent
bidirectional ALT in case (ii) during the main phase. With the same arguments
from Section 3.2, we can use Core-ALT to compute a K-approximation of the
shortest path.

4.2 SHARC

SHARC Routing was introduced in [2] and augmented in [8]. It is based on
contraction and Arc-Flags combined with a unidirectional query algorithm.

Preprocessing of static SHARC is divided into three sections. During the
initialization phase, we extract the 2-core of the graph and perform a multi-level
partition of G. Then, an iterative process starts. At each step i we first contract
the graph by bypassing unimportant nodes and set the arc-flags automatically
for each removed edge, depending on the tail u of the removed edge. If u is a
core node, we only set the own-cell flag to true (and others to false) because this
edge can only be relevant for a query targeting a node in this cell. Otherwise,
all arc-flags are set to true as a query has to enter the core in order to reach
a node outside this cell. See Fig. 6 for an example. For the remaining edges
of the contracted graph we compute the arc-flags according to Section 3. In
the finalization phase, we assemble the output-graph, refine arc-flags of edges
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Fig. 6. Example for assigning arc-flags to removed edges during contraction for a par-
tition having four cells. All nodes are in cell 3. The red nodes (4 and 5) are removed,
the dashed shortcuts are added by the contraction. Arc-flags (edge labels) are indicated
by a 1 for true and 0 for false. The edges heading a node removed by the contraction
routine get only their own-cell flag set true. Any other removed edge gets all flags set
to true. The added shortcuts get their own-cell flags fixed to false.

removed during contraction, and finally reattach the 1-shell nodes removed at
the beginning.

Basically, the SHARC query is a modified Dijkstra that operates on the output
graph. The modifications are the same as for a multi-level Arc-Flags query (cf.
Section 3): When settling a node u, we compute the lowest level i on which
u and the target node t are in the same supercell. When relaxing the edges
outgoing from u, we consider only those edges having a set arc-flag on level
i for the corresponding cell of t. Note that the SHARC query, compared to
plain Dijkstra, only needs to perform two additional operations: computing the
common level of the current node and the target and the arc-flags evaluation.

Augmentation. The adaption of SHARC [8] is done in a straightforward fash-
ion. We use time-dependent contraction and time-dependent arc-flags computa-
tion during preprocessing instead of their time-independent counterparts.

Variants. In Section 3.3, we presented several ways of computing time-dependent
arc-flags. The aggressive variant of SHARC uses exact flags during preprocess-
ing, the economical version uses approximate flags, while heuristic SHARC uses
heuristic flags. Hence, aggressive SHARC tends to have long preprocessing times
combined with a better quality of flags, while economical SHARC has shorter
preprocessing times for the price of worse flags. Heuristic SHARC however
cannot guarantee correctness of the queries.

Landmarks. Approximate arc-flags yield worse results than exact ones. In order
to partly remedy this loss in performance, we can add landmarks to SHARC. We
can combine ALT with SHARC easily. We run a time-dependent ALT prepro-
cessing consisting of selecting landmarks L ⊆ V and computing d(l, v), d(v, l) for
all v ∈ V, l ∈ L. Then, we apply a normal SHARC-query but use d(s, u, τ)+π(u)
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(cf. Section 3) instead of d(s, u, τ) as priority key. We call this combination
L-SHARC (Landmarks and SHARC).

4.3 Contraction Hierarchies

Contraction Hierarchies (abbreviated by CH) were introduced in [14] and aug-
mented to the time-dependent scenario in [1]. This approach is solely based on
contraction combined with a bidirectional query algorithm. Preprocessing is di-
vided into two parts: node-ordering and contraction. Node-ordering assigns a
priority to each node depicting its importance in an n-level hierarchy. Then,
during contraction, the input graph G is transferred to two search graphs G↑
and G↓, which are called upward and downward graph, respectively. G↑ only
stores edges directing from unimportant to important nodes, while G↓ contains
only edges directing from important to unimportant nodes. These graphs can be
constructed by running n node- and edge-reduction steps similarly to how it is
explained in Section 3. However, each node-reduction step contracts exactly one
node u, resulting in a very limited edge-reduction routine as unneeded shortcuts
may only be added between neighbors of u. The query algorithm is conducted of
two Dijkstra searches, a forward search (from s) operating on G↑ and a backward
search (from t) on G↓.

Augmentation. Contraction Hierarchies is adapted by augmenting the contrac-
tion process with the process of node-ordering untouched. So, time-dependent
preprocessing is straightforward; the main challenge is the adaption of the query
algorithm.

The basic static query algorithm for CHs consists of a forward search in an
upward graph G↑ = (V, E↑) and a backward search in a downward graph G↓.
Wherever these searches meet, we have a candidate for a shortest path. The
shortest such candidate is a shortest path. Since the departure time is known,
the forward search is easy to generalize. The easiest way to adapt the backward
search is to explore all nodes that can reach t in G↓. During this exploration
all edges connecting nodes that can reach t are marked. Let Emarked denote the
set of marked edges. Then, an s–t-query can be performed by a forward search
from s in (V, E↑ ∪ Emarked).

5 Experiments

In this section, we summarize experimental results on the performance of time-
dependent ALT, Core-ALT, SHARC, and Contraction Hierarchies for road and
railway networks. The experimental results are taken from [1,7].

All tests were executed on one core of two similar (with respect to perfor-
mance) machines, both running SUSE Linux 10.3. The first machine is an AMD
Opteron 2218 clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache.
The second machine has a Xeon 5345 processors clocked at 2.33 GHz with 16
GByte of RAM and 2 x 4 MB of L2 cache. All programs were compiled with
GCC 4.2.1 or 4.3.2, using optimization level 3.
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Inputs. Two types of inputs are applied: Road and railway networks. For the
former, we have access to a real-world time-dependent road network of Germany.
It has approximately 4.7 million nodes and 10.8 million edges. In order to analyze
the scalability of our approaches, we additionally use the available real-world
time-independent network of Western Europe (18 million nodes and 42.6 million
edges) and generate synthetic rush hours. All data has been provided by PTV
AG for scientific use. The German data contains five different traffic scenarios,
collected from historical data: Monday, midweek (Tuesday till Thursday), Friday,
Saturday, and Sunday. As expected, congestion of roads is higher during the
week than on the weekend: ≈ 8% of edges are time-dependent for Monday,
midweek, and Friday. The corresponding figures for Saturday and Sunday are
≈ 5% and ≈ 3%, respectively. Our railways timetable data—provided by HaCon
for scientific use—of Europe consists of 30 516 stations and 179 985 trains. The
period is 24 hours. The resulting realistic, i.e., including transfer times, time-
dependent network has about 0.5 million nodes and 1.4 million edges, and is
fulfilling the FIFO-property.

Setup. In the following, we report preprocessing times and the overhead of the
preprocessed data in terms of additional bytes per node. Moreover, we report
two types of queries: time-queries, i.e., queries for a specific departure time, and
profile-queries, i.e., queries for computing d∗(s, t). For each type we provide the
average number of settled nodes, i.e., the number of nodes taken from the priority
queue, and the average query time. For s-t profile-queries, the nodes s and t are
picked uniformly at random. Time-queries additionally need a departure time τ
as well, which we pick uniformly at random as well. As all methods introduced
in this chapter have approximate variants, we record four different statistics to
characterize the solution quality: error rate, average relative error, maximum
relative error, maximum absolute error. By error rate we denote the percentage
of computed suboptimal paths over the total number of queries. By relative
error on a particular query we denote the relative percentage increase of the
approximated solution over the optimum, computed as ω/ω∗− 1, where ω is the
cost of the approximated solution and ω∗ is the cost of the optimum computed
by Dijkstra’s algorithm. We report average and maximum values of this quantity
over the set of all queries. The maximum absolute error is given by ω − ω∗. All
figures in this chapter are based on 100000 random s-t queries and refer to
the scenario that only the lengths of the shortest paths have to be determined,
without outputting a complete description of the paths.

5.1 Road Networks

First, we compare all time-dependent algorithms discussed in this paper among
each other. We hereby split our comparison in two parts. Exact queries and
approximation. Table 1 reports query performance of time-dependent Dijkstra,
uni-directional ALT, bidirectional ALT, Core-ALT (CALT), SHARC, and Con-
traction Hierarchies (CH) for our exact setup, while Tab. 2 depicts performance
if suboptimal paths are allowed. As input we use our time-dependent road net-
works of Europe (high traffic) and Germany (midweek and Sunday). Note that
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no approximate variant of Contraction Hierarchies exists yet and that no results
for Europe (high traffic) have been published. The reason for the latter is the
high memory consumption making Contraction Hierarchies impractical for this
input.

Exact Setup. Depending on the scenario, different algorithms perform best.
While CALT is the technique with lowest preprocessing effort (both time and
overhead), CH or SHARC win with respect to query performance. While CH tend
to have fast query times, the space consumption is up to 1 000 bytes per node.
For this reason, CH cannot be used for Europe (high traffic). Aggressive SHARC
however, has the lowest query times but for the price of high preprocessing times.
In fact, preprocessing times for aggressive SHARC are only practical for Germany
on Sunday. As soon as the graph gets bigger or more edges are time-dependent,
preprocessing takes more than 2 days. So, it seems as if economical L-SHARC
and CALT are the techniques most robust to the input.

Summarizing, depending on the size of the graph and degree of perturba-
tion, our presented speed-up techniques are 150 to 5 000 times faster than plain

Table 1. Performance of Dijkstra, uni- and bidirectional ALT, Core-ALT, SHARC,
and Contraction Hierarchies (CH) in an exact setup. Note that no figures on the number
of relaxed edges are given in [1].

Prepro Queries

time space #delete spd #relaxed spd time spd
input algorithm [h:m] [B/n] mins up edges up [ms] up

Dijkstra 0:00 0 2 305 440 1 5 311 600 1 1 502.88 1
uni-ALT 0:23 128 200 236 12 239 112 22 148.36 10
ALT 0:23 128 110 134 21 131 090 41 94.26 16

Ger mid CALT 0:09 50 3 190 723 12 255 433 5.36 280
eco SHARC 1:16 155 19 425 119 104 947 51 25.06 60
eco L-SHARC 1:18 219 2 776 831 19 005 279 6.31 238
CH 0:25 1 019 528 4 366 – – 1.22 1231
Dijkstra 0:00 0 2 348 470 1 5 410 600 1 1 464.41 1
uni-ALT 0:23 128 142 631 16 170 670 32 92.79 16
ALT 0:23 128 58 956 40 70 333 77 42.96 34
CALT 0:05 19 1 773 1 325 6 712 806 2.13 688

Ger Sunday eco SHARC 0:30 65 2 142 1 097 6 549 826 1.86 787
eco L-SHARC 0:32 129 576 4 076 2 460 2 200 0.73 2 011
agg SHARC 27:20 61 670 3 504 1 439 3 759 0.50 2 904
agg L-SHARC 27:22 125 283 8 300 978 5 535 0.29 5 045
CH 0:11 248 407 5 770 – – 0.71 2 061
Dijkstra 0:00 0 8 877 158 1 21 006 800 1 5 757.45 1
uni-ALT 1:15 128 2 143 160 4 2 613 994 8 1 520.83 4

Europe ALT 1:15 128 3 009 320 3 3 799 112 6 1 379.21 4
high traffic CALT 1:00 61 60 961 146 356 527 59 121.47 47

eco SHARC 6:44 134 66 908 133 480 768 44 82.12 70
eco L-SHARC 6:49 198 18 289 485 165 382 127 38.29 150
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Table 2. Performance of Dijkstra, uni- and bidirectional ALT, Core-ALT, and SHARC
in an approximation setup

Prepro Error Time-Queries

time space error max max #del. spd #rel. time spd
input algorithm [h:m] [B/n] -rate rel. abs[s] mins up edges [ms] up

ALT 0:23 128 12.4% 14.32% 1 892 50 764 45 60 398 36.92 41
Ger CALT 0:09 50 8.2% 13.84% 2 408 1 593 1 447 5 339 1.87 804
mid SHARC 3:26 137 0.8% 0.61% 48 818 2 820 1 611 0.69 2 164

L-SHARC 3:28 201 0.8% 0.61% 48 334 6 900 1 092 0.38 3 915
ALT 0:23 128 10.4% 14.28% 1 753 50 349 47 59 994 36.04 41

Ger CALT 0:05 19 4.0% 12.72% 1 400 1 551 1 514 5 541 1.71 856
Sun SHARC 1:48 59 0.1% 0.36% 15 635 3 699 1 271 0.46 3 163

L-SHARC 1:50 123 0.1% 0.36% 15 272 8 639 908 0.27 5 420
ALT 1:15 128 35.4% 10.57% 5 789 311 209 29 382 061 214.24 27

Eur CALT 1:00 61 33.0% 8.69% 6 643 6 365 1 395 32 719 9.22 624
high SHARC 22:12 127 39.6% 1.60% 541 5 031 1 764 8 411 2.94 1 958

L-SHARC 22:17 191 39.6% 1.60% 541 3 873 2 292 8 103 2.13 2 703

Dijkstra. For all evaluated networks, the query performance is sufficient for most
real-world environments.

Approximation. In an approximate scenario, things are clearer. Performance
of SHARC is boosted by more than an order of magnitude if we drop correctness
combined with a reasonable preprocessing effort. This very good performance
comes together with a very good quality of paths. Although ALT and Core-
ALT also gain from allowing suboptimal paths, both query performance and
quality of paths is (much) worse than for approximate SHARC. We conclude
that SHARC is superior if we allow slightly suboptimal paths. Summarizing,
approximate SHARC yields speed-ups between 2 700 to 5 420 over Dijkstra’s
algorithm combined with very low errors.

5.2 Timetable Information

Up to now, Contraction Hierarchies have not been evaluated on graphs deriving
from public transportation. Hence, Table 3 shows the results of Dijkstra, uni-
and bidirectional ALT, and SHARC for this input. We observe lower speed-
ups for timetable information than for road networks in general. Unidirectional
ALT is about 66% faster than plain Dijkstra. Even worse, switching from uni- to
bidirectional ALT does not pay off. The bad performance of bidirectional ALT

derives from the fact that the second phase of the algorithm is long. Hence, we
have to explore a great part of the graph after the first path has been found. That
is why speed-up over a unidirectional variant is—compared to road networks—
rather low. We conclude that ALT works well for road networks but fails on
graphs deriving from timetable information for railways.

For SHARC however, we observe a good performance in general. Queries for a
specific departure times are up to 29.7 times faster than plain Dijkstra in terms
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Table 3. Performance of time-dependent Dijkstra, uni- and bi-directional ALT and
SHARC using our timetable data as input. Moreover, we report the increase in edge
count over the input. #delete mins denotes the number of nodes removed from the
priority queue, query times are given in milliseconds. Speed-up reports the speed-up
over the corresponding value for plain Dijkstra.

Prepro Time-Queries Profile-Queries

time space edge #delete speed time speed #delete speed time speed
technique [h:m] [B/n] inc. mins up [ms] up mins up [ms] up
Dijkstra 0:00 0 0% 260 095 1.0 125.2 1.0 1 919 662 1.0 5 327 1.0
uni-ALT 0:02 128 0% 127 103 2.0 75.3 1.7 1 434 112 1.3 4 384 1.2
ALT 0:02 128 0% 262 415 1.0 219.6 0.6 – – – –
eco SHARC 1:30 113 74% 32 575 8.0 17.5 7.2 181 782 10.6 988 5.4
agg SHARC 12:15 120 74% 8 771 29.7 4.7 26.6 55 306 34.7 273 19.5

of search space. This lower search space yields a speed-up of a factor of 26.6.
This gap originates from the fact that SHARC operates on a graph enriched
by shortcuts. As shortcuts tend to have many interpolation points, evaluating
them is more expensive than original edges. As expected, our economical variant
is slower than the generous version but preprocessing is almost 8 times faster.
Recall that the only difference between both version is the way arc-flags are
computed during the last iteration step. Although the number of heap operations
is nearly the same for running one label-correcting algorithm per boundary node
as for growing two Dijkstra-trees, the former has to use functions as labels. As
composing and merging functions is more expensive than adding and comparing
integers, preprocessing times increase significantely.

Comparing time- and profile-queries, we observe that computing d∗(s, t) in-
stead of d(s, t, τ) yields an increase of about factor 4− 7 in terms of heap opera-
tions. Again, as composing and merging functions is more expensive than adding
and comparing integers, the loss in terms of running times is much higher. Still,
both our SHARC-variants are capable of computing d∗ for two random stations
in less than 1 second.

6 Conclusion

In this paper, we have given an overview over existing speed-up techniques for
time-dependent route planning. We identified the basic ingredients these tech-
niques are founded on. Since the speed-up techniques are based on basic ingre-
dients, augmenting the ingredients yields time-dependent speed-up techniques.
More precisely, three efficient speed-up techniques can be set up: Core-ALT,
SHARC, and Contraction Hierarchies. Experiments on real-world data deriving
from road networks and timetable information confirm that these techniques
allow the fast computation of time-dependent shortest paths.

Regarding future work, one could think of faster ways of composing, merging,
and approximating piece-wise linear functions as this would directly accelerate
preprocessing. Aggressive SHARC is the superior technique with respect to query
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performance. Unfortunately, preprocessing times are impractical in high pertur-
bation scenarios. Since preprocessing is based on building profile graphs being
independent of each other, massive parallelization might be an option to prepro-
cess aggressive SHARC in reasonable time for such networks. Another challeng-
ing task for the future is to reduce the space consumption of time-dependent
Contraction Hierarchies.

Another open problem for route planning is that the quickest route is often
not the best one. We might be willing to accept slightly longer travel times if the
cost of the journey is less. Such better routes can be computed by running multi-
criteria queries which take more than one metric into account. While SHARC
works in such a scenario [12], it remains to be shown that other approaches can
be augmented to such a scenario as well.
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Abstract. Passengers of a public transportation system are often forced
to change their planned route due to deviation in travel times. Rerouting
is mostly done by simple means such as announcements. We introduce a
model, in which the passenger computes his optimal route on his mobile
device in a given subnetwork according to the actual travel times. Those
travel times are sent to him as soon as a delay occurs.

The main focus of this paper is on the calculation of a small subnetwork.
This subnetwork shall contain for every realization of travel times a short-
est path of the original network and minimize the number of arcs. For this
so called Exact Subgraph Recoverable Robust Shortest Path
problem we introduce an approximation algorithm with an approxima-
tion factor of m

�
, for any fixed constant 
 ∈ N. This is the best possible

approximation factor for the interval- and the Γ -scenario case, in which
all realizations of travel times are given indirectly by lower and upper
bounds on the arc cost. Unless P = NP, for those two scenario sets the
problems is not approximable with a factor better than m(1−ε), where m
is the number of arcs in the given graph and ε > 0.

1 Introduction

Motivation. The travel times in public transportation are subject to uncer-
tainty. Major delays can occur by blockades of a track, the break-down of an
engine or accidents. Whereas these are exceptional events, minor delays are fre-
quent in all public transportation systems. These delays are caused for example
by a jammed door of a vehicle, deviation in stopping times depending on the
number of boarding passengers, or weather conditions. In a bus network where
the vehicles of the public transportation system use the same infrastructure as
the individual traffic, travel times, e.g. between two bus stops, must be consid-
ered as random data. Major and minor changes in the travel times can have an
effect on the optimal route of an individual passenger through the system. For
example, if the passenger was to change to a bus on a short but now crowded
road it could be better to change at another station to a different bus line,
reaching the same destination on a longer but currently faster road.
� Author’s maiden name: Christina Puhl. Research supported by the Research Train-
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In a railway system classically the route of a passenger is communicated to-
gether with the purchase of a ticket. Rerouting is communicated by simple means.
In case of delays new connections to main cities are announced by the conductor
in the train or at the station. In addition at special information points passengers
can get a printout of a new shortest route to their destination.

In the last ten years the electronic ticket has emerged in many public trans-
portation systems. In the airline industry it has almost replaced paper tickets.
An e-ticket is used to purchase a seat on an airline and can be ordered by tele-
phone, mobile phone or over the Internet. This new technique is also widely used
in urban public transportation systems, e.g. in several German regional trans-
portation systems (Verkehrsverbund Rhein-Ruhr or Verkehrsverbund Berlin-
Brandenburg), or in railway systems as managed by the Deutsche Bahn. Along
with the ticket a fastest route is provided from the origin to the destination for
the passenger. Yet, providing only the optimal itinerary for the planned travel
times does not fully explore the potential of mobile devices. Providers now start
to use the adherent possibilities for individual rerouting.

Some companies as the Verkehrsverbund Berlin-Brandenburg or the Verkehrs-
betriebe Zürich already offer online-information on the actual arrival and depar-
ture times of their buses or trains and an updated traveling route, if needed. This
information can be retrieved by the passenger via the Internet or with their mo-
bile phone. Since the passenger does not know at what point in time data relevant
to his journey has changed, he needs to check his way quite frequently. Multi-
plying this behavior with the increasing number and use of mobiles phones, the
work load for the server can exceed capacity. For each request a shortest path in
the complete transportation network has to be calculated and returned to the
passenger. All shortest path calculations are done server sided.

Another service for mobile device users offered by airline companies and air-
ports, e.g. Lufthansa or the airports München, Berlin and Frankfurt, is to send
information on cancellations of a flight or its delay via SMS. The passenger reg-
isters for this service and if a delay is detected on his route, he is automatically
informed. Updated routes are not provided.

Since the computational power of a mobile device is increasing, the calculation
of a shortest path on small networks can be passed to the passengers. Thus,
in a new approach along with an e-ticket a small enough map to be handled
on a mobile device is provided. This map is chosen, such that for every likely
realization of traveling times – i.e. for every scenario – a shortest path in the
original network can already be found in the subnetwork. At the occurrence of
a delay, the new distances are sent to the passengers mobile device, which can
calculate the new shortest path on his own. Hence, the computational traffic on
the main server is reduced since the shortest path calculation is transferred to
the passenger.

In this paper, we address the question, which parts of the transportation
network are important for the request of a passenger. We consider a set of likely
scenarios, in which each scenario defines the travel times. The reduced map
guarantees, that for each scenario a shortest path according to the original map



The Exact Subgraph Recoverable Robust Shortest Path Problem 233

is included. This map is recoverable robust against the considered set of likely
scenarios. Furthermore, the size of the map is minimized. We call this problem
the Exact Subgraph Recoverable Robust Shortest Path problem and
provide an approximation algorithm with a best possible approximation factor.

Related Work. The Exact Subgraph Recoverable Robust Shortest

Path problem belongs to the class of recoverable robust optimization prob-
lems. Recoverable robustness has been introduced by Liebchen et al. [8,9].
This concept combines and generalizes two classical approaches dealing with
uncertainties: robustness and 2-stage stochastic programming.

In stochastic programming one assumes to have perfect knowledge about the
probability distribution of the scenarios and seeks for a solution that optimizes
some stochastic function. A special case, the 2-stage stochastic programming,
defines a first stage decision, which is fix for all scenarios, and a second stage
decision, taken after all data are known. Together they must form a feasible
solution for the revealed scenario. The general aim is to minimize the costs for
the first decision and the expected costs for the second part. Minkoff et al. [7]
and Ravi et al. [11] applied this method to several combinatorial optimization
problems. But in practice many problems tend to be solved once, therefore the
expected value loses its relevance. Furthermore, a scenario might appear such
that the total costs are much higher than the expected costs. This depends also
on the fact that in many applications no stochastic information is given.

Robustness addresses those two problems by neglecting the distribution and
using a min-max-criterion. A solution is chosen under the anticipation of a worst
case scenario and may be overly conservative. The shortest path and other com-
binatorial optimization problems have been studied in the robust setting by
Bertsimas and Sim [2], Yu and Yang [14] and Aissi et al. [1], among others.
The drawback in those settings are the unacceptably high costs of an optimal
solution. They also ignore the fact that in most problems a recovery involving
at least a minor change to the previously determined solution is possible.

A different robust approach is to find a solution that minimizes the maximal
deviation between the costs for the solution and the optimal costs in any scenario.
This solution is less conservative. Zielinski [15] showed that this robust shortest
path problem with interval scenarios is strongly NP-complete even for planar
graphs. Karasan et. al [6] give a mixed integer program to solve the problem and
introduce a methods for identifying arcs that are never part of a robust solution.

In a recoverable robust approach as defined in [8,9] a first stage decision has
to be taken. This decision leads to first stage decision costs and limitations of
the feasible solutions in the second stage. We call those the recovery set of a
decision. In the second stage, when the scenario is known, from the recovery set
any solution might be taken. For this solution the scenario costs have to be paid.
An optimal recoverable robust solution is a first stage decision that minimizes
the first stage costs and the maximal scenario costs by taking the best solution
from its recovery set. In contrast to the robust approach, there exists no unique
setting of recoverable robustness.
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In [10] two different settings of a recoverable robust shortest path problem
have already been studied, the k-Arc-RRSP and the Rent-RRSP. In the
k-Arc-RRSP an (s, t)-path is fixed in the first stage, while in the second stage,
a path can be taken that differs by at most k arcs from the first stage path. In
the Rent-RRSP, as a first stage decision an (s, t)-path is chosen for which first
stage costs, depending on the rental factor α and the revealed scenario, have
to be payed. After the scenario is known any other path might be chosen as
recovery. For an arc a that was part of the first stage decision, we have to pay
in the second stage the difference between the scenario costs and the first stage
costs of this arc, i.e., (1 − α) · cS

a . For any other arc we get extra inflation costs
given by the factor (1 + β). Both problems are NP-hard for discrete scenario
sets and Γ -scenario sets. The Rent-RRSP is solvable in polynomial time for
interval scenarios and an approximation algorithm with an approximation factor
of γ = min{ 1

α , 2 + β} is given for Γ -scenarios.

Definition and Results. In the two described recoverable robust shortest path
problems the scenario costs depend mostly on the scenario cost function and the
chosen recovery path. In the Exact Subgraph-RRSP setting this is different.
Here, we want to guarantee that for any given scenario a shortest path in the
original graph is also part of the chosen subgraph. This path is always chosen
as recovery and no second stage costs arise. The first stage costs just depend on
the size of the subgraph.

Definition 1 (Exact Subgraph-RRSP). Let G = (V, A) be a directed graph,
s, t two vertices in V and S a set of scenarios, each defining a cost function
cS : A → R+. We denote by P(G) the set of all (s, t)-paths in G. The scenario
costs cS(p) of a path p ∈ P(G) in the scenario S ∈ S are defined as

cS(p) :=
∑
a∈p

cS(a).

A subgraph G′ ⊆ G is a feasible first decision, if

min
p′∈P(G′)

cS(p′) = min
p∈P(G)

cS(p) ∀S ∈ S.

An optimal solution to the Exact Subgraph Recoverable Robust

Shortest Path Problem is a feasible first decision with a minimal number of
arcs.

The analysis of the problem depends on the given scenario set. We distinguish
three settings: the discrete scenario set SD, the interval scenario set SI and
the Γ -scenario set SΓ . In the discrete scenario set every scenario is explicitly
given with its cost function [7,11,14]. Also covered in these articles is the interval
scenario set, an indirect description of all possible scenarios. For each arc a a
lower and an upper cost bound ca and ca with 0 ≤ ca ≤ ca is given. The cost
functions of all scenarios in SI obey those bounds and for any cost function
c : A → R

+ with ca ∈ [ca, ca] for all a ∈ A, a scenario with this cost function
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exists in SI . For the Γ -scenario set again lower and upper cost bounds are fixed.
But a scenario S ∈ SΓ is only allowed to have at most Γ arc costs deviating
from the lower bound. This set has been introduced by Bertsimas and Sim [2].

The Exact Subgraph-RRSP with discrete scenario sets is NP-complete as
we will show that 3SAT can be reduced to this setting. For interval scenarios
we will show that the decision version of the Exact Subgraph-RRSP is in
CoNP, when all arc costs suffer from deviation. This is done by introducing
a criterion when an arc has to be part of the first decision. Furthermore, we
prove that the optimization version is not approximable with a factor better
than m(1−ε), unless P = NP, where m is the number of arcs in the graph and
ε > 0. Here the reduction is from the Directed 2-Disjoint Path Problem.

Finally, we investigate the Exact Subgraph-RRSP with Γ -scenarios. This
problem is NP-hard due to a reduction from exactly-one-in-tree 3SAT. We
also show that the problem is not approximable with a factor better than m, if
P �= NP. These results are stated in Section 2. In the last section we introduce
an approximation algorithm with an approximation factor of m

� , for each � ∈ N,
and a running time of O(� · 2� · m� · SP), where SP denotes the running time to
solve a shortest path problem. The difficulty of an approximation algorithm lies
in the verification of a feasible first decision.

2 The Complexity of the Exact Subgraph-RRSP

Discrete Scenario Sets. In a discrete scenario set SD, the cost function
cS : A → R+ is explicitly given for every scenario S. Since we want to inves-
tigate the complexity of the Exact Subgraph-RRSP with SD, we consider in
the following the decision problem whether a feasible first decision with less than
K arcs exists.

Obviously the Exact Subgraph-RRSP is in NP: Let G′ be a subgraph of a
given graph G. By calculating for every S ∈ SD a shortest path according to cS

in G and comparing its cost to the costs of a shortest path in G′ we can decide
in polynomial time if G′ is a feasible first decision. Furthermore, the problem
is solvable in polynomial time for constant K, since in that case the set of all
subgraphs G′ with K arcs has only |A(G)|K elements. If K is part of the input,
however, the problem is strongly NP-complete.

Theorem 1. The Exact Subgraph-RRSP with discrete scenario sets is
strongly NP-complete for K ≤ �

�+1 · m, with � ∈ N arbitrary.

Proof. We reduce from 3SAT. Let I be an instance of 3SAT with n variables
x1, . . . , xn and m clauses C1, . . . , Cm, and let � be some integer. We construct an
instance I ′ of the Exact Subgraph-RRSP by defining a graph G′ and a set of
scenarios SD. For each variable xi we introduce two parallel arcs between s and
vi and connect each node vi via a simple path of length � − 1 with t (Fig. 1).
We denote the (s, t)-path traversing the upper (s, vi)-arc with pxi and the one
traversing the lower arc with pxi .
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Fig. 1. Each variable xi is represented by two paths pxi and pxi

The set of scenarios SD contains for every clause Cj = y1j∨y2j∨y3j a scenario
Sj with the following cost function:

cSj (a) =

{
0 if a ∈ py1j ∪ py2j ∪ py3j

1 otherwise
.

Furthermore, we add for every variable xi a scenario S̃i to S in which all arc
costs of the paths pxi and pxi

are set to 0 and all others to 1. Due to these extra
scenarios each feasible first decision has to contain at least one of the two paths
pxi and pxi . Finally we set K = �

�+1 · |A(G′)|. Since G′ is a connected graph,
|A(G′)| = (� + 1) · n and |S| = m + n, the size of I ′ is polynomial in I.

In the next two paragraphs we will prove, that there exists a feasible first
decision G∗ with |A(G∗)| = K = �

�+1 · |A(G′)| = � · n if and only if I is a
yes-instance.

Let x∗ be a feasible solution of I. We will show, that there exists a feasible first
decision G∗ with |A(G∗)| = K of G′. This feasible first decision G∗ is constructed
by adding for each variable xi the path pxi to G∗ if x∗

i = true and by adding
the path pxi to G∗ if x∗

i = false. Hence, |A(G∗)| = � · n = K · |A(G′)|. For
every scenario S̃i a path of length zero, i.e., a shortest path according to cS̃i ,
is contained in G∗. Since x∗ is a feasible solution, G∗ contains a path of length
zero for every other scenario Sj ∈ SD. Therefore, G∗ is a feasible first decision.

Let G∗ be a feasible first decision with |A(G∗)| = K = n · �. We will construct
a feasible solution x∗ for the instance I. Since for every variable xi either pxi

or pxi is part of G∗, those paths already add up to n · � arcs. Therefore, the
assignment

x∗
i =

{
true if pxi ∈ G∗

false otherwise
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is well-defined. Since for every scenario S ∈ S a path of Length zero is included
in G∗, at least one literal of any clause is verified by x∗. Therefore, x∗ is a feasible
solution of I. ��

Discrete scenario sets are very powerful, since there is in general no dependency
between the different cost functions. To restrict the possible values of those cost
functions, interval scenarios are often chosen.

Interval scenario sets. An interval scenario set SI is defined indirectly by
lower and upper bounds ca and ca on the costs for each arc a of the given graph,
with 0 ≤ ca ≤ ca. For each cost function c : A → R+ with ca ∈ [ca, ca] there
exists a scenario S ∈ SI with cS = c and every scenario cost function obeys
those bounds. The number of scenarios in SI is infinite. We start by introducing
a criterion for an (s, t)-path to be part of an optimal solution.

Definition 2. Let p and p′ be two (s, t)-paths. If

cS(p) ≤ cS(p′) ∀S ∈ SI ,

we say p is dominating p′. If an (s, t)-path is not dominated by any other (s, t)-
path, we call this path dominant.

This characterization of a path has already been defined by Demir et al. [4], but
was called a weak path. Karasan et al. use this concept to show, that any robust
deviation path with interval scenarios is a dominant path [6]. They also prove,
that the dominance of a path can easily be tested.

Theorem 2. A path p is dominant if and only if p is the unique shortest path
according to the scenario Sp with

cSp(a) =

{
c(a) ∀a ∈ p

c(a) ∀a /∈ p
.

Since a dominant path is the unique shortest path in the scenario Sp, it has
to be part in any feasible first decision graph of an Exact Subgraph-RRSP

instance. This criterion can be extended to a criterion for every arc a, if all arc
costs suffer from deviation.

Lemma 1. Let an Exact Subgraph-RRSP instance with interval scenario
sets and c < c be given and let G∗ be an optimal first decision. Then a ∈ G∗ if
and only if there exists a dominant path p with a ∈ p.

Proof. Let G∗ be a feasible first decision with minimal number of arcs. We
assume, there is an arc a′ ∈ G∗, but there exists no dominant path p with
a′ ∈ p. We will show that due to this assumption G′ = G∗\{a′} is also a feasible
first decision, a contradiction to the minimality of G∗. If G′ is no feasible first
decision, then there exists a scenario S ∈ SI , in which all shortest paths in
G∗ according to cS cross a′. Let pi with i = 1 be such a path. Due to our
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assumption pi is not a dominant path. Hence, there exists a path pi+1 ∈ P(G)
with cSpi (pi) ≥ cSpi (pi+1). If pi+1 is not dominant, we set i = i +1 and can find
another path that dominates pi and and all other paths pk with k ≤ i. Repeating
this scheme, we will eventually end up with a dominant path p̃, since the costs
cSpi (pi) are strictly monotonically decreasing in i due to ca < ca. This path p̃
dominates p1 and is a shortest path according to cS . Hence by Theorem 2, p̃ is
part of G∗. Due to our assumption the arc a′ /∈ p̃ and therefore p̃ ∈ G′. Thus G′

is a feasible first decision. This is a contradiction to the optimality of G∗. ��

Corollary 1. The Exact Subgraph-RRSP with interval scenario sets and
c < c has a unique optimal solution.

With this local criterion we can show that the Exact Subgraph-RRSP

decision problem is in coNP.

Theorem 3. The Exact Subgraph-RRSP decision problem with interval
scenarios and c < c is in coNP.

Proof. A problem is in coNP, if there is a polynomial certificate to verify
the no-answer to the given decision problem. Let I be an instance of the
Exact Subgraph-RRSP decision problem with a given K. If I is a no-instance,
then the optimal feasible decision G∗ of this instance has more than K + 1 arcs.
By Lemma 1 for every arc a ∈ G∗ there is a dominant path containing a. Hence,
if I is a no-instance, there exists a set of at most K +1 dominant paths contain-
ing at least K +1 different arcs. Since for a set of K +1 paths it can be tested in
polynomial time if every path is dominant, this results in a certificate to verify
a no-answer. ��

Furthermore, the Exact Subgraph-RRSP optimization problem is strongly
NP-hard, since it is already NP-hard to decide whether an arc is part of a dom-
inant path. This was stated in [6]. Since the proof is not published, we prove the
NP-hardness of the Exact Subgraph-RRSP in Theorem 4 by a reduction from
Directed 2-Disjoint Paths Problem. The NP-completeness of this problem
follows directly from a lemma published in 1980 by Fortune et al. [5].

Definition 3 (Directed 2-Disjoint Paths Problem). Let G = (V, A) be a
directed graph and s1, s2, t1, and t2 four distinct vertices of G. The discrete 2-
disjoint paths problem is to determine two disjoint paths, p1 from s1 to t1 and
p2 from s2 to t2, if such paths exists.

Notice, that for an Exact Subgraph-RRSP instance there is no polynomial
certificate to test whether a given subgraph is a feasible first decision, unless
P = NP.

Theorem 4. The Exact Subgraph-RRSP optimization problem with
interval scenarios is strongly NP-hard.

Proof. We reduce from Directed 2-Disjoint Paths Problem. Let I be an
instance of Directed 2-Disjoint Paths Problem, i.e., containing a directed
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Fig. 2. Every dominant path is a simple path

graph G = (V, A) and four nodes s1, t1, s2, t2 ∈ V . We transform this instance
to an instance I ′ of the Exact Subgraph-RRSP by adding two node s and
t and the arcs (s, s1), (t1, s2) and (t2, t) to G. The size of the new graph G′ is
polynomial in the original one. The lower and upper bounds on each arc are set
to 0 and 1 (Fig. 2).

We will show, that there exist an (s1, t1)-path p1 and a node-disjoint (s2, t2)-
path p2 in G, if and only if the optimal solution to I ′ contains the arc (t1, s2).

If the optimal solution to I ′ contains the arc (t1, s2), there exists a dominant
path p with (t1, s2) ∈ p (Lemma 1). Since p is dominant, p is a simple path.
Hence, the parts of the path p connecting s1 with t1 and s2 with t2 are node
disjoint and form an optimal solution to I.

On the other hand, let p1 and p2 be two node-disjoint paths in G. The path
p = (s, s1)∪ p1 ∪ (t1, s2)∪ p2 ∪ (t2, t) in G′ is a simple path with cSp(p) = 0. The
costs of any other (s, t)-path in G′ in the scenario Sp are at least one. Thus, p is
dominant by Theorem 2. ��

The reduction only works for directed graphs. In an undirected graph the
2-Disjoint Path Problem can be solved in polynomial time [13]. We do not
know, if the Exact Subgraph-RRSP remains NP-hard for undirected graphs.
But we can extend the proof given for Theorem 4, to show the inapproximabiltiy
for a factor better than m, with m being the number of arcs in the given graph.

Theorem 5. There exists no efficient approximation algorithm with an approx-
imation factor m(1−ε) for the Exact Subgraph-RRSP with interval scenario
sets, unless P = NP.

Proof. We assume there exists an approximation algorithm ALG with an ap-
proximation factor of m(1− 1

� ) with � ∈ N. Following the construction in the
proof of Theorem 4, we just replace the arc (t1, s2) by (|A(G)|+2)� −|A(G)|−2
parallel arcs. Hence, the new graph G′ has m′� = (|A(G)| + 2)� arcs. If the
Directed 2-Disjoints Path instance I is a no-instance, 1 ≤ OPT ≤ m′ − 1
in the Exact Subgraph-RRSP instance I ′. Hence, the graph GALG calculated
by the algorithm can have at most m′ �−1

� ·� · (m′ − 1) = m′�−1 · (m′ − 1) arcs.



240 C. Büsing

Since the number of parallel (t1, s2) arcs exceeds this bound for � ≥ 3, not all
of these arcs can be contained in the solution GALG. On the other hand, if I is
a yes-instance, all parallel arcs are part of GALG. This leads to a contradiction,
unless P = NP. ��

Any algorithm just returning the given graph is already an approximation algo-
rithm with a factor m. Before we introduce an approximation algorithm with a
factor of 1

� ·m, we finish the complexity study of the Exact Subgraph-RRSP

by investigating the class of Γ -scenario sets.

Γ -scenario sets. Recall, that the Γ -scenario set is defined as follows: Let ca

and ca be lower and upper bounds on the arc costs. A scenario S ∈ SΓ is only
allowed to have at most Γ arc costs deviating from the lower bound. The concept
of dominating paths cannot be transferred to the Γ -scenario sets. Let G = (V, A)
be a graph with V = {s, t} and five parallel (s, t)-arcs, each of them having cost
bounds of 0 and 1. If Γ = 2, there exists no dominant (s, t)-path, but any
optimal solution contains three of the five arcs. Yet, it remains strongly NP-
hard to compute an optimal solution to the Exact Subgraph-RRSP. The
proof extends the reduction from exact-one-in tree 3SAT to the so called
Max Scenario problem. An exact-one-in tree 3SAT instance is given by a
set of variables x1, . . . , xn and a set of clauses C1, . . . , Cm over the variables, such
that each clause contains three literals. The question is, whether there exists a
truth assignment of the variables, such that in each clause there is exactly one
true literal. The problem is strongly NP-complete [12].

Definition 4 (Max Scenario Problem). Let G = (V, A) be a directed graph,
s, t ∈ V and ca, ca lower and upper bounds for the arcs. The scenario costs for a
scenario S ∈ SΓ are defined as c(S) = minp∈P cS(p). An optimal solution to the
Max Scenario Problem is a scenario S ∈ SΓ that maximizes the scenario costs.

This problem is similar to the discrete time-cost tradeoff (DTCT) problem with
negative processing times and the goal to maximize the makespan. The proof
for the NP-hardness of the DTCT [3] can be transferred to the Max Scenario
Problem.

Theorem 6. The Max Scenario Problem is strongly NP-hard.

A detailed proof is part of the appendix A. In the following we just fix some
facts about the reduction from exact-one-in-tree 3SAT to the Max Scenario
Problem: Let I be an instance of exact-one-in-tree 3SAT. We can construct
a graph GI with some cost uncertainties modeled by the intervals [0, 2] and [0, 4],
such that

1. if there exists a scenario S ∈ SΓ with minp∈P cS(p) = 4, the instance I is a
yes-instance

2. if for every S ∈ SΓ there exists a path with costs at most 2, the instance I
is a no-instance.
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In this reduction any scenario is allowed to have almost half of all uncertain
values deviate from the lower bound. Using those facts and the reduction graph
GI , we show the NP-hardness of the Exact Subgraph-RRSP problem.

Theorem 7. The Exact Subgraph-RRSP with Γ -scenario sets is strongly
NP-hard.

Proof. We reduce from exactly-one-in-tree 3SAT. Let I be an instance of
exactly-one-in-tree 3SAT with n variables and m clauses, GI the graph
detailed described in the Appendix A in the proof of Theorem 12. We add
an extra arc (s, t) to GI with upper and lower arc costs of 3 and set Γ =
(2m + 1) · n + 2m.

If I is a yes-instance, then there exists a scenario S∗ in which all paths in GI

have length 4. Therefore, the arc (s, t) has to be part of the optimal solution. On
the other hand, if I is a no-instance, then in every scenario a path of length 2
exists. Hence, the arc (s, t) is in no scenario a shortest path and can be deleted
in any feasible first decision. ��

Similar to the technique used for interval scenario sets, this proof can be extended
to show that an approximation is hard to achieve.

Theorem 8. There exists no approximation algorithm with a factor m(1−ε) for
the Exact Subgraph-RRSP with Γ -scenario sets, unless P = NP.

Proof. Let us assume there exists an algorithm ALG with an approximation
factor m(1− 1

� ), � ∈ N. Let GI = (V, AI) with |AI | = m′ be the graph mentioned
above constructed to a given exact-one-in-tree 3SAT instance I. Instead of a
single (s, t)-arc as in Theorem 7, we add an (s, t)-path p̃ with length (m′+1)�−m′

and fix its costs to 3. The new graph has (m′ + 1)� arcs. If I is a no-instance,
the optimal solution is bounded by 1 ≤ OPT ≤ m′. Hence, GALG has at most
(m′ + 1)�−1 · m′ arcs. Since the path p̃ for � ≥ 3 is too long to be contained
in GALG, this path cannot be part of the constructed graph. But if I is a no-
instance, then p̃ has to be in GALG. Unless P = NP, this is a contradiction. ��

In the next section we will give an algorithm that calculates an m
� -approximation

for all three scenario types.

3 Approximation Algorithms

For any Exact Subgraph-RRSP instance independent of the type of scenarios
sets, an algorithm returning the whole graph is an m-approximation. We improve
this factor to m

�+1 for any � ∈ N and a running time of O(� ·2� ·m� ·SP). We start
by introducing a criterion to test a given subgraph to its feasibility for interval
scenario sets. The test is polynomial in the size of the given subgraph, if this
size is bounded.
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Theorem 9. Let G = (V, A) be a directed graph with lower and upper arc costs
c and c. Let A′ ⊆ A and

SI
A′ = {S ∈ S | cS

a = ca ∀a /∈ A′ and cS
a ∈ {ca, ca} ∀a ∈ A′}.

If for all scenario SI
A′ a shortest path in G is also contained in G′ = (V, A′),

then G′ is a feasible first decision.

Proof. Assume G′ is no feasible first decision. Then there exists a scenario S,
in which a shortest path p in G is shorter than any other path in G′. W.l.o.g.
cS
a ∈ {ca, ca} for all a ∈ A. Let p be any (s, t)-path in G′. Then

0 < cS(p) − cS(p)

=
∑

a∈p\p

cS
a −

∑
a∈p\p

cS
a

=
∑

a∈p\p

cS
a −

∑
a∈p\p

a∈A′

cS
a −

∑
a∈p\p

a/∈A′

cS
a

≤
∑

a∈p\p

cS
a −

∑
a∈p\p

a∈A′

cS
a −

∑
a∈p\p

a/∈A′

ca.

Let us define a scenario S∗ according to the cost function

cS∗
a =

{
cS
a ∀a ∈ A′

ca otherwise
.

Hence, S∗ ∈ SI
A′ by definition. But due to the above calculations

cS∗
(p) − cS∗

(p) > 0 ∀p ∈ P(G′).

This is a contradiction. ��

A similar result can be achieved for Γ -scenario sets.

Theorem 10. Let G = (V, A) be a directed graph with lower and upper arc costs
c and c. Let A′ ⊆ A and

SΓ
A′ = {S ∈ SΓ | cS

a = ca ∀a /∈ A′ and cS
a ∈ {ca, ca} ∀a ∈ A′}.

If for all scenario SΓ
A′ a shortest path in G is also contained in G′ = (V, A′),

then A′ is feasible solution.

The proof works analogously to the one for Theorem 9. Both sets SI
A′ and

SΓ
A′ contain exponentially many scenarios depending on the size of A′. If A′
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is bounded, then the feasibility of G′ = (V, A′) can be tested in polynomial time
(O(2|A

′| · SP)). This idea leads to the following algorithm:

Algorithm 1. An m
�+1 -approximation for SΓ and SI .

Data: Graph G = (V, A), s, t ∈ V , � ∈ N, Γ ∈ N, ca, ca ∀a ∈ A
Result: Feasible first decision G′ = (V, A′)

forall i = �, . . . , 1 do
forall A ⊆ A with |A| = i do

forall S ∈ SΓ
A

do
Calculate dS = minp∈P(G) cS(p) − minp′∈P(G) cS(p′)

if dS = 0 for all S ∈ SΓ
A

then
Set A′ = A

if A′ = ∅ then
return G′ = (V, A)

else
return G′ = (V, A′)

Theorem 11. Algorithm 1 calculates a feasible first decision GALG with

|A(GALG)|
|A(GOPT)| ≤ m

� + 1

for any � ∈ N and Γ = |A(G)| in the interval case. The running time of the
algorithm is O(� · 2� · m� · SP).

Proof. For A(GOPT) the values dS are zero for all S ∈ SΓ
A(GOPT). If A(GOPT) ≤

�, the set A = A(GOPT) is tested and A′ is set to A(GOPT). Hence, |A′| =
|A(GALG)| = |A(GOPT)|. If the optimal solution contains more then � + 1 arcs,

|A(GALG)|
|A(GOPT)| ≤ m

� + 1
.

��
Since no efficient approximation algorithm with a factor of m(1−ε) for the
Exact Subgraph-RRSP with SΓ and SI exists (unless P = NP), no ap-
proximation algorithm with a better factor than the one for Algorithm 1 can be
found.

4 Conclusion

We showed the NP-hardness for the Exact Subgraph-RRSP problem with
scenario settings SD, SI and SΓ . For SI and SΓ with just partial uncertainties
on the arc costs the question whether the Exact Subgraph-RRSP decision
problem is in NP or in coNP remains open. In the special case of SI , when
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all arc costs may change, we introduced a criterion to verify no-instances. This
criterion is not valid for the general setting.

In the case of a discrete scenario set, Algorithm 1 also works by setting SΓ
A′ =

SD and computes an m
�+1 -approximation. So far we did not succeed in finding a

lower bound for the approximation factor.
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A The Max-Scenario-Problem

The Max-Scenario-problem is a sub-problem of the recoverable robust shortest
path problems.

Definition 5 (Max-Scenario-problem). Let G = (V, A) be a directed graph,
s, t ∈ V , and let S be a set of scenarios each defining a cost function cS : A →
R≥0. The value value(S) of a scenario S is determined through the shortest path
according to cS, i.e.

value(S) = min
p∈P

cS(p).

An optimal solution to the Max-Scenario-problem is a scenario S ∈ S with a
maximal value.

The Max-Scenario-problem is easy to solve for discrete scenarios and interval
scenarios. For Γ -scenarios the problem is similar to the discrete time-cost tradeoff
(DTCT-) problem with negative processing times and the goal to maximize the
makespan. The proof for the NP-hardness of the DTCT [3] can be transferred
to the Max-Scenario-problem with SΓ .

Theorem 12. The the Max-Scenario-problem with Γ -scenarios is NP-
complete.

Proof. For any scenario S its feasibility, i.e., S ∈ SΓ , and its value value(S)
can be tested in polynomial time. Therefore, the decision version of the Max-
Scenario-problem is in NP.

We reduce the NP-hard exact-one-in-three 3SAT problem [12] to the
Max-Scenario-problem with SΓ . Let I be an exact-one-in-three 3SAT in-
stance with x1, . . . , xn variables and C1, . . . , Cm clauses. Each clause Cj consists
of three literals yj1, . . . , yj3 ∈ {x1, x1, . . . , xn, xn}, i.e.,

Cj = yj1 ∨ yj2 ∨ yj3.

W.l.o.g. xi or xi is contained in a least one clause. A feasible solution to I is a
vector x ∈ {true, false}n, such that exactly one literal in every clause is fulfilled
with true. We construct a Max-Scenario-instance I ′ with Γ -scenarios, i.e., we
define a graph G, lower and upper cost-bounds and Γ . We start with the graph
G. For each variable xi the graph G contains a fork Gxi with si = s, the origin
node in G. A fork is a graph Gxi defined by three arcs ai, axi , axi and four nodes
si, yi, vxi , vxi

, with ai = (si, yi), axi = (yi, vxi) and axi
= (yi, vxi

). The arcs ai

and axi
are block-arcs. A block-arc (v, w) is an arc representing M parallel (v, w)

arcs each having the same properties, e.g., the lower and upper cost-bound. We
call ai the handle of a fork, axi the true arm of a fork and axi

the false arm of
a fork (Fig. 3).

Furthermore, G has three parallel arcs aj1, aj2 and aj3 for each scenario Cj .
Each arc represents a true assignment for Cj , where for aji the ith literal is
true. We call those arcs the clause-arcs. Each clause-arc is connected with t,
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an axn
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Fig. 3. The arcs an, axn and axn form the fork Gxn . For every clause Cj , there exist
three clause-arcs aj1, aj2 and aj3.

the destination node in G. We finish the construction of G by defining the arcs
between the fork arms and clause-arcs. Let aji be a clause-arc to the clause
Cj = yj1 ∨ yj2 ∨ yj3. For � �= i and yj� = xk, we connect the true arm of the fork
Gxk

with ajk and if yj� = xk we connect the false arm of Gxk
with aji. For � = i,

we add an arc between the true arm of Gxk
and aji if yij = xk. If yij = xk, we

connect the false arm of Gxk
with aji (Fig. 4).

We continue with the upper and the lower cost bounds in G. The handles,
the true arms and the clause-arcs get upper cost bounds of 2 and the false arms
get bounds of 4. Furthermore, the lower bounds of the true arms are set to 2,
i.e., the costs of those arcs are not subject to uncertainties. Every other cost
bound is set to 0 (Fig. 3). Note that the size of G is polynomial in the input for
M = 2m + 1. We set Γ = M · n + 2m.

We will prove, that there exists a Γ -scenario S∗ with value(S∗) = 4 in I ′ if
and only if there is a feasible solution for the instance I.

Let x∗ be a feasible solution to I. We define the cost function of S∗ for all
arcs with uncertainty in the following way: If x∗

i is true, S∗ assigns upper costs
to the handle of Gxi and lower costs to the false arm. If x∗

i is false, the false arm
gets the upper costs and the handle the lower costs. Notice that any (s, t)-path
already has a length of 2 due to this cost assignments. Since x∗ is a feasible
solution, in every clause Cj , there exists exactly one literal ij ∈ {1, 2, 3} which
has a true assignment. Scenario S∗ puts the costs of all clause-arcs aji with i �= ij
to their upper bounds and leaves the costs of ajij at the lower bound (Fig. 4).
In total S∗ changes n block-arcs and 2m clause-arcs, i.e., n · M + 2m arc costs.
Therefore, S∗ is a Γ -scenario. It remains to show that any shortest path in G
with cS∗

has a length of 4.
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Fig. 4. This graph G is constructed for the instance I with C1 = x1 ∨ x2 ∨ x3. The
scenario S∗ to a feasible solution x∗ = (true, true, false) has value(S∗) = 4. In Cj the
first variable x1 verifies the clause. Therefore, the costs of aj1 are not raised.

Assume that there exists a path p with costs of 2. Then p has to cross a
clause-arc ajij , since all paths to a clause-arc have already a length of 2. If
yjij = x�, then x� has a true assignment. Therefore, any path traversing the
true arm of Gx�

has, due to the definition of S∗, length of 4 or more. The same
argument works for yjij = x�. If yji = x� for i �= ij, then ajij is connected to
the false handle of Gx�

. Since the literal yji is false, the variable x∗
� is set to

false. Therefore, any path crossing this arm, has length of at least 4. The same
conclusions are valid for yji = x�. Hence, paths traversing ajij have already a
length of 4 before they pass the clause-arc. This is a contradiction.

Let S∗ be a Γ -scenario in I ′ with value(S∗) = 4. Before we start with a
construction of x∗, we need some observations.

1. Observation : The scenario S∗ assigns in every fork exactly one block-arc to
the upper cost bound.

Proof : Assume that there is a fork Gx�
in which no block-arc is assigned to c.

Then in the handle block-arc and in the false arm block-arc exists an arc with
costs of 0. An (s, t)-path traversing these two arcs has at most costs of 2. This is
a contradiction to value(S∗) = 4. Since 2m < M , at most n block-arcs can have
upper bound costs. �

2. Observation : Exactly two clause-arcs of each clause-are moved to their
upper bounds.

Proof : Assume there exists a clause Cj , in which only one clause-arc is changed
to the upper costs. Each one of the three clause-arcs aj1, aj2 and aj3 is connected
to the same forks Gxa , Gxb

and Gxc . Since in every fork one of the block-arcs has
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Fig. 5. If a scenario S moves just one of three clause-arcs, then there exists an (s, t)-
path in G of length 2

been assigned to the upper costs, either a shortest path to the end of the true
arm or a shortest path to the end of the false arm has length of 4. The other one
has length of 2. Let aj1 w.l.o.g. be the one clause, in which the costs have been
moved up. Since the shortest path from s to t has a length of 4 and the other
two clause-arcs aj2 and aj3 have costs of 0, both must be connected to the three
arms with the higher costs (Fig. 5). This is a contradiction to the construction
of G.

Since S∗ already changed n · M arc costs, there are just 2m possibilities left;
two for every clause. �

Now we define a solution x∗ to the scenario S∗

x∗
i =

{
true if cS∗

(ai) = 2
false otherwise

.

For every clause Cj , there is one clause-arc ajij with costs 0. W.l.o.g. ij = 1. If
yj1 = x�, then aj1 is connected to the true arm. Every path crossing this arm
has to have a length of 4. Therefore, the handle arc a� has to have costs at the
upper bound and hence x∗

a = true. The same argumentation works for yj1 = xa.
Furthermore, for yji = xbi or yji = xbi with i ∈ {2, 3} the two variables are set
such that they neglect the clause. Hence, x∗ is a feasible solution.

This completes the proof of the NP-completeness of the Max-Scenario-
problem. ��

In the following we denote the graph G of the reduction from an
exact-one-in-tree 3SAT instance I as GI . Notice that GI can be reduced
by connecting all clause-arcs directly to t. Hence all simple (s, t)-paths have a
length of 4.
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Abstract. The search for train connections in state-of-the-art commer-
cial timetable information systems is based on a static schedule. Un-
fortunately, public transportation systems suffer from delays for various
reasons. Thus, dynamic changes of the planned schedule have to be taken
into account. A system that has access to delay information about trains
(and uses this information within search queries) can provide valid al-
ternatives in case a connection does not work. Additionally, it can be
used to actively guide passengers as these alternatives may be presented
before the passenger is already stranded at a station due to an invalid
transfer.

In this work, we present an approach which takes a stream of delay
information and schedule changes on short notice (partial train cancel-
lations, extra trains) into account. Primary delays of trains may cause a
cascade of so-called secondary delays of other trains which have to wait
according to certain policies for delays between connecting trains. We
introduce the concept of a dependency graph to efficiently calculate and
update all primary and secondary delays. This delay information is then
incorporated into a time-expanded search graph which has to be updated
dynamically. These update operations are quite complex, but turn out
to be not time-critical in a fully realistic scenario.

We finally present a case study with data provided by Deutsche Bahn
AG, showing that this approach has been successfully integrated into
the multi-criteria timetable information system MOTIS and can handle
massive delay data streams instantly.

Keywords: timetable information system, primary and secondary de-
lays, dependency graph, dynamic graph update.

1 Introduction and Motivation

In recent years, the performance and quality of service of electronic timetable
information systems has increased significantly. Unfortunately, not everything
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runs smoothly in scheduled traffic and delays are the norm rather than the
exception.

Delays can have various causes: Disruptions in the operations flow, accidents,
malfunctioning or damaged equipment, construction work, repair work, and ex-
treme weather conditions like snow and ice, floods, and landslides, to name just
a few. On a typical day of operation in Germany, an online system has to handle
about 6 million forecast messages about (mostly small) changes with respect to
the planned schedule and the latest prediction of the current situation. Note
that this high number of changes also includes cases where delayed trains catch
up some of their delay.

A system that incorporates up-to-date train status information (most im-
portantly, information about future delays based on the current situation) can
provide a user with valid timetable information in the presence of disturbances.

Such an on-line system can additionally be utilized to verify the current status
of a journey.

– Journeys can either be still valid (i.e., they can be executed as planned),
– they can be affected such that the arrival at the destination is delayed, or
– they may no longer be possible.

In the latter case, a connecting train will be missed, either because the con-
necting train cannot wait for a delayed train, or the connecting train may have
been canceled. In a delay situation, such status information is very helpful. In
the positive case – all planned train changes are still possible – passengers can
be reassured that they do not have to worry about missing their connecting
train(s). To learn that one will arrive x minutes late with the planned sequence
of trains may allow a customer to make arrangements, e.g. inform someone to
pick one up later. In the unfortunate case that a connecting train will be missed,
this information can now be obtained well before the connection breaks and
the passenger is stranded at some station. Therefore, valid alternatives may be
presented while there are still more options to react. This situation is clearly
preferable to missing a connecting train and then using any information system
(ticket machine, service counter) to request an alternative.

Because up to now commercial systems do not take the current situation
into account (even though estimated arrival times may be accessible for a given
connection, these times are not used actively during the search), their recom-
mendations may be impossible to use, as the proposed alternatives already suffer
from delays and may even already be infeasible at the time they are delivered
by the system.

From Static to Real-TimeTimetable Information Systems. The standard
approach to model static timetable information is as a shortest path problem in
either a time-expanded or time-dependent graph. The recent survey [2] describes
the models and suitable algorithms in detail. Previous research on timetable infor-
mation systems has focused on the static case, where the timetable is considered
as fixed.
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Here we start a new thread of research on dynamically changing timetable
data as a consequence of disruptions. Our contribution is

– the development of a first prototypal but yet completely realistic timetable
information system that incorporates current train status information into
a multi-criteria search for attractive train connections. Modeling issues have
been discussed in the literature on a theoretical level [3] but no true-to-life
system with real delay data has been studied and, to our knowledge, no
such system that guarantees optimal results (with respect to even a single
optimization criterion) exists. We provide results of implementing such a
system for a real world scenario with no simplifying assumptions.

– We propose a system architecture intended for a multi-server environment,
where the availability of search engines has to be guaranteed at all times.
Our system consists of two main components, a real-time information server
and one or several search servers. The real-time information server receives
a massive stream of status messages about delayed trains. Its purpose is
to integrate schedule changes into the “planned schedule”. Moreover, it has
to compute from the received messages (primary delays) all so-called sec-
ondary delays which result from trains waiting for each other according to
certain waiting policies. The new overall status information is then sent to
the search servers which incorporate all changes into their internal model.
Search servers, in turn, are used to answer customer queries about train
connections.

– Both servers require a specific graph model as the underlying basic data
structure. We here introduce the concept of a dependency graph as a model
to efficiently propagate primary delay information according to policies for
delays in the real-time information server. Our dependency graph (intro-
duced in Section 4) is similar to a simple time-expanded graph model with
distinct nodes for each departure and arrival event in the entire schedule for
the current and following days. This is a natural and efficient model, since
every event has to store its own update information.

For the search server we use a search graph. Here, we are free to use
either the time-expanded or the time-dependent model. In this work, we
have chosen to use the time-expanded model for the search graph, since our
previous work, the timetable information server MOTIS [4], is based on this.
Although update operations are quite complex in this model, it will turn out
that they can be performed very efficiently, in 17μs per update message on
average.

– To store a full timetable over a typical period of a year, static timetable
systems are usually built on a compact data structure. For example, they
identify the same events on different days of operation and use bitfields to
specify valid days. This space saving technique does not work in a dynamic
environment since the members of such an equivalence class of events have
to be treated individually, as they will have, in general, different delays. We
will show how a static time-expanded graph model can be extended to a
dynamic graph model without undue increase in space consumption.
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Related Work. Delling et al. [3] independently of us came up with ideas on
how to regard delays in timetabling systems. In contrast to their work we do
not primarily work on edge weights, but consider nodes with timestamps. The
edge weight for time follows, whereas edge weights for transfers and cost do not
change during the update procedures. This is important for the ability to do
multi-criteria search. Due to a number of low-level optimizations we achieve a
considerable speed-up over the preliminary work in Frede et al. [1].

A related field of current research is disposition and delay management. Gatto
et al. [5,6] have studied the complexity of delay management for different sce-
narios and have developed efficient algorithms for certain special cases using
dynamic programming and minimum cut computations. Various policies for de-
lays have been discussed, for example by Ginkel and Schöbel [7]. Schöbel [8] also
proposed integer programming models for delay management. Stochastic models
for the propagation of delays are studied, for example, by Meester and Muns [9].
Policies for delays in a stochastic context are treated in [10].

Overview. The remainder of this paper is organized as follows. In Section 2,
we will discuss primary and secondary delays. We introduce our system archi-
tecture in Section 3, and describe its two main components afterwards. First,
we explain our dependency graph model and the propagation algorithm for de-
lays (in Section 4). Then, we briefly review the time-expanded graph model and
our search server MOTIS (Section 5). Afterwards, we present the update of the
search graph (in Section 6). A major issue for a real system, the correct treat-
ment of days of operation, will be discussed in Section 7. Afterwards, we provide
our experimental results in Section 8. Finally, we conclude and give an outlook.

2 Up-to-Date Status Information

2.1 Primary Delay Information

First of all, the input stream of status messages consists of reports that a certain
train departed or arrived at some station at time τ either on time or delayed
by x minutes. In case of a delay, such a message is followed by further messages
about predicted arrival and departure times for all upcoming stations on the
train route.

Besides, there can be information about additional trains (specified by a list
of departure and arrival times at stations plus category, attribute and name
information). Furthermore, we have (partial) train cancellations, which include
a list of departure and arrival times of the canceled stops (either all stops of the
train or from some intermediate station to the last station).

Moreover, we have manual decisions by the transport management of the
form: “Change from train t to t′ will be possible” or “will not be possible”.
In the first case it is guaranteed that train t′ will wait as long as necessary to
receive passengers from train t. In the latter case the connection is definitively
going to break although the current prediction might still indicate otherwise.
This information may depend on local knowledge, e.g. that not enough tracks
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are available to wait or that additional delays are likely to occur, or may be
based on global considerations about the overall traffic flow. We call messages
of this type connection status decisions.

2.2 Secondary Delays

Secondary delays occur when trains have to wait for other delayed trains. Two
simple, but extreme examples for policies for delays are:

– never wait. In this policy, no secondary delays occur at all in our model.
This causes many broken connections and in the late evening it may imply
that customers do not arrive at their destination on the same travel day.
However, nobody will be delayed who is not in a delayed train.

– always wait as long as necessary. In this strategy, there are no broken con-
nections at all, but massive delays are caused for many people, especially for
those whose trains wait and have no delay on their own.

Both of these policies seem to be unacceptable in practice. Therefore, train
companies usually apply a more sophisticated rule system specifying which trains
have to wait for others and for how long. For example, the German railways
Deutsche Bahn AG employ a complex set of rules, dependent on train type and
local specifics.

In essence, this works as follows: There is a set of rules describing the max-
imum amount of time a train t may be delayed to wait for passengers from a
feeding train f . Basically, these rules depend on train categories and stations.
But there are also more involved rules, like if t is the last train of the day in
its direction, the waiting time is increased, or during peak hours, when trains
operate more frequently, the waiting time may be decreased.

The waiting time wts(t, f) is the maximum delay acceptable for train t at
station s waiting for a feeding train f . Let depsched

s (t) and deps(t) be the de-
parture time according to the schedule resp. the new departure time of train t
at station s, arrs(t) the arrival time of a train and mincts(f, t) the minimum
change time needed from train f to train t at station s. Note that in a delayed
scenario the change time can be reduced, as guides may be available that show
changing passengers the way to their connecting train. Train t waits for train f
at station s if

arrs(f) + mincts(f, t) − depsched
s (t) < wts(t, f).

In this case, train t will incur a secondary delay. Its new departure time is
determined by the following equation

deps(t) =
{

arrs(f) + mincts(f, t) if t waits
depsched

s (t) otherwise.

In case of several delayed feeding trains, the new departure time will be
determined as the maximum over these values.
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During day-to-day operations these rules are always applied automatically. If
the required waiting time of a train lies within the bounds defined by the rule
set, trains will wait. Otherwise they will not. All exceptions from these rules
have to be given as connection status decisions.

3 System Architecture

Our system consists of two main components, see Figure 1 for a sketch. One
part is responsible for the propagation of delays from the status information
and for the calculation of secondary delays, while the other component handles
connection queries. The core of the first part, our real-time information server, is
a dependency graph which models all the dependencies between different trains
and between the stops of the same train and is used to compute secondary delays
(in Section 4 we introduce in detail the dependency graph and propagation
algorithm). The dependency graph stores the obtained information needed to
update the search servers and transmits this information in a suitable format
to them. The search servers in turn update their internal graph representation
whenever they receive these changes. This decoupling of dependency and search
graph allows us to use any graph model for the search graph.

In a distributed scenario this architecture can be realized with one server
running as the real-time information server that continuously receives new status
information and broadcasts it. We will present some details in the following
subsection. Load balancing can schedule the update phases for each server. If
this is done in a round-robin fashion, the availability of service is guaranteed.

Multi-server Approach

The search server mainly consists of a search graph, an update component for
the search graph, and a query algorithm.

In a multi-server environment, updates of a search server are either triggered
by a load balancer or an internal clock after a maximum amount of time without

real time
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result list of connections
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Fig. 1. Sketch of the system architecture
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update. The data it receives (called state delta for the remainder of this work) are
lists of changed departure and arrival times as well as meta-information about
additional and canceled trains and connection status decisions. Subsequently, it
adjusts the search graph accordingly and thereafter the graph looks exactly as if
it were constructed from a schedule with all these updated departure and arrival
times. Thus, the search algorithm does not need to know whether it is working
on a graph with updated times or not.

The real-time information server receives all the up-to-date status informa-
tion, uses its internal dependency graph to compute updated departure and ar-
rival times (cf. Section 4) and stores these and the meta-information in a data
structure UDS (update data structure). UDS maintains for every event with a
changed timestamp a 3-tuple consisting of (1) a reference to the event itself,
(2) the latest updated timestamp of this event, and (3) the release time when
the last update of this event took place. Whenever a search server requests an
update, it receives all events with a release time later than the last update of
that server. If the timestamp of an event (or node in the graph model) changes,
we call the necessary update a (node) shift.

For a true multi-server architecture with multiple search servers we basically
have two update scenarios:

– An additional search server joins in and has to be initialized to the current
time: We iterate over all existing event entries in UDS and transmit all those
with times differing from the scheduled time.

– A search server has answered a number of queries and now enters update
mode: We could simply transmit all events with release time greater than
the last update time of the search server (referenced as iterator version). As
this requires iterating over all stored events even to calculate a small delta,
we can do more efficiently utilizing a map (referenced as map version).

In the map version a map of all changed events and their previous event time
is maintained for each search server individually. Whenever a new event time is
released, we look for that event in the map. Only if it is not already present,
we store the event itself and its event time before the last change. This is the
current timestamp of the event in the search server. To answer an update request
we simply return all events in this map, whose new event time differs from the
event time in the map (and thus the time in the current server), and clear the
map afterwards. Using this technique we not only save iterating over all entries to
determine the set of changed events (our state delta) but also avoid transmitting
events that have been changed more than once and do not require a shift, since
their new event time is the same as in the last update.

Our UDS data structure enables us to transmit only consistent state deltas
on demand. Thereby, we can decrease both the time spent in communication
and updating the graphs (e.g. if between two update phases more than one
information for a single event is processed in the dependency graph, it is not
required to transmit the intermediate state and adjust the graph accordingly).
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4 Dependency Graph

4.1 Graph Model

Our dependency graph (see Figure 2) models the dependencies between different
trains and between the stops of the same train. Its node set consists of four types
of nodes:

– departure nodes,
– arrival nodes,
– forecast nodes, and
– schedule nodes.

Each node has a timestamp which can dynamically change. Departure and arrival
nodes are in one-to-one correspondence with departure and arrival events. Their
timestamps reflect the current situation, i.e. the expected departure or arrival
time subject to all delay information known up to this point.

Schedule nodes are marked with the planned time of an arrival or departure
event, whereas the timestamp of a forecast node is the current external prediction
for its departure or arrival time.

The nodes are connected by five different types of edges. The purpose of an
edge is to model a constraint on the timestamp of its head node. Each edge e =
(v, w) has two attributes. One attribute is a Boolean value, signifying whether
this edge is currently active or not. The other attribute τ(e) denotes a point in
time which basically can be interpreted as a lower bound on the timestamp of
its head node w, provided that the edge is currently active.

– Schedule edges connect schedule nodes to departure or arrival nodes. They
carry the planned time for the corresponding event of the head node (accord-
ing to the published schedule). Edges leading to departure nodes are always
active, since a train will never depart prior to the published schedule.

– Forecast edges connect forecast nodes to departure or arrival nodes. They
represent the time stored in the associated forecast node. If no forecast for
the node exists, the edge is inactive.

– Standing edges connect arrival events at a certain station to the following
departure event of the same train.

They model the condition that the arrival time of train t at station s plus
its minimum standing time stands(t) must be respected before the train can
depart (to allow for boarding and disembarking of passengers). Thus, for a
standing edge e, we set τ(e) = arrs(t)+stands(t). Standing edges are always
active.

– Traveling edges connect a departure node of some train t at a certain station
s to the very next arrival node of this train at station s′. Let deps(t) denote
the departure time of train t at station s and tt(s, s′, t) the travel time
for train t between these two stations. Then, for edge e = (s, s′), we set
τ(e) = deps(t) + tt(s, s′, t). These edges are only active if the train currently
has a secondary delay (otherwise the schedule or forecast edges provide the
necessary conditions for its head node).
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Fig. 2. Illustration of the dependency graph model

Due to various, mostly unknown factors determining the travel time
of trains in a delayed scenario, e.g. speed of train, condition of the track,
track usage (by other trains and freight trains that are not in the available
schedule), used engines with acceleration/deceleration profiles, signals along
the track etc. we assume for simplicity that tt(s, s′, t) is the time given in
the planned schedule. However, if a more sophisticated, but efficiently com-
putable oracle for tt(s, s′, t) taking the mentioned factors into account were
available, it could be used without changing our model.

– Transfer edges connect arrival nodes to departure nodes of other trains at
the same station, if there is a planned transfer between these trains. Thus, if
f is a potential feeder train for train t at station s, we set τ(e) = waits(t, f),
where

waits(t, f) =
{

arrs(f) + mincts(f, t) if t waits for f
0 otherwise

(cf. Section 2.2) if we respect the waiting rules. Recall that t waits for f only
if the following inequality holds

arrs(f) + mincts(f, t) − depsched
s (t) < wts(t, f)

or if we have an explicit connection status decision that t will wait.
By default these edges are active. In case of an explicit connection status

decision “will not wait” we mark the edge in the dependency graph as not
active and ignore it in the computation.

For an “always wait” or “never wait” scenario we may simply always set
τ(e) to the resulting delayed departure time or to zero, respectively.
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4.2 Computation on the Dependency Graph

The current timestamp for each departure or arrival node can now be defined
recursively as the maximum over all deciding factors: For a departure of train t
at station s with feeders f1, . . . , fn we have deps(t) =

max{depsched
s (t), depfor

s (t), arrs(t) + stands(t), maxn
i=1{waits(t, fi)}}.

For an arrival we have

arrs(t) = max
{
arrsched

s (t), arrfor
s (t), deps′(t) + tt(s′, s, t)

}
with the previous stop of train t at station s′. Inactive edges do not contribute
to the maximum in the preceding two equations.

If we have a status message that a train has finally departed or arrived at
some given time depfin resp. arrfin, we do not longer compute the maximum
as described above. Instead we use this value for future computations involving
this node.

We maintain a priority queue (ordered by increasing timestamps) of all nodes
whose timestamps have changed since the last computation was finished. When-
ever we have new forecast messages, we update the timestamps of the forecast
nodes and, if they have changed, insert them into the queue. For a connection sta-
tus decision we modify the corresponding transfer edge and update its head node.
If its timestamp changes, it is inserted into the queue. As long as the queue is not
empty, we extract a node from the queue and update the timestamps of the de-
pendent nodes (which have an incoming edge from this node). If the timestamp
of a node has changed in this process, we add it to the queue as well.

For each node we keep track of the edge emax which currently determines the
maximum so that we do not need to recompute our maxima over all incoming
edges every time a timestamp changes. Only if τ(emax) was decreased or τ(e)
for some e �= emax increases above τ(emax) the maximum has to be recomputed.

– If τ(e) decreases and e �= emax nothing needs to be done.
– If τ(e) increases and e �= emax but τ(e) < τ(emax) nothing needs to be done.
– If τ(e) increases and e = emax the new maximum is again determined by

emax and the new value is given by the new τ(emax).

When the queue is empty, all new timestamps have been computed and the
nodes with changed timestamps can be sent to the search graph update routine
or, in the multi server architecture, to the UDS data structure.

A Note on the Implementation. For ease of exposition we have introduced
all kinds of nodes and edges in the dependency graph as being real nodes and
edges. Of course, in our implementation we do not use a node and an edge to
encode nothing more than a single timestamp for schedule and forecast times.
Only arrival and departure nodes are real nodes with entering and leaving edges
plus two integer variables representing the scheduled and forecast time. The lat-
ter is set to some predefined value to specify “no real-time information available
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(yet)”. An arrival node has a container of leaving transfer edges, one entering
traveling edge and one leaving standing edge. Analogously, a departure node has
a container of entering transfer edges, one entering standing edge and one leaving
traveling edge. Iterators over incoming dependencies and markers for the current
input determining the timestamp of the node (the incoming edge or schedule or
forecast time with maximum timestamp) have to be able to traverse resp. point
to the different representations. We deemed the much more elegant version of
the update routines - pretending the existence of nodes and edges for schedule
and forecast times as well - better suited for presentation.

5 Time-Expanded Search Graph Model

5.1 The Static Model

Let us briefly describe the realistic time-expanded search graph model used in
this work. Its basic idea is — as in the dependency graph before — to model
each departure and arrival event of some train as a node with a timestamp. Each
timestamp here represents the time after midnight in minutes.

Again, for each departure event of some train there is a traveling edge to
its very next arrival event. With each traveling edge we associate a number of
additional attributes: a bitfield representing traffic days, with one bit for each
day of the schedule period, and several train attributes (train category, train
number and name, availability of extra services, and the like).

The difference between the dependency graph and the search graph comes
from the need to model the transfer between trains more explicitly in the latter
case so that a Dijkstra-like shortest path algorithm can be used. Non-constant
transfer times between pairs of connecting trains are modeled with the help of
additional change nodes. For every departure time at a station there is a change
node which is connected via entering edges to all departure nodes at that time.
Change nodes at the same station are ordered increasingly by their timestamp,
and subsequent change nodes (in this order) are interconnected with waiting
edges. Moreover, at each station the last change node before midnight is linked
to the first change node after midnight. For each arrival node there is a leaving
edge connecting it to the corresponding first change node which is reachable in
the time needed for a transfer from this train to any other. All possible shorter
transfer times (e.g. for trains at the same platform) are realized using special
transfer edges. The subgraph formed by all edges incident to change nodes of a
certain station will be referred to as the change level of this station.

Finally, we have stay-in-train edges each of which connects the arrival node
of some train to the corresponding departure node at the same station, provided
the latter exists. For each optimization criterion, a certain length is associated
with each edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark traveling
edges as invisible for the search if they do not meet all requirements of the given
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query. With respect to this visibility of edges, there is a one-to-one correspon-
dence between feasible train connections and paths in the graph. More details
of the graph model can be found in [4].

5.2 Search Server MOTIS

Over the last years, the authors developed the timetable information system
MOTIS (multi-objective train information system) which performs a multi-cri-
teria search for train connections in a realistic environment based on the above
described time-expanded graph. To be more precise, MOTIS uses an extension
of this model to incorporate additional features from practice which we omit
here for clarity of the presentation.

Our underlying model ensures that each proposed connection is indeed feasi-
ble, i.e. can be used in reality. MOTIS is parameterized to search with respect
to a selection of optimization criteria, most importantly travel time, number of
interchanges, ticket cost, and reliability of all interchanges of a connection. The
search algorithm used within MOTIS is a generalized multi-criteria Dijkstra-like
algorithm enhanced with some additional speed-up techniques like goal-directed
search [4]. The system is designed not only to present the true Pareto-optima,
but more generally “all attractive” connections to customers, see also [4]. MOTIS
has successfully been extended to search for low-cost connections [11] and night
trains [12].

5.3 The Dynamic Model

The static time-expanded graph model has been slightly adapted for the dynamic
scenario. Compared to the standard search graph we have to store additional in-
formation, namely status decisions, a second timestamp for each node to report
actual and scheduled time in query results, additional strings containing reasons
for the delays, and the like. Moreover, we need a slightly different representa-
tion of trains with identical schedules on multiple days. We defer details of this
modification to Section 7.

6 Updating the Search Graph

The update in the search graph does not simply consist of setting new time-
stamps for nodes (primary and secondary delays), insertions (additional trains)
and deletions (cancellations) of nodes and resorting lists of nodes afterwards.
All the edges modeling the changing of trains at the affected stations have to be
recomputed respecting the changed timestamps, additional and deleted nodes,
and connection status information. The following adjustments are required on
the change level (see Figure 3):

– Updating the leaving edges pointing to the first node reachable after a train
change.

– Updating the nodes reachable from a change node via entering edges.
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Fig. 3. The change level at a station (left) and necessary changes if train t∗ arrives
earlier (middle) or train t arrives later (right)

– Inserting additional change nodes or unhooking them from the chain of wait-
ing edges at times where a new event is the only one or the only event is
moved away or canceled.

– Recalculating special interchange edges from resp. to arrival resp. departure
nodes with a changed timestamp (either remove, adjust or insert special
interchange edges).

The result of the update phase is a graph that looks and behaves exactly as if it
was constructed from a schedule describing the current situation. Additionally,
it contains information about the original schedule and reasons for the delays.

Next, we give two examples for updating the search graph. In Figure 3 (left)
it is possible to change from train t to all trains departing not earlier than t′′

using leaving edge g, any number of consecutive waiting edges and an entering
edge (e.g. h to enter t′′). A change to train t′ on the same platform is also
feasible using special interchange edge f and, of course, to stay in train t via
stay-in-train edge e. However, it is impossible to change to train t∗ although it
departs later than t′, because it requires more time to reach it. Suppose train t∗

manages to get rid of some previous delay and now arrives and departs earlier
than previously predicted (see Figure 3, middle part). In the new situation it is
now possible, to change from t∗ to train t′′ using the new leaving edge n and the
existing entering edge h.

In our second example let train t arrive delayed as depicted in Figure 3 (right).
As it now departs after t′, it is not only impossible to change to t′ (special
interchange edge f is deleted), but also the departure nodes for the departures
of t′ and t are in reverse order. Therefore, the waiting edges have to be re-linked.

7 Traffic Days

A common simplification in theoretical work on timetable information systems
is the assumption that trains operate periodically. Often even a periodicity of
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one hour is used. In real schedules, however, there is a considerable difference
between peak hours, late evenings and “quiet” nights. For our timetable server
MOTIS we take time modulo a single day in order to have a better manageable
graph size as opposed to full time expansion. Recall that traveling edges carry
traffic day flags (stored in bitfields) to model the days of operation, e.g. trains
operating only on weekdays, or weekends, different schedules for school days and
non school-days, trains operating on public holidays according to the weekend
schedule etc.

In our scenario with delay information we have to take care of multiple traffic
days as well. To be able to present the customer with updated information we
need to model not only “today” (the current day) but also tomorrow as some
connections might pass the midnight border (have a so-called “night jump”),
especially if we query with a departure in the afternoon or evening. Resulting
alternative journeys, requested after a delay on a journey, may even end on
the next day due to delays, although no night jump was present in the original
connection.

Therefore, we chose a schedule length of two days. In our time-expanded graph
we represent all the trains operating today and tomorrow. However, trains that
have the same schedule on both days can no longer be represented just once with
two traffic day flags set. To be able to shift today’s train without affecting the
version of tomorrow, thus not incorrectly cloning delays, or vice versa, we need
two distinct versions of such trains.

7.1 Memory Consumption Issues

The simplest version to attain separate nodes for today’s and tomorrow’s events
is to use full time expansion on all our schedule days and not take time modulo
1440 and use traffic day flags on the train edges. Unfortunately, this would not
only increase the number of event nodes and edges as well as the change edges, it
would also significantly increase the number of change nodes and waiting edges.
Whereas there is no way to avoid the increase for the former type of nodes and
edges, we found a way to keep the size of the rest the same: We only use full time
expansion for departure and arrival events and link all events to a change level
with only one node per necessary timestamp, regardless of the day of that event,
i.e. the number of change nodes and waiting edges remains the same, only the
number of adjacent edges to the change nodes increases. Three different models
for the search graph arise.

– Model (A) is the static model where the same events on two subsequent days
are represented only once but two traffic day flags are set.

– Model (B) treats each arrival and departure event individually and uses the
sparse change level implementation as described above.

– Model (C) also treats each arrival and departure event individually but uses
full change level expansion.

Note that in the dependency graph we opted for full time expansion. There is no
change level with waiting edges and all the change representation is between the
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Table 1. Sizes of the search graph for two days, Wednesday and Thursday resp.
Sunday and Monday and the increase when changing between the models (A), (B),
and (C) as described in the text

event train/std change change waiting total total
model unit nodes edges nodes edges edges nodes edges

We & Th (A) (in k) 988 950 459 988 459 1447 2397
We & Th (B) (in k) 1956 1878 459 1954 459 2415 4291
We & Th (C) (in k) 1956 1878 912 1954 912 2868 4744
increase (A → B) (in %) 98.0 97.7 0 97.8 0 66.9 79.0
increase (A → C) (in %) 98.0 97.7 98.7 97.8 98.7 98.2 97.9

Su & Mo (A) (in k) 1181 1134 498 1180 498 1679 2812
Su & Mo (B) (in k) 1702 1634 498 1701 498 2200 3833
Su & Mo (C) (in k) 1702 1634 798 1701 798 2500 4133
increase (A → B) (in %) 44.1 44.1 0 44.2 0 31.0 36.3
increase (A → C) (in %) 44.1 44.1 60.2 44.2 60.2 48.9 47.0

trains itself and only necessary to decide whether trains wait for others or not
and compute the resulting changes. In this model a source delay propagation
may or may not delay events on the following day. There is no need for case
distinctions due to day changes.

Test Data. To study the effect of these models on the space consumption, we
use the train schedule of Germany in 2008. The schedule contains 68,300 trains
for the whole year with over 5,000 distinct bitfields for the days of operation.
We look at the graphs prepared for two subsequent days, either two weekdays,
Wednesday and Thursday (We & Th) with 38,600 trains with distinct schedules
or for Sunday and Monday (Su & Mo) with 46,600 trains with distinct schedules.

Comparison of Models. In Table 1, we compare our three different models
for the search graph. For the more homogeneous case of two weekdays version
(C) requires double the amount of space while for our variant (B) we manage to
increase the number of nodes by two thirds and the number of edges by four fifths.
The tremendous increase of (C) is due to the large number of trains operating
identically each weekday. If we look at the graph for Sunday and Monday the
increase is much smaller as many of the trains operate either on Monday or on
Sunday, therefore the increase in nodes and edges for the trains is below 50%.
Still our model improves the additional required memory space from nearly one
half to about one third.

During the actual search for train connections, variant (B) has a slight running
time overhead in comparison with full time expansion (C). This overhead turns
out to be negligible if a look-ahead in the search process categorizes entering
edges as not allowed if they lead to a departure node for a train not operating
on the required day.
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7.2 Moving from One Day to the Next

At midnight we have to change the current day for our real-time information
server as well as the search servers. Now, information about yesterday is no longer
relevant as tomorrow becomes today and we need to load the “new tomorrow”.

The real-time information server loads the dependency graph for tomorrow
and “forgets” yesterday. With the fully time-expanded model there is no hassle
in doing so. Note that we still have to keep yesterday’s events that are delayed to
today and have not happened yet, but nothing more about yesterday is needed
any longer. Thus, we can delete all information about yesterday’s events in the
data structure. With our prototype, this whole procedure is finished in less than
35 seconds for the complete German timetable.

The search servers need a longer update phase than usual as they have to
be restarted with the now current day and the following day. Afterwards, they
request an update for a new server (exactly as described for a new server in
Section 3). In this update they receive all information for today currently avail-
able. These updates typically take less than ten seconds. Together with the
restart time of about 20 seconds a single search server is down for about half
a minute. Even a server that has not yet changed days can still be updated af-
ter midnight and produce correct search results, as only the information about
the next day is missing, not the current day. So there is no problem with the
last server updating at say 01:00 a.m. Since midnight is not a peak hour for
timetable information systems a number of servers might change days concur-
rently without compromising the availability of service. In summary, within a
multi-server solution down-times of individual servers can easily be hidden from
the customer.

8 Evaluation of the Prototype

We implemented the dependency graph and the update algorithm described in
Section 4 and extended our time table information system MOTIS to support
updating the search graph (cf. Section 6). Although these update operations are
quite costly, we give a proof of concept and show that they can be performed
sufficiently fast for a system with real-time capabilities.

Our computational study uses the German train schedule of 2008. During each
operating day all trains that pass various trigger points (stations and important
points on tracks) generate status messages. There are roughly 5000 stations and
1500 additional trigger points. Whenever a train generates a status message on
its way, new predictions for the departure and arrival times of all its future
stops are computed and fed into a data base. German railways Deutsche Bahn
AG provided delay and forecast data from this data base for a number of opera-
tion days. The simulation results for these days look rather similar without too
much fluctuation neither in the properties of the messages nor in the resulting
computational effort.

In the following subsection, we present results for a standard operating day
with an average delay profile testing various waiting profiles broadcasting the
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update information as soon as it becomes available. In the succeeding subsection
we will present first results for the multi-server architecture (as described in
Section 3) and test different update intervals. All experiments were run on an
Intel Xeon 2.6 GHz with 8GB of RAM.

As no system with the capabilities of our prototype exists, we cannot com-
pare our results to others. To ensure the correctness of our approach we used
automated regression tests continuously checking the status of a large number
of connections and determining alternatives, collecting meta-information about
the encountered delays in the process. Furthermore, we intensively investigated
isolated test cases (e.g. explicit search for trains known to us that they were de-
layed, search for trains departing next to a delay, searches for which the off-line
optimum was affected by a delay).

8.1 Overall Performance and Waiting Profiles

To test our system, we used five sets of waiting profiles. Basically, the train cat-
egories were divided into five classes: high speed trains, night trains, regional
trains, urban trains, and class “all others.” Waiting times are then defined be-
tween the different classes as follows:

– standard High speed trains wait for each other 3 minutes, other trains wait
for high speed trains, night trains, and trains of class “all others” 5 minutes,
night trains wait for high speed and other night trains 10 minutes, and 5
minutes for class “all others.”

– half All times of scenario standard are halved.
– double All times of scenario standard are doubled.
– all5 All times of scenario standard are set to five minutes, and in addition

regional trains wait 5 minutes for all but urban trains.
– all10 All times of the previous scenario are doubled.

It is important to keep in mind that the last two policies are far from reality and
are intended to strain the system beyond the limits it was designed to handle.

Our dependency graph model assumes that we know at each station which
pairs of trains have potentially to wait for each other, i.e., which transfer edges
are present. In our implementation we use the pragmatic rule, that if the dif-
ference between the departure event of train t1 and the arrival event of another
train t2 at the same station does not exceed a parameter δ, then there is a
transfer edge between these two events.

For each of these different waiting profiles we tested different maximum dis-
tances (in minutes) of feeding and connecting trains δ ∈ {5, 15, 30, 45, 60}, and
compare them to a variant without waiting for other trains (policy no wait). In
this reference scenario it is still necessary to propagate delays in the dependency
graph to correctly update the train runs. Thus, the same computations as with
policies for delays is carried out, only the terms for feeding trains are always
zero.

We constructed search and dependency graphs from the real schedule consist-
ing of 36,700 trains operating on the selected day. There are 8,817 stations in
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Table 2. Properties of the search graph (left) and dependency graph (right) for one
day

search graph
event nodes 0.99 mil
change nodes 0.46 mil

edges 2.40 mil

dependency graph
events 0.97 mil

standing edges 0.45 mil
traveling edges 0.49 mil

Table 3. The number of transfer edges depending on the waiting policy and the max-
imum allowed time difference δ between feeding and connecting train

transfer edges 5min 15min 30min 45min 60min
std / half / double 7.1k 54.7k 123.8k 207.8k 267.8k
all5 / all 10 14.6k 168.3k 399.6k 665.4k 874.3k

the data. The number of nodes and edges in both graphs are given in Table 2.
The number of standing and traveling edges are in one-to-one correspondence to
the stay-in-train and traveling edges of the search graph. The number of trans-
fer edges depends on the waiting policy and parameter δ and can be found in
Table 3. Note that, whether a transfer edge exists or not, depends on the classes
that wait for each other and not on the actual number of minutes they wait.
Therefore, the number of edges are identical for the policies half, standard, and
double as well as for the policies all5 and all10. There is a monotonous growth
in the number of transfer edges depending on the parameter δ. Additionally, the
number of these edges increases as more trains wait for other trains because of
additional rules.

In Table 4, we give the results for our test runs for the different policies
and values of δ. Running times are averages over 25 test runs. For the chosen
simulation day we have a large stream of real forecast messages. Whenever a
complete sequence of messages for a train has arrived, we send them to the
dependency graph for processing. 336,840 sequences are handled. In total we
had 6,340,480 forecast messages, 562,209 messages of the type “this train is now
here” and 4,926 connection status decisions. Of all forecast messages 2,701,277
forecasts are identical to the last message already processed for the corresponding
nodes. The remaining messages either trigger computations in the dependency
graph or match the current timestamp of the node. The latter require neither
shifting of nodes nor a propagation in the dependency graph. The resulting
number of node shifts is given in the seventh column of Table 4. Depending on
the policy we have a different number of nodes that were shifted and stations
that have at least one delayed event (last two columns of the table).

The key figures for the computational efficiency (required CPU times in sec-
onds, operation counts for the number of touched stations and node shifts in
multiples of thousand) increase when changing to policies for which trains wait
longer or more trains have to wait. Increasing δ yields a higher effect the more
trains wait. The overall small impact of changing δ is due to the majority of
delays being rather small. We notice a significant growth in all key criteria when
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Table 4. Computation time for the whole day (propagation in the dependency graph
(DG) and update of the search graph (SG), IO and total) and key figures (in multiples
of thousand) for the executed node shifts in the search graph and the number of nodes
and stations with changed status information with respect to different policies for
delays

Instance Computation time for Node With delay
policy δ SG DG IO total shifts nodes stations

in min in s in s in s in s in k in k
no wait - 59.8 6.4 39.4 105.6 3,410 396.2 5,385

5 59.1 6.2 40.0 105.3 3,432 396.6 5,397
15 60.7 6.4 39.7 106.8 3,525 400.1 5,483

half 30 60.8 6.4 40.4 107.7 3,535 400.4 5,494
45 61.2 6.5 40.0 107.8 3,539 400.6 5,494
60 62.3 6.8 39.7 108.8 3,540 400.7 5,496
5 59.1 6.2 39.3 104.6 3,443 396.8 5,408
15 62.6 6.5 39.5 108.5 3,614 402.5 5,532

standard 30 63.4 6.7 40.1 110.2 3,636 403.2 5,541
45 63.6 6.8 39.9 110.2 3,646 403.6 5,541
60 63.6 6.7 40.3 110.7 3,651 403.7 5,545
5 58.9 6.3 39.7 104.9 3,447 396.8 5,419
15 66.4 6.6 40.4 113.4 3,835 406.2 5,590

double 30 67.9 6.9 40.5 115.3 3,908 407.5 5,639
45 69.4 7.2 40.1 116.7 3,945 408.0 5,642
60 69.0 7.3 39.9 116.2 3,959 408.1 5,642

5 60.7 6.4 40.3 107.4 3,623 403.5 5,588
15 123.1 11.5 40.0 174.6 7,603 440.5 6,051

all5 30 124.9 13.0 40.4 178.3 7,670 442.8 6,064
45 124.9 14.7 40.6 180.2 7,687 443.4 6,064
60 126.0 16.5 40.4 182.9 7,689 443.7 6,070
5 60.7 6.4 40.4 107.5 3,651 404.0 5,608
15 193.8 19.0 39.8 252.6 13,052 457.9 6,118

all10 30 195.2 21.6 40.9 257.7 13,231 463.0 6,145
45 198.0 24.6 40.6 263.2 13,346 464.4 6,148
60 200.7 27.3 40.7 268.7 13,466 465.3 6,162

increasing δ from 5 to 15. All policies behave rather similarly for δ = 5, whereas
the differences between the realistic policies and the extreme versions and even
from all5 to all10 for higher values of δ is apparent.

Amongst the plausible policies there is only a 16% difference in the number of
moved nodes. It little more than doubles going to policy all5 and even increases
by a factor of 3.8 towards policy all10. Roughly 40 seconds of our simulation time
are spent extracting and preprocessing the messages from the forecast stream.
This IO time is obviously independent of the test scenario. The increase in
running time spent in the search graph update is no more than 3 seconds for
δ > 5 for all policies except all10 with 7 seconds and differs by at most 10
seconds or 17% among the realistic scenarios. The running time scales with the
number of shifts. An increase of factor 1.9 resp. 3.4 of node shifts results in a



268 M. Müller-Hannemann and M. Schnee

factor of 1.8 resp. 3.3 in running time (compare policies double to all5 and all10
with δ = 60). The time spent in the dependency graph differs by at most 1
second (about 16%) for realistic scenarios and stays below 30 seconds even for
the most extreme policy.

Even for the most extreme scenario a whole day can be simulated in less than
5 minutes. The overall simulation time for realistic policies lies around 2 minutes.
For the policy standard with δ = 45, we require on average 17μs reconstruction
work in the search graph per executed node shift. By incident, also the overall
runtime per computed message is 17μs.

Worst-Case Considerations (Based on Policy Standard with δ = 45).
The highest number of messages received per minute is 15,627 resulting in 29,632
node shifts and a computation time of 0.66 seconds for this minute. However, the
largest amount of reconstruction work occurred in a minute with 5,808 messages.
It required 172,432 node shifts and took 2.38 seconds; this is the worst case
minute which we observed in the simulation. Thus, at our current performance
we could easily handle 25 times the load without a need for event buffering. This
clearly qualifies for live performance.

8.2 Multi-server Performance

As we have seen in the previous subsection most of the time is spent in re-
constructing the search graph. Applying sophisticated software engineering the
update process has been sped up considerably. Additionally, a big potential lies
in doing less reconstruction work. In a real-time environment it is not necessary
to update multiple times per minute as soon as new information is available (as
we did in the previous subsection). It clearly suffices to update each minute. De-
pending on the load balancing scheme every 2 or 3 minutes might still produce
results of high quality.

To be able to compare the numbers to the previous section we tested the
two servers as introduced in Section 3 “in line”, i.e. one waited for the other to
finish computation before continuing his own work. We use our waiting profile
“standard” with δ = 45 for all versions. The baseline version does not use the
UDS and immediately updates the search graph. The version split additionally
inserts and retrieves events into/from the UDS. Our code spends about 47 sec-
onds on extracting and preprocessing the messages from the forecast stream and
propagation in the dependency graph. Pushing all the events through the UDS
data structure in the split architecture only requires an additional 7.2 seconds.

As we do not see a need for update intervals shorter than one minute, we now
read all incoming messages for a particular minute and calculate the resulting
changed event times in the dependency graph. These are transmitted to the data
structure UDS in our real-time information server part. Meanwhile the search
graph requests an update every 1, 2, 3, 4, or 5 minutes, using either the iterator
or map version. The results can be found in Table 5. The numbers are averages
over 25 runs.

By sending the state delta of the last x minutes as a batch job to the search
graph we save a lot of reconstruction work due to mutually interacting messages
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Table 5. The number of transmitted events, node shifts and execution time for sim-
ulating the whole day. We compare version with and without two server architecture
using an iterator or a map to determine the relevant events (cf. Section 3) for different
update intervals.

Instance Transmissions Computation time
needed unnec- SG UDS total

Version interval essary ins ext
in min in k in k in s in s in s in s

baseline - 3646 0 63.5 0.0 0.0 110.3
split - 3646 0 63.7 3.7 3.5 117.7

1 3143 0 53.9 3.1 55.6 159.0
2 2809 149 45.5 2.9 29.3 124.4

iterator 3 2447 284 38.3 2.9 20.4 108.2
4 2177 360 33.3 2.8 15.8 98.6
5 1954 404 29.3 2.8 13.1 91.4
1 3143 0 54.3 4.9 2.1 107.4
2 2809 0 45.4 4.9 1.9 98.5

map 3 2447 0 38.3 4.8 1.8 91.2
4 2177 0 33.4 4.7 1.7 86.3
5 1954 0 29.2 4.7 1.5 81.7

arriving between two subsequent updates, e.g. oscillating forecasts for trains, or
reconstruction is done for a train but later it is shifted again due to a changed
arrival time of one of its feeding trains.

With increasing interval size the number of messages to transmit significantly
decreases. The resulting time required for updating the search graph is sped up
by nearly 10 seconds when changing from immediate update to an interval of
one minute. The increase of the interval size by one additional minute within
the range of [1-5] reduces the execution time by a few seconds.

The iterator version of detecting events to transmit (cf. Section 3) only uses
the release time information and cannot detect that an event does not require
shifting, therefore it transmits 149k to 404k (depending on the update interval)
of these irrelevant messages demanding a node “shift” to the node’s current
position. On the other hand, the map version only transmits events with changed
timestamp, even if the release time is newer, therefore we do not have unnecessary
transmissions. As shifts to the same position are never executed we only have
the unnecessary transmission and no extra work, as we can see with the identical
run times for the search graph update (column SG).

Inserting the information (column UDS ins) about changed event times into
the UDS takes between 2.8 and 3.7 seconds, depending on the number of insertions
(and thus the interval size). For the map version the bookkeeping requires an
additional 1.8 to 2.0 seconds for the whole day. While the extraction (column
UDS ext) using the map version requires 1.5 to 2.1 seconds, iterating for each
update over all stored events to find the relevant new information in the iterator
version is very costly and takes 13.1 to 55.6 seconds. Obviously, these times do
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not depend on the number of transmissions but on the number of iterations, as
we observe that the extraction time is inversely proportional to the interval size.

The improvement in run time of 3 seconds (from 110.3 to 107.4 seconds), when
changing from the baseline version to the split version with an interval of one
minute, does not seem like much. However, it enabled us to do load balancing and
handle updates on demand with our multi-server approach. The update time for
the search servers consists of the time for receiving events from the UDS plus the
time for the search graph update. Therefore, instead of taking 110.3 seconds to
read messages, propagate delays and update the search in our baseline version,
we only need 56.4 seconds in the split architecture for keeping the search graph
up-to-date. Thus, we gain more than 50 seconds of available computation time
per search server (about half the time required by the baseline version that does
all the work on its own). Together with the initial startup phase and the first
update with all relevant information for today depending on yesterday’s data of
about half a minute (cf. Subsection 7.2) a search server is only 60 to 90 seconds
per day busy with startup and updating. This means that each search server can
use 99.9% of its time for answering search queries.

The real-time information server spends about 47 seconds for reading mes-
sages and propagation in the dependency graph and additional 3 seconds storing
the data. For each registered server (in our tests just one) it takes 2 seconds
maintaining the map of relevant events and 2 seconds to extract and transmit
those events. Thus, we have by far enough time to update a multitude of search
servers.

9 Conclusions and Future Work

We have built a first prototype which can be used for efficient off-line simulation
with massive streams of delay and forecast messages for typical days of operation
within Germany. Using the presented multi-server solution, the correct handling
of all necessary updates is so fast that each search server can use almost all
of its time for answering search queries. Stress tests with extreme policies for
delays showed that the update time scales linearly with the amount of work. So
even for cases of major disruptions we expect a sufficient performance of such a
multi-server solution. Compared to typical stream profiles, we are able to handle
about 25 times as much reconstruction work.

It remains an interesting task to implement a live feed of delay messages for
our timetable information system and actually test real-time performance of the
resulting system. Since update operations in the time-dependent graph model
are somewhat easier than in the time-expanded graph model, we also plan to
integrate the update information from our dependency graph into a multi-criteria
time-dependent search approach developed in our group (Disser et al. [13]).

A true real-time timetable information system as demonstrated by our proto-
type opens the door for a new service to passengers who want their travel plans
supervised. The provider of such a service would constantly check the validity of
planned connections, and in case of necessary changes due to delays inform the
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affected passenger and propose new alternative connections by sending messages
to a mobile phone or an email address.
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Abstract. Traditionally, when designing robust transportation systems,
one wants to increase the functionality of the system in presence of fail-
ures, even though they might not work optimally when no failures occur,
which is the usual case. In this paper we make an attempt to integrate
robust network design and line planning without decreasing the efficiency
of the system when no failures occur. Therefore, extra costs must be met
(price of robustness). Two different concepts of robustness are consid-
ered: one from the user’s point of view, which aims at minimizing total
travel time, and one from the operator’s point of view, which aims at
minimizing extra costs, both assuming possible disruptions.

1 Introduction

Designing a Railway Network (RN), or even extending one that is already func-
tioning, is a vital subject due to the fact that they reduce traffic congestion,
travel time and pollution. The interest on this is reflected both in the number of
papers on this subject that one can find in the literature and in the special effort
that governments are making in order to improve their transportation (usually
railway) networks. Examples of the research community’s interest on this topic
are the papers by Gendreau et al. [10], Dufourd et al. [9] and Bruno et al. [4].
On the other hand, governmental interest is reflected in the number of research
projects in this area that are being supported by public institutions, for instance
ARRIVAL.

When facing a Railway Network Design (RND) problem there is usually an-
other transportation system already operating in the area where the RN is to
be built or extended. Therefore competition between the RN to be constructed
and the alternative mode must be taken into account. In Laporte et al. [13],
an Integer Linear Programming (ILP) problem is used to design a RN in the
presence of a competing mode. Indeed, in that paper, the robustness of the
network is taken into account by adding certain extra constraints which provide
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potential users with different routes so that in case of failure they still find the RN
attractive with respect to the alternative mode. The robustness in optimization
models has been addressed from different angles. For instance, Malcom and
Zenios [15] choose different parameters that are uncertain whereas Bertsimas
and Sim, [2] and [3], propose models that control the degree of conservatism,
therefore avoiding the classic “worst case scenario”.

The following step after designing a RN is planning its lines (origin and des-
tination stations, stops and frequencies), from now on called Railway Line Plan-
ning (RLP) problem. In passenger transportation the train fleet is operated in
a cyclic timetable, and a service or line is defined by trains with the same route
and stop stations. The frequency of a service is the number of trains that run
in each direction per cycle on their common route. The line design considers the
demand satisfaction and some capacity constraints. There are two main conflict-
ing objectives to be pursued when planning a line system, namely (i) optimizing
passenger service, and (ii) minimizing operational costs of the railway system.
The improvement of the passenger service may be defined from different points
of view; minimizing transfers, minimizing total travel time or maximizing com-
fort. Maximizing the number of direct connections usually results in long lines,
however, long lines may transfer delays more easily and provide an inefficient
allocation of rolling stock, because it is usually allocated according to the peak
demand along the line, see Abbink et al. [1]. Therefore, in a robust system the
lines are relatively short, which may force passengers to transfer from one train
to another too often.

The references about RLP are focused on interurban trains. They may be
classified into two groups: operator’s point of view and user’s point of view. In
the first group, Claessens et al. [6] consider the minimization of service costs.
They define a non-linear mixed integer model involving binary decision vari-
ables for the selection of services and additional variables for the frequencies
and train lengths, considering the type vehicle. They solve the problem by lin-
earization and make use of Branch and Bound techniques. Cordeau et al. [8]
made a good state-of-the-art survey on line planning but oriented to freight
transportation. Cordeau et al. [7] consider different types of trains and use Ben-
ders Decomposition. From the user’s point of view, Bussieck et al. [5] maximize
the number of passengers without transfers. In order to reduce the number of
variables they use aggregated variables considering the relaxation of capacity
constraints. Scholl [18] minimizes the number of transfers, which implies the use
of passenger routes in the model, for which the concept of “Switch-and-Ride”
is defined. Lagrangian Relaxation is used to obtain lower bounds and heuristics
are needed to generate feasible solutions. Schöbel and Scholl [17] minimize the
travel time with the inclusion of route and transfer times and considering budget
constraints.

In this paper we wish to design (or extend) a robust RN and provide a
line planning assuming that there is a competing transportation mode already
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operating in the area and budget is limited. Our robustness definitions are re-
garded to link failures, assuming that the utility of a network is adversely affected
by such failures. We will consider two definitions of robustness:

– from the user’s point of view. A RN will be considered robust if failure on
edges affect the total travel time of the network the least possible.

– from the operator’s point of view. A RN will be considered robust if the
extra operator costs caused by failures are as low as possible, that is, the
number of vehicles affected are as few as possible.

Both types of robustness will be defined in detail in Section 3.
Attempts to combine the different steps in transportation planning have al-

ready been addressed in the literature, see Guihaire and Hao [11] and the refer-
ences therein. Robust RND and Robust RLP have been addressed separately in
the literature (see [13] and Kontogiannis and Zaroliagis [12]). This paper includes
the novelty of combining both problems into one, adding robustness constraints
as well. In Laporte et al. [13] and [14] it was shown that the Robust RND is
extremely complex, and only small instances could be optimally solved. The lat-
ter paper also shows the theoretical NP-hardness of our RND problem. As for
the complexity of RLP, in [17] it is proved that the RLP is NP-hard. Therefore
a combined ILP problem would be intractable from the computational point of
view. Thus, in this work we propose an iterative process that adds robustness
to the network (from both definitions) sequentially and is computationally more
affordable.

The rest of the paper is structured as follows. In Section 2 both the RND
problem and the RLP problem are summarized. In Section 3, the indexes of
robustness we are to use and heuristics to solve the robust counterparts of the
problems defined in the previous section are presented. Section 4 is devoted to
showing an illustrative example of the algorithm proposed. The paper finishes
with some conclusions and two appendixes where RND and RLP models are
presented in more detail in order to make this paper self-contained.

2 Network Design and Line Planning

In this section we briefly introduce the two problems under consideration in this
paper: the RND problem and the RLP problem. Only the necessary data for the
iterative process that will be defined in the next section are introduced, both
models being explained in more detail in the appendixes.

RND is possibly the first step in the complete process for creating a railway
system. In this paper we assume that a RN is to be built in a given area,
connecting certain points, knowing the mobility patterns between them, and
without exceeding a maximum budget. It is also assumed that an alternative
transportation system is already operating in the area. Therefore, the input
data are:
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– A graph (N, A) where N = {n1, . . . , nI} are the potential sites for locating
stations and A is a set of feasible (bidirectional) arcs linking the elements
in N , from which we can choose the links of the railway network. Costs of
building stations and links (ci is the cost for building a station at node ni

and cij is the cost for building the link directly connecting stations ni and
nj) are known.

– The demand patterns are given by a matrix G, where gw denotes the number
of trips from ni to nj .

– The necessary time to go from ni to nj using the alternative transportation
mode is known, for every pair of points of N , and denoted by uCOM

ij .

In [13], an ILP model for the RND problem is presented. The output of this
model can be summarized as follows:

– xij = 1 if arc (ni, nj) ∈ A belongs to the railway network; 0 otherwise.
– yi = 1 if node ni ∈ N is a station of the railway network; 0 otherwise.
– pw = 1 if the origin-destination (OD) pair w chooses the railway system; 0

otherwise.
– fw

ij = 1 if the OD pair w uses the arc (ni, nj) of the railway system in a
shortest path; 0 otherwise.

– uw is the necessary time for the pair w to complete its journey by using its
fastest alternative.

Note that such variables define the topological network of the railway system.
Appendix A gives a detailed summary of the RND model considered.

Once the topology of the railway network is defined (stations and links) one
should face the RLP problem in which the lines of the network including the
stops of each line and their frequencies are designed. The RLP model takes as
input data the demand patterns and the edges and nodes chosen by the RND
model. The utility of the network is obtained after solving the RND problem, that
is, the demand patterns are redefined as gw = gwpw. The lines are elaborated
from the topological network (defined after solving the RND problem). In our
model we will consider all the service alternatives that may be defined from the
nodes and edges of topological network, but in practice it is usual to find that
only a line pool is considered.

In RLP, considering the routing of the demand through the lines (and their
capacities) and constraints on the capacities of the service system (number of
trains available, capacity of the section of the services, etc.), one wants to find
the configuration of services (with their frequencies) that minimizes the total
cost of the network (viewed as travel times or operator extra costs) and is able
to satisfy all the demand that is to use it. The output of a RLP model can be
summarized as:

1. xl
ij = 1 if arc (ni, nj) ∈ A belongs to service l; 0 otherwise.

2. yl
i = 1 if node ni ∈ N is a stop of service l; 0 otherwise.

3. vl, the frequency of trains on the service l ∈ L.
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4. hr is the flow of the route r, ∀ r ∈ Rw, ∀ w ∈ N × N , where Rw is the set
of possible routes in the network for the demand pair w.

In Appendix B a more detailed summary of the RLP problem is given.

3 Robust Railway Network Design and Line Planning

In this section we present an iterative process that aims to mix robust RND and
robust RLP by iterating from one problem to another.

A model that includes both robust RND and robust RLP could have been
proposed. The main drawback that one would find in such a model is its compu-
tational complexity. Both models separately are very complex, and it is logical
to think that when joining them into one unique model, plus adding robust-
ness constraints, the computational costs might become intractable. Therefore
we propose an iterative process that, although it solves each problem separately,
it connects them to each other with the aim of making it affordable from the
computational point of view.

Two robust approaches may be considered: the first one uses the passenger’s
time (user robustness), whereas the second one takes into account the distri-
bution of the line services (operator robustness). In the rest of the paper, the
concept of network that will be used is:

Definition 1. Let (N, A) be the graph on which we are to build our transporta-
tion network. A network r on (N, A) is a set of lines and their frequencies, each
stop of each line being a node in N , and each link of each line being an edge in
A. The set of all possible networks on G shall be denoted by R(N, A), or just R
in case there is no confusion about the graph under consideration.

3.1 User Robust Railway Network Design and Line Planning

First, the concept of User Robustness RND and RLP (UR-RND-RLP) used in
this section must be defined. Roughly speaking, we consider that a network is
robust from the user point of view when, if the route of a passenger is affected
by a failure, there are other possible routes in the network, and those alternative
routes allow that the total travel time does not increase dramatically.

Definition 2. Let (N, A) be a graph, let r be a network over (N, A), and W
the set of OD pairs that are going to use the network. The following robustness
index is defined:

RU (r) =
minr̄∈R max(i,j)∈A{

∑
w∈W T r̄

w(i, j)gw}
max(i,j)∈A{

∑
w∈W T r

w(i, j)gw} , (1)

where T r
w(i, j) denotes the length of the fastest route in network r for pair w

when arc (i, j) is not operative. If there is no possible route in r for pair w when
arc (i, j) fails, we set T r

w(i, j) = M , for M sufficiently large.
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Sometimes, it is not logical to test the robustness of certain areas of the network
(for instance, if the graph (N, A) has branches). Therefore, sometimes in the
definition of RU we do not calculate the maximum on all arcs of A but only on
a subset of it.

Index RU satisfies three basic properties: it lays within 0 and 1, it is invariant
against scale changes, and it is monotone, as stated in the following proposition.

Proposition 1. Let G = (N, A) be a graph and let W be the set of OD pairs
that are going to use the network, respectively. Let r and r′ be two networks over
G, satisfying that r ⊂ r′, that is, all stations and links of r are in r′ as well.
Then, it holds that:

1. (Within [0,1] property)
0 ≤ RU (r) ≤ 1. Besides, RU (r) = 0 if and only if there are some OD pairs
of W such that the failure in an edge of r leaves them unconnected. Besides,
RU (r∗) = 1 ∀ r∗ ∈ argminr̄∈R max(i,j)∈A{

∑
w∈W T r̄

w(i, j)gw}.
2. (Scale invariance)

If the scales in which the time and/or the number of passengers change, the
index RU (r) remains invariant.

3. (Monotonicity)
RU (r) ≤ RU (r′).

Proof. 1. (Within [0,1] property)
Trivially, 0 ≤ RU (r) ≤ 1. Note that RU (r) is always strictly positive and it
can reach zero value if and only if its denominator tends to infinite, that is,
if and only if there is a pair w and an arc (i, j) such that there is no path
joining w when arc (i, j) fails.

2. (Scale invariance)
Assume that the distance is now measured on a different scale, given by
constant k1, and the number of passengers is also measured on a different
scale, given by constant k2. Let g̃w = k2gw the new demand patterns. Let
T̃ r

w(i, j) denote the length of the fastest route in the network r for the pair
w when arc (i, j) is not operative, measured on the new scale. One has that
T̃ r

w(i, j) = k1T
r
w(i, j). Therefore,

R̃U (r) =
minr̄∈R max(i,j)∈A{

∑
w∈W T̃ r̄

w(i, j)g̃w}
max(i,j)∈A{

∑
w∈W T̃ r

w(i, j)g̃w}

=
minr̄∈R max(i,j)∈A{

∑
w∈W k1k2T

r̄
w(i, j)gw}

max(i,j)∈A{
∑

w∈W k1k2T r
w(i, j)gw} = RU (r) .

3. (Monotonicity)
Since T r′

w (i, j) ≤ T r
w(i, j) for all (i, j) ∈ A, and for all w ∈ W , RU (r′) ≥

RU (r). ��
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Those three properties justify the use of index RU to compare the robustness of
different networks.

Definition 3. Let r1 and r2 be two networks covering the same set of OD pairs.
Network r1 is said to be more robust than r2 from the user’s point of view if
RU (r1) > RU (r2).

Once we have defined our concept of robustness and the index we are to use to
measure it, let us describe the sequential process we propose to join user Robust
RND-RLP.

First, the RND problem is solved, as in Section 2 of [13]. This model optimizes
a certain utility function of the railway system to be built in competition with an
alternative mode of transportation. In this section we consider the total travel
time as utility, which results in the following ILP problem (see Appendix A for
more details):

RND : min Total Travel Time
s.t.: Budget Constraints,

Alignment Location Constraints,
Routing Demand Conservation Constraints,
Location-Allocation Constraints,
Splitting Demand Constraints.

(2)

The solution to this problem will yield a topological network minimizing the
total travel time, that is, a set of edges and nodes that will constitute the actual
transportation network. From this topological network, we have to calculate the
optimal configuration of lines (with their frequencies), that is, we have to solve
the RLP problem minimizing user costs. The vehicle fleet is assigned to the
topological network in a competitive way, solving the following ILP problem:

RLP : min User Costs
s.t.: Routing Demand Conservation Constraints,

Arc User Capacity Constraints,
Arc Vehicle Capacity Constraints,
Fleet Capacity Constraints.

(3)

The solution to the RLP problem will yield an optimal network, that is, a set of
active lines and their frequencies. This would be the end of the initial iteration,
which results in:

– the configuration of lines minimizing total travel time, r0.
– the set of covered OD pairs by r0, W 0.
– T r0

w (i, j), for all w ∈ W 0, (i, j) ∈ A.
– arg max(i,j)∈A{

∑
w∈W T r0

w (i, j)gw}.

In following iterations we intend to extend r0 so that it covers (at least) the same
OD pairs and is more robust, at a minimum extra cost. That is, we want to build
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a network r1 so that RU (r0) ≤ RU (r1). Since we do not want to adversely affect
the utility of network r0, the budget must be increased. Therefore, the second
iteration of our process will solve the RND problem fixing the arcs of r0. This
way, both the trip coverage and the total travel time of the network will not be
negatively affected. Besides, we will introduce the robustness constraints defined
in Section 3.1 of [13], for (i∗, j∗) and for all w ∈ W 0, thus ensuring alternative
routes for those pairs. Therefore, we will build a new network with a total travel
time not higher than r0 that still attracts (at least) all OD pairs in W 0, and is
more robust. This is done by solving the following ILP problem:

ROB − RND : min zcosts =
∑

(i,j) cijxij +
∑

i ciyi

s.t. Alignment Location Constraints,
Routing Demand Conservation Constraints,
Location-Allocation Constraints,
Splitting Demand Constraints,
xij = 1, ∀ (i, j) ∈ r0,
fw
(i∗,j∗) ≤ 1

2 , ∀ w ∈ W 0,

(i∗, j∗) ∈ arg max(i,j)∈A{
∑

w∈W T r0

w (i, j)gw},

where zcosts is the cost of building the RN and fw
ij are now allowed to lie in [0, 1].

Note that in this problem both the OD pairs covered W 0 and the total travel time
of the network that had been previously computed can only be improved. Note
as well that we minimize the construction costs so the robustness constraints
are met at a minimum extra cost. The final process of this iteration is to solve
the RLP for the topological network just obtained, which yields the network r1.
The following theorem states that the second network is more robust than the
first one over the set W 0.

Theorem 1. RU (r0) ≤ RU (r1).

Proof. Since r1 has the same arcs as r0 plus (possibly) some more, and from the
monotonicity of our index of robustness, the result follows. ��

A pseudocode of this process is given in Algorithm 1.

3.2 Operator Robust Railway Network Design and Line Planning

The concept of Operator Robust RND and RLP (OR-RND-RLP) used in this
subsection is roughly defined as follows. A service is robust when the vehicles of
a fleet are more distributed in the arcs of a given network. Thus, if a section of
a line is affected by a failure less vehicles of the fleet are affected by it (and so
less users). A more formal definition is:

Definition 4. Let r be a network and let vr(i, j) be the number of vehicles of
r using the arc (i, j), vr(i, j) =

∑
l∈r vlδ

l
ij , δl

ij = 1 if line l ∈ r is defined using
the edge (i, j), and zero otherwise. The following service robustness index is
defined:
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Algorithm 1

Input data

User Robust Railway Railway Network Design and Line Planning

1. Initialization
(a) RND: Solve RND minimizing total travel time. Let W 0 be the OD pairs

covered by this optimal network and let T ∗ be its total travel time.
(b) RLP: From W 0 and the topological network obtained in 1a, solve RLP mini-

mizing user costs. Let r0 be the resulting network.
2. Iterations. Set k = 1.

(a) Robust RND: Solve ROB-RND, minimizing construction costs and with the
following extra constraints: xij = 1 ∀ (i, j) ∈ rk−1 (keep the edges of rk−1),
fw

i∗j∗ ≤ 1
2
∀ w ∈ W 0 (it opens new routes for users crossing (i∗, j∗)), where

(i∗, j∗) ∈ arg max(i,j)∈rk−1{
∑

w∈W0 T rk−1

w (i, j)gw}.
(b) RLP: From the topological network obtained in 2a, solve RLP, minimizing

user costs. Let rk be the resulting network.
(c) k → k + 1. Go to step 2a (until we run out of budget).

RO(r) =
minr̄∈R max(i,j)∈r̄ vr(i, j)

max(i,j)∈r vr(i, j)
. (4)

Network r1 is more robust than network r2 if RO(r1) > RO(r2).

Following analogous proofs as we did for the user robustness index RU , the
following properties are proven.

Proposition 2. Let G = (N, A) be a graph and let W be the set of OD pairs
that are going to use the network, respectively. Let r and r′ be two networks over
G, satisfying that r ⊂ r′, that is, all stations and links of r are in r′ as well.
Then, it holds that:

1. (Within [0,1] property)
0 ≤ RO(r) ≤ 1.

2. (Scale invariance)
If the scales in which the time and/or the number of passengers change, the
index RO(r) remains invariant.

3. (Monotonicity)
RO(r) ≤ RO(r′)

The iterative process to obtain the Operator Robustness Network Design and
Line Planning is similar to the previous UR-RND-RLP, but changing the objec-
tive functions in problems (2) and (3) and the robustness index. Now the utility
used in the RND problem is to maximize the trip coverage, the utility used in
the RLP problem is to minimize the operational costs and the robustness index
is RO. This process is detailed in Algorithm 2.
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Algorithm 2

Input data

Operator Robust Railway Network Design and Line Planning

1. Initialization
(a) RND: Solve RND maximizing trip coverage. Let W 0 be the OD pairs covered.
(b) RLP: From W 0 and the topological network obtained in 1a, solve RLP mini-

mizing operational costs. Let r0 be the resulting network.
2. Iterations. Set k = 1.

(a) Robust RND: Solve ROB-RND, minimizing construction costs and with the
following extra constraints: xij = 1 ∀ (i, j) ∈ rk−1 (keep the edges of rk−1),
fw

i∗j∗ ≤ 1
2
∀ w ∈ W 0 (it opens new routes for users crossing (i∗, j∗)), where

(i∗, j∗) ∈ arg max(i,j)∈rk−1{vrk−1(i, j)}.
(b) RLP: Solve RLP, minimizing operational costs. Let rk be the resulting net-

work.
(c) k → k + 1. Go to step 2a (until we run out of budget).

4 An Illustrative Example

For this example we will consider Andalućıa, a region in the South of Spain, see
Figure 1. A high-speed train network wants to be built in the area. Its potential

Fig. 1. Map of Andalućıa
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stations are the capitals of the eight provinces of the region, namely: Huelva
(1), Seville (2), Cádiz (3), Córdoba (4), Málaga (5), Granada (6), Jaén (7) and
Almeŕıa (8). Besides, two other nodes have been added to the problem, Ante-
quera (9) and Guadix (10), for their importance as transfer stations. The set of
potential stations and possible links (based on the orography and forbidden areas
of the region) is depicted in Figure 2. Each node has an associated construction
cost ci and each possible edge a number dij , which is the time needed to tra-
verse it by the railway network to be built. Such times are an approximation,
which has been made as follows. There already exists a high-speed connection
between Sevilla and Córdoba, which takes 41 minutes. The trip on the road
takes approximately 107 minutes. Therefore, the links between different cities
have been approximated from the road trip times using the same proportion:
41
107 (results have been rounded to the closest integer). The construction costs of
each edge (cij) are assumed to be proportional to their length, and for the sake
of simplicity we have set cij = dij ∀ (i, j). A maximum budget of 300 units has
been considered. The OD demands gw and the cost uCOM

w for each demand pair
w ∈ W are given by the following matrices:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2974718 576797 70924 131169 44198 17131 35264 0 0
2974718 0 2977353 1146110 773926 315251 295295 21089 0 0
576797 2977353 0 307126 1736095 844903 24032 56680 0 0
70924 1146110 307126 0 448310 258062 133859 26604 0 0
131169 773926 1736095 448310 0 1383515 215241 62623 0 0
44198 315251 844903 258062 1383515 0 572196 650714 0 0
17131 295295 24032 133859 215241 572196 0 72667 0 0
35264 21089 56680 26604 62623 650714 72667 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

uCOM
w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 61 135 162 206 232 244 324 171 257
61 0 83 107 149 175 184 267 114 200
135 83 0 174 170 231 256 323 171 256
162 107 174 0 114 141 99 233 85 166
206 149 170 114 0 98 159 172 52 123
232 175 231 141 98 0 69 113 79 49
244 184 256 99 159 69 0 157 122 90
324 267 323 233 172 113 157 0 173 78
171 114 171 85 52 79 122 173 0 105
257 200 256 166 123 49 90 78 105 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The demand pairs shown refer to number of trips per year, and therefore for
our problem we have divided them by 365 in order to give a daily line planning.
The distances of the complementary mode have been calculated using the fastest
route on the road network, given by www.google.com.
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Fig. 2. Andalućıa: potential stations and potential links

4.1 User Robustness

Let us now calculate a Robust RN from the user’s point of view. Note that, since
a failure in edge (1, 2) would leave the graph disconnected, we will not take this
edge into account when calculating index RU , that is, rename A = A \ {(1, 2)}
when executing Algorithm 1. The initialization phase yields the following line
configuration:

r0 = {l1, l2, l3, l4},
l1 =(1 − 2 − 3), l2 =(4 − 9 − 5), l3 =(2 − 9 − 6 − 7), l4 =(1−2−9−6−10−8)
u1 = 30, u2 = 22, u3 = u4 = 27.

with a construction cost of 285.8 units.
From network r0, one has that: (i∗, j∗) = (2, 3), with a value of 17871M .

Note that there are no alternative routes in case any of the arcs fail, therefore
T r0

w (i, j) = M, ∀ w (i, j) ∈ r0. Thus, the chosen arc for the next iteration is that
holding the maximum flow.

For the first iteration, k = 1, we have to extend network r0 so that there are
alternative routes for all covered pairs in case arc (2, 3) fails, and minimizing the
extra costs. Such an optimization problem yields the topological network consti-
tuted by the edges in r0 plus edge (3, 5). With this topological network, the RLP
problem generates the optimal configuration of lines of the first iteration r1:

r1 = {l1, . . . , l7},
l1 = (1 − 2 − 3), l2 = (2 − 9 − 6), l3 = (3 − 5 − 9), l4 = (5 − 9 − 6),
l5 = (4 − 9 − 6), l6 = (6 − 10 − 8), l7 = (7 − 6 − 10)
u1 = 22, u2 = 19, u3 = 8, u4 = 6, u5 = 11, u6 = 5, u7 = 7.

Our process guarantees that this network is more robust than network r0. The
construction costs are 350.8 units. In Figure 3 both networks r0 and r1 are
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Fig. 3. Topological networks obtained in iteration 0 and iteration 1 of the user robust-
ness algorithm

depicted (in order to not make the picture too messy we have just drawn the
topological network). Notice the loop that is built in r1 as opposed to r0 where
there are no loops. This loop improves the robustness of the network. For the
following iteration, (i∗, j∗) = (2, 9), and the algorithm continues (if there is
available budget) from this edge.

If the index applied is the operator robustness, the algorithm is analogous.
We just have to take into account that the objective function in the RND is trip
coverage and in RLP we have to include only operator costs in the objective
function. In this case the first network results:
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r0 = {l1, . . . , l9},
l1 = (1 − 2 − 3), l2 = (1 − 2 − 9), l3 = (2 − 9 − 4),
l4 = (3 − 2 − 9), l5 = (4 − 9 − 5), l6 = (3 − 2 − 9 − 5),
l7 = (5 − 9 − 6), l8 = (6 − 10 − 8), l9 = (7 − 6 − 9),
u1 = 11, u2 = 7, u3 = 1, u4 = 18, u5 = 10, u6 = 1, u7 = 11, u8 = 5, u9 = 7.

The following iteration continues from the arc with the maximum flow, which is
the same as in the User Robustness case. Imposing the corresponding robustness
constraints, this results in network r1:

r1 = {l1, . . . , l9},
l1 = (1 − 2 − 3), l2 = (1 − 2 − 9), l3 = (2 − 9 − 4),
l4 = (3 − 2 − 9 − 5), l5 = (3 − 2 − 9 − 6), l6 = (4 − 9 − 6),
l7 = (6 − 10 − 8), l8 = (2 − 3 − 5 − 9), l9 = (7 − 6 − 9),
u1 = 11, u2 = 7, u3 = 1, u4 = 18, u5 = 10, u6 = 1, u7 = 11, u8 = 5, u9 = 7.

Note that the resulting networks r0 and r1 have the same topological configura-
tion when applying both robustness concepts but different line configurations.

5 Conclusions

The main contribution of this paper is the introduction of a heuristic procedure
for integrating two different stages of the railway planning at the same time:
Network Design and Line Planning. This sequential process has the following
steps: 1) design a network without robustness constraints; 2) design a line plan
on this network with no respect to robustness; 3) fix the OD pairs served in the
current plans and the arcs used; 4) construct a more robust network (keeping
what is fixed in 3); 5) construct a line plan on the new network; and 6) goto 3
unless budget for total cost is exceeded. We considered two different definitions
of robustness, one from the user’s point of view and the other from the operator
point’s of view. For each robustness concept we give an index that measures how
robust a RN with a line configuration is for each definition of robustness (and the
corresponding versions of the heuristic proposed are separately introduced). Both
indexes satisfy three properties: scale invariance, monotonicity and membership
in [0,1]. The paper concludes with an illustrative example that shows how the
proposed procedures work.
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Appendix A: Railway Network Design

In the model for RND problem we assume that the mobility patterns in a
metropolitan area are known. This implies that the number of potential pas-
sengers from each origin to each destination is given. We also assume that the
location of the potential stations is known. There already exists a different mode
of transportation and the RN will compete with it. For deciding which mode each
demand is allocated to, the comparison between the generalized costs of the trav-
ellers is used. The aim of the model is to design a network (i.e. to decide in which
nodes stations are to be located and how to connect them) consisting of lines so
that it covers as many trips as possible. Since the resources are limited we also
impose some budget constraints, which depend on the construction costs both
of edges and nodes.

– Data and notation
• A set N = {ni; i = 1, 2, . . . , I} of potential sites for locating stations is

given.
• A set A′ of feasible (bidirectional) arcs linking the elements in N is

known. Therefore, we have a graph G′ = (N, A′), from which arcs are to
be selected to form lines. Furthermore, there exists a graph G′′ = (N, A′′),
representing the network used by the complementary mode (e.g. the
street network). Let G = (N, A), where A = A′ ∪ A′′, be the whole
network. Let us denote by N(i) = {nj : ∃ a ∈ A′, a = (ni, nj)} the set
of adjacent nodes to ni.

• Each feasible arc a = (ni, nj) ∈ A′ has an associated length dij . The
lengths of the arcs in A′ usually correspond to approximate Euclidean
distances if the system to be designed is underground and street network
distances if it is at grade. However, forbidden regions or streets will
increase the distances, and dij can also be interpreted as the generalized
cost for traversing arc a = (ni, nj) ∈ A′.

• For each node ni and each arc a ∈ A′ there is an associated cost for
constructing the corresponding infrastructure: ci is the cost for building
a station at node ni, ca being the cost for building the link a. A bound
Cmax on the available budget is also given.

• The mobility pattern is given by a matrix G = (gw) : w ∈ W, where W
is the ordered index pair set: W = {w = (i, j); ni, nj ∈ N}, also referred
to as the set of demands.

• The generalized cost for satisfying each demand by the RN and the com-
plementary modes are uRTN

w and uCOM
w , respectively. While costs using

the complementary mode depend on its (street) network and therefore
are input data, the RN ones will depend on the topology of the network
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to be constructed. The computation of RN costs uRTN
w can be done by

adding the lengths of the arcs of the path that demand w will use in the
RN. Let uw be the generalized cost for the demand w either by G′ or by
G′′

The aim of the model is to design a RN of at most L lines, |L| being a low
number (in reality, networks designed from scratch usually contain 3, 4 or
5 lines). Since constraints on the total cost will be imposed, we will allow
some lines in L to not be included in the RN.

– The following variables will be used in the model.

• yl
i = 1, if node ni is a station of line l; 0 otherwise.

• xl
ij = 1, if the arc a = (ni, nj) ∈ A′ belongs to line l ∈ L; 0 otherwise.

• xij = 1, if the arc a = (ni, nj) ∈ A′ belongs to the RN; 0 otherwise.
• fw

ij denotes the normalized flow of the demand w ∈ W through arc
(ni, nj) ∈ A′, from ni to nj , fw

ij ∈ {0, 1} if no failure occurs. Note
that such variables will define the fastest route for the demand w in the
network to be built.

• ϕw
ij denotes the normalized flow of the demand w ∈ W through arc

(ni, nj) ∈ A′′, from ni to nj, ϕw
ij ∈ {0, 1} if no failure occurs.

• hl = 1, if line l is included; 0 otherwise.
• pw = 1, if demand w is allocated to the RN, that is, if its fastest route

in the network takes less time than the alternative mode; 0, otherwise.

– Objective functions and constraints
The objective of our model is to maximize the RN trip coverage in case that
everything works fine

z1 =
∑

w=(p,q)∈W

gwpw ,

or to minimize its total travel time

z2 =
∑

w=(p,q)∈W

gwuw .

The constraints have been grouped according to their aims as follows:

• Budget constraints∑
ni,nj∈A′,i<j cij xij +

∑
l∈L

∑
ni∈N ciy

l
i ≤ Cmax (1)

• Alignment location constraints

xl
ij ≤ yl

i, (ni, nj) ∈ A′, i < j, l ∈ L (2)

xl
ij ≤ yl

j , (ni, nj) ∈ A′, i < j, l ∈ L (3)

xl
ij = xl

ji, (ni, nj) ∈ A′, i < j, l ∈ L (4)
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xl
ij ≤ xij , (ni, nj) ∈ A′, i < j, l ∈ L (5)

xij ≤
∑

l∈L xl
ij , (ni, nj) ∈ A′, i < j (6)∑

j∈N(i) xl
ij ≤ 2, ni ∈ N, l ∈ L (7)

hl +
∑

(ni,nj)∈A′ i<j xl
ij =

∑
ni∈N yl

i, l ∈ L (8)

1
2 −

∑
(ni,nj)∈A′ i<j xl

ij + M(hl − 1) ≤ 0, l ∈ L (9)

1
2 −

∑
(ni,nj)∈A′ i<j xl

ij + Mhl ≥ 0, l ∈ L (10)∑
ni∈B

∑
nj∈B xl

ij ≤ |B| − 1, B ⊆ N, |B| ≥ 2, l ∈ L (11)

• Routing demand conservation constraints∑
(ni,np)∈A′ fw

ip +
∑

(ni,np)∈A′′ ϕw
ip = 0, w = (p, q) ∈ W (12)∑

(np,nj)∈A′ fw
pj +

∑
(np,nj)∈A′′ ϕw

pj = 1, w = (p, q) ∈ W (13)∑
(ni,nq)∈A′ fw

iq +
∑

(ni,nq)∈A′′ ϕw
iq = 1, w = (p, q) ∈ W (14)∑

(nq,nj)∈A′ fw
qj +

∑
(nq,nj)∈A′′ ϕw

qj = 0, w = (p, q) ∈ W (15)∑
(ni,nk)∈A′ fw

ik −
∑

(nk,nj)∈A′ fw
kj = 0, if k /∈ {p, q}, w = (p, q) ∈ W (16)∑

(ni,nk)∈A′′ ϕw
ik −

∑
(nk,nj)∈A′′ ϕw

kj = 0, if k /∈ {p, q}, w=(p, q) ∈ W (17)

fw
ij + ϕw

ij ≤ 1, (ni, nj) ∈ A, w ∈ W (17)

• Location-Allocation constraints

fw
ij + pw − 1 ≤

∑
l∈L xl

ij , (ni, nj) ∈ A′, w ∈ W (18)

• Splitting demand constraints

ε + uw − μuCOM
w − M (1 − pw) ≤ 0, w = (p, q) ∈ W (19)

where uw =
∑

(ni,nj)∈A′ dijf
w
ij +

∑
(ni,nj)∈A′′ uCOM

ij ϕw
ij , M is a big enough

real number and ε > 0 small enough, and uCOM
ij is the generalized cost for

traversing arc(i, j) by the complementary mode.

xl
ij , xij , yl

i, hl, fw
ij , ϕw

ij , pw ∈ {0, 1}. (20)
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Constraint (1) takes into account budget availability. Constraints (2) and
(3) ensure that a link is included in the RN only if the nodes that the link is
incident to are also selected. Constraints (4) allow edges to be used in both
directions. Constraints (5) and (6) impose that the arc (ni, nj) is to be built
if and only if there is a line that uses it.

Constraints (7) require that each node has at most two associated edges
of each line. Constraints (11) ensure that a line does not contain a cyclic
subgraph. Let us note that these constraints along with (8) guarantee that
lines to be constructed are path subgraphs. However, a line must have at
least one edge; this is ensured by constraints (9). If a line l is not considered
in the design then it does not have any edge (constraints (10)). (12) to (17)
are flow conservation constraints in each node. The incoming flow equals
the outgoing flow in both pairs of variables. Separately, we require that both
outgoing flows and both incoming flows are equal to 1 at the beginning of the
paths and at the end of the paths, respectively. Constraints (18) guarantee
that a demand is routed on an edge only if this edge belongs to the rapid
transit network. Finally, constraints (19) force demands to be assigned to
the rapid transit mode if the associated cost for using this network (taking
the fastest route) is less than or equal to the corresponding cost of the
complementary mode and the opposite. Note the importance of the variable
ε in these constraints to break possible ties.

For more details see [13].

Appendix B: Rapid Transit Line Planning

The RLP formulation is based on the modeling of the physical network, the
services and the demand. These elements are briefly described in the rest of this
appendix. The reader should note that some of the input data or variables are
the same as in the RND model defined in Appendix A.

– Physical network: The physical network is formed by the stations and the
arcs linking them. It is obtained from the RND output.

– Service network: A service is characterized by an origin station, a set of stop
stations and a destination station. The arcs linking these stations is part of
the definition of the service l. L is the service set. A section s of a service
is the arc between each pair of stations. Each service l is characterized by a
section set Sl including the sections used by the service l. Each service has
other technical characteristics such as the vehicle speed and the number of
passengers that can be moved in a train of this service ql.

– Demand: Each O-D pair w is characterized by three parameters: the origin
and destination stations and the demand of passengers gw between them.
The pair set is W . The demand is realized by route flow hr, that is the use
variable. Each demand w has a route set Rw. Rs is the route set using the
section s.
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– Costs: We will consider costs associated to users on the routes and costs
associated to operators on the services. The routing cost rc is assumed to be
a linear term that depends on route r. The operative cost oc is also assumed
to be a linear term that depends on section s.

– Note that each train can run a given service several times during the planning
time if the service time is sufficiently inferior. For this reason we consider
the inclusion of another parameter in the model: tl is the time to run each
service l. Thus, if ul is the frequency in the service, the number of needed
trains for a given service l is tlul. The fleet capacity is defined by fc. The
operative variable is the frequency ul of the service l.

The RLP model is defined by:

min Θ
∑

w∈W, r∈Rw
rcrhr + (1 − Θ)

∑
s∈Sl, l∈L ocsul

subject to
∑

r∈Rs
hr −

∑
l∈Sl

qlul ≤ 0, ∀ s ∈ S∑
l∈Sl

ul ≤ qs, ∀ s ∈ S∑
r∈Rw

hr = gw, ∀ w ∈ W∑
l∈L tlul ≤ fc

yl ∈ Z+, hr ∈ R+.

RLP minimizes the user costs weighted by Θ, that represents the monetary cost
of the user time, and the operative costs. The first constraints (Routing Demand
Conservation Constraints) ensure that there are enough active services for the
passenger flow in each route. The second group (Arc User Capacity Constraints)
are capacity constraints that avoid sections to be saturated. The third group (Arc
Vehicle Capacity Constraints) ensures the meeting of the demand. The fourth
set of constraints (Fleet Capacity Constraints) ensure that the fleet capacity is
sufficient for the frequency required. For more details the reader is referred to
Maŕın and Salmerón [16].

The RLP is short defined by:

RLP : min User costs, Operative costs
s.t.: Routing Demand Conservation Constraints,

Arc User vehicle Capacity Constraints,
Arc Vehicle Capacity Constraints,
Fleet Capacity Constraints.
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16. Maŕın, A., Salmerón, J.: Tactical Design of Rail Freight Networks. Part I: Exact and
Heuristic Methods. European Journal of Operational Research 90, 26–44 (1996)
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Abstract. A rapid transit system is called robust if it maintains its
functionality under perturbations. To be robust, strategies for produc-
ing less vulnerable plans and procedures of recovery actions in case of
disruptions (including timetable adjustment, rolling stock re-scheduling
and crew re-scheduling) are used. This paper deals with the first task and
develops an effective plan for allocating fleet frequencies at stops along
a line based on three objectives: minimizing passenger overload, maxi-
mizing passenger mobility and minimizing passenger loss. Schedules for
decongesting and recovering the line are determined by means of opti-
mization models. Heuristic approaches are discussed and computational
results for a real case study are provided.

Keywords: rapid transit system, planning, robustness, frequencies.

1 Introduction

The global transit planning process consists of determining a set of lines and
their associated timetables to which vehicles and drivers are assigned, taking
a complex scenario of constraints into consideration. According to Ceder and
Wilson [2], the global transit planning process can be decomposed into a sequence
of five components; namely, design of routes, setting of frequencies, timetabling,
vehicle scheduling and crew scheduling. Ideally, all those steps should be treated
simultaneously in order to ensure a desirable level of interaction and feedback,
thus leading to better results. However, due to the exceptional complexity of the
process, this global approach appears intractable in practice. As a result, various
sub-problems have been identified in order to solve the planning problem in a
sequential manner, although the global optimality cannot be guaranteed at the
end of the process (Guihaire and Hao [8]).

Perturbations can appear due to an increase of demand (even in predictable
situations, like peak hours or crowded social events) or as a consequence of fleet
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size reduction (as in the case of a driver’s strike). Both scenarios give rise to
un-supplied demand zones that generate passenger overloads in the available
vehicles. A robust Rapid Transit System (RTS) should be able to absorb such
demand peaks through suitable strategies so that users’ waiting time does not
exceed an admissible length of time and the system managers avoid, at the same
time, high operational costs to satisfy this demand.

The fleet itinerary along a line can be determined following different strategies
previously planned (off-line). Operating normally, each train runs according to a
timetable and stops in each station; when the vehicle arrives at the last station,
it repeats the same itinerary in the opposite direction. Until the unit reaches the
last station, the cycle is not restarted. Short-turning is a tactical decision which
is useful when high demand zones need to be attended (this situation is typical in
lines which connect to distant residential areas with the city centre or economic
centres). For this strategy some vehicles can perform short cycles in order to
increase frequency in specific zones of the line (Furth [6]). Another strategy for
alleviating those overloaded stops faster consists of skipping stops (deadheading)
at those stations with less demand. A deadheaded vehicle runs empty through a
number of stations, after all passengers have already alighted, in order to start
the new cycle earlier. In railway systems, deadheading at intermediate stops can
be seen as expressing a vehicle through a segment of the line, once the stations to
be skipped have been previously announced. Every time an intermediate station
is skipped, time spent in decelerating, alighting and boarding, and accelerating
the vehicle again is saved for users. As a disadvantage, bad use of express service
restricts transport supply and can provoke passenger overloads in those vehicles
which perform the full cycle. Other control strategies include holding a vehicle
at a station, adding vehicles held in reserve or splitting a train (Wilson et al
[14], Soeldner [11]).

Among the actions addressed to recovering system functionality, this paper
deals with the problem of reallocating vehicle frequencies in order to distribute
transport supply in a more efficient manner. A model (of tactical planning) is
formulated for integrating strategies of Short-Turning And Expressing (STAE)
in order to obtain appropriated frequencies which preserve the supply-demand
equilibrium as well as maintain a minimum service level. For this purpose, fleet
frequency will be increased in high demand zones in exchange for reducing ser-
vice at stops with less demand, but without fully canceling it. Schedules for
routes and stops, associated to the frequency allocation, will be obtained by
means of optimization models. As an application, the methodology proposed
has been applied with real data of commuter trains of Madrid (Spain), provided
by RENFE operator. The paper is organized as follows: the next section reviews
some approaches related to our problem. In Section 3, the formulation is built
step by step and the paper contribution is specified. A greedy solution algorithm
is considered for solving this problem in Section 4. In Section 5, the methodology
is applied to a real case, making use of real data from the Line C10 commuter
trains of Madrid.
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2 Background

Strategies for managing perturbations, based on controlling the frequency of
vehicles at stops have attracted increasing interest the past few years. In an
approach where the concept of deficit function is introduced, Ceder and Stern
[3] suggest the use of deadheading trips between various critical terminals to
reduce fleet requirements. Eberlein et al. [4] deal with the real-time deadhead-
ing problem (RTDP) in bus transit operations control. Although the considered
transit system consists of a one-way loop network (representative of, for exam-
ple, a single rail transit line, or a simple bus or trolley bus line), the RTDP is
shown to be a difficult nonlinear integer programming problem, computationally
intractable. Therefore, an algorithm is proposed for solving a simplified version
of the problem.

Guentari and Codina [9] exhibit a bilevel formulation for modeling congested
public transport networks in an urban context, considering the feasibility of the
asymmetry in the frequencies. In order to solve the problem, two heuristics are
proposed, given the difficulty of applying exact algorithms for real scenarios.

Tirachini el al. [12] develop a model that integrates short turns and dead-
heading (at terminal stops) for an isolated transit line where the variables to
be optimized are the frequencies within and outside of the high demand zone
(of a continuous nature) and the stations where the strategies begins and ends
(discrete variables). The objective is to decrease the total costs for users and
operators in the public transport corridor by means of skipping stops (empty
nodes in Figure 1 and Figure 2). With this objective, the fleet is divided into a
service that cyclically runs stopping in all stations, and into another service that
performs a short asymmetric cycle (Figure 1) between the nodes corresponding
to the zone where a higher demand of trips exists.

In the following section, the model of Tirachini et al. [12] will be generalized
for the case in which every vehicle of the fleet can perform a different short
asymmetric cycle including expressing at intermediate stops (STAE) (Figure 2).
Moreover, the notation used in the model will be able to optimism three relevant
objectives: minimizing passenger overload, maximizing passenger mobility and
minimizing passenger loss.
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Fig. 1. Asymmetric short cycle in a linear corridor of transit
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Fig. 2. STAE in a linear corridor of transit
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Fig. 3. Linear corridor of transit

3 Problem Formulation

As was previously noted, the transit system in consideration consists of a one-
way loop network, as is shown in Figure 3. Such a network is representative of
a single rail transit line. Since a one-to-one correspondence can be established
between the same stations for both directions, N is always even and N/2 is always
integer. The temporary scenario for determining strategies will be established
by an operational time T .

Throughout this paper, we assume the following assumptions if not otherwise
noted:

A1. A station can accommodate only one vehicle at a time and no overtaking
between vehicles can occur at any point in the network.

A2. A vehicle is allowed to change its direction at any station of the line, without
spending additional time during handling.

A3. In presence of a fleet size reduction, the new train schedule is efficiently
announced to riders well in advance, in order for them to fit their interests
to the new service.

A4. Passengers between each pair of stations will be homogeneously distributed
in the set of all trips supplied by the system.

A5. When the frequency of vehicles, ϕij between an origin i and a destination j
decreases with regard to the initial frequency of vehicles, ϕ0

ij , the number of
users odij , who travel from origin i to destination j, also decreases according
to the result given by odijgij , where

gij =
1 − e

−λ
ϕij

ϕ0
ij

1 − e−λ
∈ (0, 1) (1)

g
(λ=5)
ij

g
(λ=1)
ij

g
(λ=−5)
ij

0

0.5

1
gij

ϕ0
ij

ϕij
ϕ0

ij

2

Fig. 4. Different slopes of gij for values of λ = {5, 1,−5}
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Note that values gij are between 0 and 1 and the increasing behavior of
its drawing can be calibrated by means of the parameter λ, as is shown in
Figure 4.

A6. When an episode of overloading takes place in vehicle k at station i, a num-
ber of users (Δφ++

ki ) cannot board the train. The number of users that was
initially going to alight at current station i (φ−

ki) will have to be decreased,
taking the previous values of Δφ++

kj (j < i) into consideration (as shown in
Equation 10).

3.1 Notation

In order to formulate the approach as a programming model, the following pa-
rameters and variables are defined:

N number of stations of the line
i, j ∈ {1, ..., N} indices associated to stations of the line
odij number of passengers going from origin i to destination j

dij distance (through the line) from i to j

K fleet size
k ∈ {1, ..., K} index associated to vehicles of the line
T operation time
te standard time at stops required in operations of

acceleration and deceleration, boarding and alighting
v average speed of vehicles without considering stops
μ maximum capacity of vehicles

The decision of stopping at station i for vehicle k generates a set of K×N binary
variables, defined as follows:

xki =

{
1, if vehicle k stops at station i

0, otherwise

In order to make more comprehensive the formulation, a set of functions are
defined (w.c.c. ≡ without capacity constraints):

gij demand reduction factor
ϕij frequency of vehicles going from i to j

φ+
ki users expected to board vehicle k at station i (w.c.c.)

φ−
ki users expected to alight from vehicle k at station i (w.c.c.)

C∗
ki users at vehicle k departing from i (w.c.c.)

φ++
ki users actually boarding vehicle k at station i

Δφ++
ki users unable to board vehicle k at station i

φ−−
ki users actually alighting from vehicle k at station i

Cki users of vehicle k departing from i
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3.2 Defining Frequencies, Flows and Load

The time used by vehicle k to complete a full cycle of its itinerary without
stopping is given by:

τd
k =

2maxi,j{xkixkjdij}
υ

(2)

i.e., twice the distance between the farthest stations, where vehicle k makes
stops, divided by the average speed of vehicles without considering stops. On
the other hand, the time spent in stops due to deceleration, alights, boards and
acceleration,

τp
k =

∑
i∈N

texki (3)

could be considered taking, instead of the constant te, a function ti dependent
on the time required in each station for boarding and alights.

The frequency of trips between stations i and j is given by:

ϕij =
∑
k∈K

T

τd
k + τp

k

xkixkj (4)

Combining the previous equation and assumption [A4.], the number of users,
homogeneously distributed, which boards vehicle k at station i can be obtain:

φ+
ki =

N∑
j=i+1

odijgijxkixkj

ϕij
(5)

Following an analogous reasoning the number of passengers which alights from
vehicle k at station i can be deduced:

φ−
ki =

i−1∑
j=1

odjigijxkixkj

ϕij
(6)

By using the previous expressions the passenger load of vehicle k after departing
from station i can be determined:

C∗
ki =

i∑
j=1

(φ+
kj − φ−

kj) (7)

3.3 Capacity Constraints

The previous three expressions have been defined in absence of capacity con-
straints. If the vehicle capacity is limited to μ, a recursive system of definitions
is required to determine Cki, the actual load of passengers in vehicle k after
departing from station i.
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The number of passengers that actually can board vehicle k at station i is
given by

φ++
ki = φ+

kiχ(φ+
ki+Ck(i−1)−φ−−

ki <μ) + (μ − Ck(i−1) + φ−−
ki )χ(φ+

ki+Ck(i−1)−φ−−
ki >μ)

(8)
where χ(·) is the usual characteristic function. By means of this expression, only
the number of passengers that actually fit in the vehicle is computed as boarded
riders. Hence we can obtain the number of passengers that cannot board at
station i:

Δφ++
ki = (φ+

ki − φ++
ki )χ(φ+

ki+Ck(i−1)−φ−−
ki >μ) (9)

The real number of passengers that alight at a station depends on the number of
passengers that could have boarded on previous stations, so by using assumption
[A6.] it is possible its evaluation:

φ−−
ki = φ−

ki −
i−1∑
j=1

Δφ++
kj

φ−
ki∑N

i′=j+1 φ−
ki′

(10)

Consequently, the real passenger load of a vehicle can be determined:

Cki =
i−1∑
j=1

(φ++
kj − φ−−

kj ) (11)

3.4 Objectives

The objectives of users (typically expressed in terms of travel time and waiting
time) and operators (in terms of fleet size) are commonly minimized simultane-
ously (Israeli and Ceder [10]). This involves a multi-objective formulation whose
resolution leads to finding a set of solutions which represent different degrees
of commitment between the conflicting objectives. From the operator’s point
of view, it is usual to minimize costs corresponding to vehicle/hour and vehi-
cle/kilometer. However, if the fleet size is assumed to be fixed and all the vehicles
remain available during all the operation time then the operator’s objectives can
be omitted in the optimization. From the user’s point of view, three objectives
are studied and described next.

Objective 1: Minimize Passenger Overload. A sudden cancelation of the
service at an stop or a noticeable increase of passengers at a station can give rise
to overloads, impeding that an important number of users can aboard. Looking
after the convenience of ridership, it is of special interest to minimize the number
of customers unable to board in vehicles (total overload), quantified through the
function:

Z1 =
∑
k∈K

∑
i∈N

Δφ++
ki ϕk (12)
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where ϕk is the number of times that each vehicle performs its itinerary:

ϕk =
T

τd
k + τp

k

(13)

Objective 2: Maximize Mobility. From the users’ point of view, another
objective consists of having a travel frequency distribution that provides higher
frequencies between those o-d pairs with higher number of users. This crite-
rion, that facilitates mobility, is well modeled by minimizing the sum of ratios
passengers/trips between origin-destination pairs:

Z2 =
∑

i,j,i�=j

odij

ϕij
(14)

Objective 3: Minimize Passenger Loss. Given an initial transport supply,
expressed by means of

∑
ij ϕ0

ij , which satisfies an o-d demand, represented by
matrix odij , a recommendable objective is the minimization of the number of
users loss after a fleet size reduction, which can be described as was pointed out
in assumption [A5.]:

Z3 =
∑
i∈N

∑
j∈N

odij −
∑
i∈N

∑
j∈N

odijgij =
∑
i∈N

∑
j∈N

odij(1 − gij) (15)

3.5 Formulating Models

Scenario 1: Network Decongestion. If the demand is assumed inelastic,
the objectives of interest will be to minimize the passenger overload (Z1) and
maximize the mobility (i.e. minimize Z2), in order to prevent that the existing
fleet size is unable to supply the demand.

For this network decongestion scenario, the problem of setting frequencies
including Short Turning and Expressing at intermediate stops (STAE) can be
formulated as follows:

minimize Z1 =
∑
k∈K

∑
i∈N

Δφ++
ki

T

τd
k + τp

k

minimize Z2 =
∑
i,j

odij

ϕij

subject to

τd
k =

2maxi,j{xkixkjdij}
υ

, ∀k (C1)

τp
k =

∑
i∈N

texki, ∀k (C2)

ϕij =
∑
k∈K

T

τd
k + τp

k

xkixkj , ∀i, j (C3)
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φ+
ki =

N∑
j=i+1

odijxkixkj

ϕij

1 − e
−λ

ϕij

ϕ0
ij

1 − e−λ
, ∀k, i (C4)

φ−
ki =

i−1∑
j=1

odijxkixkj

ϕij

1 − e
−λ

ϕij

ϕ0
ij

1 − e−λ
, ∀k, i (C5)

yki = χ(φ+
ki+Ck(i−1)−φ−−

ki <μ), ∀k, i (C6)
zki = χ(φ+

ki
+Ck(i−1)−φ−−

ki
>μ), ∀k, i (C7)

φ++
ki = φ+

kiyki + (μ − Ck(i−1) + φ−−
ki )zki, ∀k, i (C8)

Δφ++
ki = (φ+

ki − φ++
ki )zki, ∀k, i (C9)

φ−−
ki = φ−

ki −
i−1∑
j=1

Δφ++
kj

φ−
ki∑N

i′=j+1 φ−
ki′

, ∀k, i (C10)

Cki =
i∑

j=1

(φ++
kj − φ−−

kj ), ∀k, i (C11)

xki ∈ {0, 1} ∀k, i (C12)

Constraints C1-C5 correspond to the definitions made for frequencies, flows and
load. Capacity constraints (C8 - C11) have been formulated by previously intro-
ducing two binary functions (yki, zki) associated to the characteristic functions
which are used to correctly evaluate the real passenger load of vehicles.

Scenario 2: Network Restoration. In a context of an increasing elastic de-
mand in front of a rigid supply of fleet, it is logical to suppose that a number
of users will be deviated to another means of transport, as was previously es-
tablished in assumption [A5.]. Therefore, the strategic objectives will now be to
minimize the passenger overload (Z1) and minimize the passenger loss (Z3), in
order to effective and efficiently (respectively) recover the functionality of the
network after episodes of overloading.

For this scenario of network restoration, the STAE problem can be formulated
as follows:

minimize Z1 =
∑
k∈K

∑
i∈N

Δφ++
ki

T

τd
k + τp

k

minimize Z3 =
∑
i∈N

∑
j∈N

odij(1 − 1 − e
−λ

ϕij

ϕ0
ij

1 − e−λ
)

subject to the same set of constraints [(C1)-(C10)] associated to the previous
model.

4 Resolution Algorithm

Owing to the features of both approaches of the STAE problem, they can be
identified as combined cases of the known problems of Transit Network Design
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and Frequencies Setting (TNDFSP), where the objectives and the constraints
are non-linear.

In general, the TNDFSP is a special type of integer optimization problem,
where its space of solutions is a set of combinations of subsets of integer numbers
(Israeli and Ceder [10]). In our approach, each solution can be assumed as a
frequency set between every o-d pair and a route set that vehicles have to follow,
once variables X = [xki], k ∈ K, i ∈ N have been determined in the model.

The enumeration of feasible solutions for variables xki may be extremely large
and complex, even for small size instances of the problem, needing the utilization
of commercial software to solve it (see Wan and Lo [13], and Barra et al. [1]). In
particular, both formulations of the STAE problem present involve KN decision
variables and N2 + 8KN + 2K constraints; for the example shown in Section
5, with 26 stations and 10 vehicles, the approach include 260 decision variables
and 2776 constraints.

Since exact methods seem to be unable for solving the routes and frequen-
cies optimization problem, approximate methods appear to be an admissible
alternative. Metaheuristics (Glover y Kochemberg [7]) provide approximating
methods that implement efficient and effective approaches for the exploration
of the solution space. Their multi-objective variant, represents specific mecha-
nisms to carry out the resolution of optimization models with several objectives
in conflict (Ehrgott y Gandibleux [5]).

The easiest approximate method for solving the model on real life instances
consists of designing ad hoc a greedy algorithm. In general, a greedy algo-
rithms obtains a local optimum at each stage which is iteratively improved until
reaching or approximating to a global optimum.

The structure of the algorithm proposed is the following:

INPUT: Obtaining an initial solution
Set xki = 1, ∀k ∈ K, ∀i ∈ N (i.e., an schedule where all the K
vehicles stops in the N stations). Let X=X0 be this initial solution.
Evaluate the objective function for this solution [Z(X)].

STEP1: Selecting a subset Θ of new candidate solutions
From route X new possible solutions are considered, for different
strategies, and collected in set Θ. Namely,(1) removing one or two
stops, making shorter the cycle by the left, (2) idem by the right,
(3) removing the station with the lowest demand (i.e., lowest value
of φ+

ki + φ−
ki)

STEP2: Selecting the best new candidate solution
Select the best solution X* of Θ according to the objective Z under
consideration. Determine frequencies, flows and loads of X*.

TEST: Comparing solutions
IF Z(X*) provides a better value than Z(X), then reassign X=X*
and GO TO STEP1; otherwise END
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In spite of its simplicity, the described algorithm is flexible enough to start from
any initial solution provided by the system operator (INPUT), to include other
strategies of improving solutions (STEP 2) and to compare the quality of the
solutions obtained for both scenarios. Although this algorithm has been designed
to solve the problem in a context of off-line information, it is worthwhile to see its
adaptability to the on-line problems where managers decide to apply immediate
actions by canceling (or not) specific stops. In broad sense, this approach may
be considered as “robus”, since the formulation assumes that disruptions can
change the known input data and, nevertheless, the model validity remains.

5 Computational Results

5.1 Validating the Algorithm

The methodology proposed in this work and the effectiveness of the algorithm
was applied to a single line of 7 nodes. The diagram of boards and alights along
the line is described in Figure 5.

The number of users boarding and alighting at every station differs notice-
ably in both directions of the line giving rise to a heterogeneous distribution of
origin-destination flows:

odij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 34 31 21 14 12 21
24 0 46 40 132 65 12
44 24 0 22 262 279 14
32 289 30 0 34 28 17
66 21 36 19 0 98 13
48 197 97 245 42 0 32
34 21 25 34 19 28 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The values of o-d pairs (2, 5), (3, 5), (3, 6), (4, 2), (6, 2), (6, 4), suggest the need
of providing these pairs with a higher trip frequency (objective 2). On the other
hand, this criterion should be complemented by avoiding passenger overloads at
each station of the corridor. The assumption that demand could be elastic or
inelastic, requires studying the objectives of Section 3.4 in scenarios 3.5.1 and
3.5.2.

Direction right-leftDirection left-right ��

� Boards
� Alights

Fig. 5. Boards and alights at stations
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Table 1. Results obtained for Scenarios 1 y 2

Operation Z1,2 Z1,3

without strategy (Z0
1,2, Z0

1,3) 1007 634
STAE with α = 0.5 836 411

Table 2. Schedules of routes and stops

Direction left-right (→)
k=1 - 2 3 - 5 6 -
k=2 - 2 3 4 5 6 -
k=3 1 2 3 4 5 6 7

Direction right-left (←)
k=1 - 2 - 4 - 6 -
k=2 - 2 3 4 5 6 -
k=3 1 2 3 4 5 6 7

The simultaneous minimization of objectives Z1 and Z2 in Scenario 1, is car-
ried out through the minimization of the weighted sum Z1,2 = αZ1 + (1 − α)Z2
for values of α ∈ (0, 1). This will give rise to a non-dominated pareto optimum
solutions set for each value of α. Analogously, the simultaneous minimization,
Z1,3, of objectives Z1 and Z3 in Scenario 2 is formulated.

All possible configurations X = [xki], k ∈ K, i ∈ N were analyzed in order
to obtain an optimum solution. Such process needed a computational time of
417 seconds for each value of α, considering constraints of minimum trip fre-
quencies (ϕij ≥ 1), minimum itinerary performance (ϕk ≥ 1), and fixed stops
for every vehicle in the stations of the main o-d pairs (3,6),(4,2). However, the
same optimum solution set were obtained, using the algorithm proposed, in a
computational time of 0.01 seconds, without any consideration of fixed stops.

As an example, Table 1 shows the values of objective functions Z1,2 and Z1,3
when the fleet operates without strategy (Z0

1,2, Z
0
1,3), and with STAE strategy

for α = 0.5.
Each one of the solutions obtained from the set X = [xki], k ∈ K, i ∈ N has

a schedule of routes and stops assigned to each vehicle. As an example, the one
obtained for case α = 0.5 in both directions is provided in Table 2. For instance,
vehicle 2 runs from station 2 to 6 skipping station 4 (superior table) and then
changes the direction running from station 6 to 2 skipping 5 and 3 (inferior table).

5.2 Application to a Real Case

The methodology proposed in this work was also applied to real data of the
commuter train systems of Madrid. Through a macro-survey made to users,
an o-d matrix for the time slot [6:00, 8:59] (corresponding to peak-hour in the
morning) was obtained. Focusing on the 26 stations of the linear corridor of line
C10, a disequilibrium (in the same terms of section 5.1) was observed between
directions left-right and right-left (Figure 6).
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Direction right-leftDirection left-right ��

� Boards
� Alights

Fig. 6. Boards and alights at the stations of line C10

First, we assume that an initial fleet size of K = 10 vehicles (with capacity
μ = 1150 users/vehicle) is provided to serve this corridor, and no strategies are
adopted in their itinerary (vehicles serve all corridor from one side to another,
stopping at every station). A fleet size reduction to K = 5 vehicles give rise to
the distribution odij

ϕij
(users/trip) for the 26 × 26 o-d pairs (Figure 7).

OriginDestination

odij

ϕij

Fig. 7. Distribution users/trip for the 26 × 26 o-d pairs

The set of non dominated solutions for the investigated values of parameter
α, can be identified along the Pareto frontier in Figure 8 and Figure 9, where
four of those solutions have been pointed up.

Tables 3 and 4 shows the values of objective functions when the fleet operates
without strategy (Z0

1 , Z0
2 , Z0

3 ), and also the values obtained from four represen-
tative efficient solutions. The improvement respect to the case without strategy
is exhibited as well.

Finally, the schedule of routes and stops assigned to each vehicle obtained for
case α = 0.458 in Scenario 1 is provided in Table 5 and analogously for case
α = 0.483 in Scenario 2 in Table 6.
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Table 3. Results obtained in Scenario 1

Operation Z1 Z2 ΔZ0
1 ΔZ0

2

without strategy (Z0
1 , Z0

2 ) 16654 7901 - -
STAE with α = 0.134 6969 6440 -58.1% -18.5%
STAE with α = 0.458 5512 6578 -66.9% -16.7%
STAE with α = 0.605 4519 7238 -72.9% -8.4%
STAE with α = 0.875 4025 7489 -75.8% -5.2%

Table 4. Results obtained in Scenario 2

Operation Z1 Z3 ΔZ0
1 ΔZ0

3

without strategy (Z0
1 , Z0

3 ) 13208 4897 - -
STAE with α = 0.336 3905 2209 -70.4% -54.9%
STAE with α = 0.483 3069 2763 -76.8% -43.5%
STAE with α = 0.539 2309 3291 -82.5% -32.8%
STAE with α = 0.603 1625 3392 -87.7% -30.7%

Table 5. Schedules of routes and stops for Scenario 1

Direction left-right (→)
k=1 - - - - - - - - - - - - - - - - - 18 19 20 21 22 23 - - -
k=2 - - - - - - - - - - - - 13 14 - - 17 18 19 20 21 22 23 - 25 -
k=3 - - - 4 - - - - - - - - 13 14 15 16 17 18 19 20 21 22 23 - 25 -
k=4 - - - 4 - - 7 - - - - - 13 14 15 16 17 18 19 20 21 22 23 24 25 26
k=5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Direction right-left (←)
k=1 - - - - - - - - - - - - - - - - - 18 19 20 21 - 23 - - -
k=2 - - - - - - - - - - - - 13 14 15 16 17 18 - 20 21 - 23 - 25 -
k=3 - - - 4 5 6 7 8 9 10 - 12 13 14 15 16 17 18 19 20 21 22 23 - 25 -
k=4 - - - 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - - 26
k=5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Table 6. Schedules of routes and stops for Scenario 2

Direction left-right (→)
k=1 - - - - - - - - - - - - - - - - - 18 19 20 21 22 23 - - -
k=2 - - - - - - - - - - - - 13 14 15 16 17 18 19 20 21 22 23 - 25 -
k=3 - - - - - - - - - - - - 13 14 15 16 17 18 19 20 21 22 23 24 25 -
k=4 - - - - - - 7 - - - - - 13 14 15 16 17 18 19 20 21 - - - - -
k=5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Direction right-left (←)
k=1 - - - - - - - - - - - - - - - - - 18 19 20 21 - 23 - - -
k=2 - - - - - - - - - - - - 13 14 15 16 17 18 19 20 21 22 23 - 25 -
k=3 - - - - - - - - - - - 12 13 14 15 16 17 18 19 20 21 22 23 - 25 -
k=4 - - - - - - 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 - - - - -
k=5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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Fig. 8. Selection of four representative efficient solutions in Scenario 1

Fig. 9. Selection of four representative efficient solutions in Scenario 2

6 Conclusions

This paper formulates a model for the application of the integrated strategy Short
Turning and Expressing (STAE) in a railway linear corridor. The model develops
a frequency distribution and a route configuration for a fleet size unable to supply
the existing demand in the corridor. Multicriteria optimization is applied taking
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as objectives to raise the service quality (maximizing the mobility and minimizing
the passenger loss) at the same time that a system smooth-running is provided
(minimizing the passenger overload).

The simultaneous utilization of several traffic strategies for each vehicle in-
volves a mathematical formulation which achieves combinatorial complexity.
Therefore, the determination of solutions requires the use of heuristics algo-
rithms. This work provides a greedy algorithm that removes stops from the
schedule throughout an iterative process, increasing the quality of the candidate
solutions at each stage.

The methodology proposed in this work was applied to real data of the com-
muter train systems of Madrid, where eventual massive demand of this means
of transport could make inefficient the operativeness of a rapid transit network,
giving rise to overloads, passenger loss, and a bad system service. From the anal-
ysis of the results obtained, it can be stressed that applying control strategies
of frequencies. The computational experience indicates that better results are
obtained when criteria of good performance and service quality are combined.
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Abstract. In this survey we present a selection of commonly used and
new train classification methods from an algorithmic perspective.

1 Introduction

Railway optimization has started to evolve from manual to computerized solu-
tions over the past decades. Problems of one particular class within the area
of railway optimization ask how to arrange train cars into specific sequences
so as to form desired trains. These problems, in railway terms called shunting,
marshalling, or classification problems, have been considered for a variety of
settings, with different assumptions about possible elementary operations and
operational constraints, and for several objectives. The goal of this survey is
to serve as an entry point into the field, with an emphasis on fully explaining
key ideas in a typical setting so that they are easily accessible to a computer
scientist. Our detailed explanations do not aim for encyclopedic completeness
(problem descriptions of this nature can be found in [1,2]), but we do point out
the state of the art in algorithmic shunting research.

Shunting problems arise in railway networks in many circumstances. We ex-
plain shunting at the example of freight trains. The purpose of freight trains is to
transport rail cars from origin stations to destination stations. For the purpose
of this car delivery, the routes to travel of freight trains have to be decided, along
with what cars the train pick up along their routs and bring to a marshalling
yard. In the yard, trains meet, exchange and rearrange cars, and travel along
another route to distribute their cars. Picking up or delivering a car is easy if
the car can simply be attached at or detached from the end of the train. This
imposes conditions on the sequence of cars in both trains that enter and trains
that leave a yard. In real life, the whole rearrangement process in yards occurs
over time, has to obey a number of constraints due to physics and to opera-
tional requirements of the yard, and incurs costs with several components. In
this introductory survey, we base our explanations on a specific setting as for
the constraints and costs, and we ignore time entirely.

More specifically, we study a marshalling yard that consists of a set of parallel
tracks, called classification tracks, connected on one end in the form of a binary
� This work was partially supported by the Future and Emerging Technologies Unit of

EC (IST priority - 6th FP) under contract no. FP6-021235-2 (project ARRIVAL).

R.K. Ahuja et al. (Eds.): Robust and Online Large-Scale Optimization, LNCS 5868, pp. 310–337, 2009.
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Fig. 1. Schematic representation of a hump yard. Left, seen from the side and the
top, featuring the tree-like connectivity to the hump track (bottom), and a schematic
representation of the hump (top), shown during a roll in of the same cars. Right, the
abstract representation we use throughout the paper, shown for the same yard.

tree, with no connection at the other end (that is, a dead end), see Figure 1.
Each connection between two tracks merges them into one track that takes
part in further merging (unless it is the only remaining track). Cars leaving the
classification track have no choice where to go, but for entering cars (that is, cars
traveling in the other direction) such a connection serves as a switch: A car going
over the switch in the direction of the dead ends can go either one of both ways,
depending on how the switch has been set. In effect, a car that enters the tree
of switches from the outside can be guided to any track, by setting all relevant
switches accordingly. Sending a car to a track, hence, amounts to choosing a
path in the tree from the root to a leaf. Switches are programmable, in the sense
that they can read the identity of a passing car (a little in front of the switch)
and then set the switch according to plan.

In such a marshalling yard, the most important elementary operation for an
incoming train is to distribute all its cars, in the order in which they arrive within
the train, one by one onto the classification tracks. Since cars have no engines,
marshalling yards often use gravity to make individual cars travel onto the classi-
fication tracks. To that aim, the track leading the incoming trains to the classifi-
cation tracks is built on a small artificial hill, such that cars can roll from the top
of the hill to the classification tracks. This hill is called the hump of such a hump
yard, and the track for incoming trains the hump track. In more detail, the cars of
an incoming train are decoupled in front of the hump, and are then pushed over
the hump by a shunting engine at the end of the train. This operation is called a
roll-in. All cars on a classification track can be coupled together, so that a shunt-
ing engine can attach to them and pull them over the hump, a pull-out operation
that puts the corresponding sequence of cars in the same situation as an incoming
train. In particular, roll-in and pull-out operations have to alternate. This mode
of operation is well known in computing: A classification track serves as a special
kind of stack (a linear data structure which stores elements on the last-in first-out
basis), where individual elements can be pushed on top of the stack. A pull-out
operation is a sequence of pop operations, each removing a top element from the
stack, until the stack is empty; each removed element is pushed on the stack that
reflects the hump track.
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Fig. 2. Schematic representation of a double ended hump yard. The hump is present
on just one of the two tracks connecting to the classification tracks (e.g., on the right
hand side).

For the purpose of this survey, we mostly focus on a single train entering the
yard, with several trains (or even just a single one in particular) leaving it. The
most important parameters that determine how to create the outgoing trains
from the incoming train refer to the number of classification tracks, the lengths
of these tracks, the number of roll-in and pull-out operations, and to a lesser
degree the number of times that a car goes over the hump (so as to limit wear
and tear on cars). Some of the presented methods will disregard the arrangement
of cars in the incoming train and work just as well for any such order. This has
the advantage of a certain robustness against differences in train composition of
incoming trains, but suffers from the disadvantage that a certain sorting that
may be inherent in the incoming train cannot be exploited to make shunting
even more efficient and better adapted. Practical shunting rests on non-adaptive
methods, one reason being that adaptive methods can be quite complicated
and require computational support (as against a fixed shunting scheme). It is
interesting to study tradeoffs between simplicity and robustness on one side, and
optimality on the other side; we will explain some tradeoffs in this survey, but
some others have still not been understood precisely.

We now give an example to illustrate the ideas and questions we are interested
in. Consider a train built by n cars arriving at a double ended hump yard, that is,
a classification yard where the set of parallel classification tracks are connected
at and are accessible from both sides, and a hump is present on just one side
of the yard, see Figure 2. Here, we want to reverse the order of the cars of
the incoming train. For this example, we number the cars from 1 to n in their
outgoing sequence. Thus, the inbound train Tin is represented by the ordered
sequence of cars Tin = (n, n − 1, n − 2, . . . , 2, 1), and the goal is to build an
outbound train Tout = (1, 2, . . . , n − 2, n − 1, n). One option to achieve such
an ordering is to apply single-stage sorting (we elaborate on this method in
Section 3). Here, the cars are pushed over the hump, and each car is rolled onto
a different track. In a subsequent step, the cars are collected from the opposite
side of the yard in their outgoing order, thus building the train Tout. To achieve
the ordering with this method, each car is rolled over the hump exactly once,
and in total n cars are rolled over the hump, which is best-possible. However,
this approach requires n tracks to perform the sorting, which is as bad as it
gets. As an alternative, the output train can also be built using just two tracks
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and repeatedly pushing cars over the hump (a so-called multistage method, see
Section 4 and Section 5). The train is pushed over the hump n times. At the
first roll-in operation, all cars roll onto the second track, except for car number
one, which is rolled onto the first track. Then, all cars of the second track are
pulled out over the hump again, and the sorting continues iteratively as follows.
At the i-th roll-in operation, the car with number i is rolled onto the first track,
while the remaining cars roll onto the second track. Then, the cars on the second
track are pulled over the hump. After n roll-in operations, the outgoing train
Tout has been formed on the first track. Here, we sort the train using very few
tracks (just two), but using n roll-in operations; moreover, the total number of
times the cars roll over the hump (most cars will roll repeatedly) is roughly n2

2 .
Under the assumption that the first track is only used to build the outbound
train, and thus its cars cannot be re-humped (i.e., pulled out and subsequently
rolled in), this method is optimal for the given input sequence.

Observe that the two aforementioned methods can be applied to sort cars
appearing in any order in the inbound train Tin, and thus these methods can be
viewed as robust, as the order of the cars in the incoming trains does not influence
the sorting (shunting) steps. However, for several important criteria that we did
not specify yet (but will do later) these methods may perform poorly. Consider,
e.g., any two cars with consecutive numbers in the outbound train which are
already in the correct relative order in Tin. For the first method, these cars can
be assigned to the same classification track, thus reducing the number of tracks
needed to sort Tin; for the second method, these cars can be rolled onto the
first track in the same roll-in phase, thus reducing the number of pull-out and
roll-in operations. For example, the inbound train Tin = (3, 1, 2, 4, 5) can be
sorted using two tracks with both methods. For the first, cars 1 and 2 can be
rolled onto the first track, and cars 3, 4, 5 onto the second track, thus already
restoring the order. For the second, the sorting can be achieved requiring two
roll-ins instead of five as follows. In the first roll-in, cars 1 and 2 roll onto the
first track, all other cars onto the second track. The cars on the second track
are now also consecutive in number, and can be put onto the first track in one
roll-in. In this example less tracks or less roll-in steps can be used because some
of the cars of the incoming train were in the correct relative order, a concept
that can be formalized and is often called presortedness of the input, and which
we talk about later in this paper.

Moreover, the two extremes shown above naturally raise the question of the
trade-off between the number of tracks available for shunting, and the number
of roll-in operations required to sort the cars: what is the minimum number of
tracks necessary to sort cars in a single stage for any given input sequence, and
what is the minimum required number of sorting steps (i.e., roll-ins) if there are
W tracks available for sorting?

In computer science, the shunting problem can be seen as a sorting problem
for a sequence of numbers (identifying rail cars) using quite special sorting op-
erations (pulling all the cars out of one classification track to a hump track,
rolling every car from the hump track onto an arbitrary classification track). In
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algorithmic terms, a track (both a classification and the hump track) operate
as a stack (i.e., as a linear data structure which stores and retrieves elements
in the last-in first-out order). The operations push and pop allow to store an
element and to remove the top element of the stack, respectively. The problem
of sorting an input sequence of numbers with a network of stacks and queues
(recall that a queue stores and retrieves elements in the first-in first-out order)
was first considered in the seventies. Knuth introduced the problem (motivated
by shunting problems of railway cars) in the first volume of his book The Art of
Computer Programming (see [3] for its 3rd edition) that was first published in
1968. We will briefly discuss the main findings along these lines in Section 6.

Earlier Surveys

For the sake of perspective, we briefly discuss earlier surveys [1,2,4] with a
different emphasis.

The work of Siddiquee from 1972 [4] promotes the use of computer-aided
systematic methods for car sorting and train formation in the United States.
In view of developing tailor-made schemes for the U.S. environment, Siddiquee
describes four currently used systematic methods that are in use worldwide – the
sorting by groups, the sorting by train, the triangular sorting, and the geometric
sorting schemes. Additionally to the description of the methods, Siddiquee also
points out basic characteristics of the methods, and outlines when a method can
be superior to other methods. A major part of our survey has the same general
goal. In order to keep our survey self contained, in Section 4 we also describe
the four sorting methods and characterize them in a similar way. Additionally,
we put these methods in the context of the newer developments – methods that
take the presortedness of the incoming trains into consideration, and therefore
sort different incoming trains in potentially different ways.

Hansmann and Zimmermann dedicate the first part of their paper [1] to
a thorough characterization and general description of variants of the shunt-
ing problem. They name the class of shunting problems under consideration
the SortingOfRollingStock problems – the class SRSP. Loosely speaking,
SRSP consists of problems which ask to find an optimum schedule for rearrang-
ing units of rolling stock (railcars, trams, trains,. . . ) under certain constraints
and objectives. A shunting problem is characterized according to the track topol-
ogy at the shunting yard, according to the sorting mode (e.g., the allowed shunt-
ing operations, or the separation of time when all cars arrive from the time when
they depart), and according to the desired structure of the output sequence (e.g.,
cars are asked to be grouped in a consecutive subsequence, or groups are asked
to depart in a certain order). Combining any of these three characteristics re-
sults in one particular shunting problem. Hansmann and Zimmermann also give
references to known results.

Similar in spirit to Hansmann and Zimmermann is the report of Di Stefano et
al. [2], which presents various models for car rearrangement, reflecting the real-
world limitations of how cars can move, shove and turn at train stations or shunt-
ing yards. They define a train as a sequence of symbols, and a configuration of a
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train as its permutation. The output constraints on the shunting are modeled as a
set of permutations of the input train. For every described class of shunting prob-
lems, they define allowed shunting operations, and the set of feasible outputs, to-
gether with an objective function which they want to optimize while transforming
the input sequence into one of the feasible sequences (using the allowed shunting
operations).

2 Problem Definition

In this section, we give a mathematical description of the shunting problems at
hand.

Definition 1 (Tracks, Shunting Yard). A track works like a stack. A stack
supports two types of operations: the addition of one element on the top of the
stack (the classical push operation), and the removal of the top element from the
stack (the classical pop operation). A shunting yard is a set of W classification
tracks θi, i ∈ {1, . . . , W}, W ∈ N, and one hump track.

Definition 2 (Roll-in, Pull-out, Sorting Step). A pull-out operation of a
classification track is the removal of all elements from the classification track,
and addition of the elements in reversed order to the hump track (using the stack
jargon, a pull-out is an operation that repeats the following two stack operations
until the track is empty: pop the top element from the classification track, push
the element to the hump track).

A roll-in operation is the removal of all elements of the hump track, and
addition of these elements to classification tracks (using the stack jargon, a roll-
in repeats the following two stack operations until the hump track is empty: pop
an element from the hump track, push the element to a classification track).

A sorting step is a sequence of one pull-out operation followed by one roll-in
operation.

Observe that in a roll-in operation any element can be assigned to any track.
In general, we will concentrate on the setting where a pull-out is followed by a
roll-in.

Definition 3 (Cars, Train). A car is identified with a unique positive integer.
A train T is defined as a sequence of cars, i.e., as a sequence of integers T =
(τ1, . . . , τn), τi ∈ N, i ∈ {1, . . . , n}.

Definition 4 (Train Realization). A classification track θ realizes a train T
if the sequence of cars in θ, in the order the cars were pushed to θ, equals T . A
hump track realizes a train T if the sequence of cars in the hump track, in the
reverse order the cars were pushed to the hump track, equals T .

The problems we consider ask to rearrange one train called the inbound train Tin,
using only the roll-in and pull-out operations, to a set of outbound trains Tout =
{T 1

out, T
2
out, . . .}, where the outbound trains satisfy a given sorting constraint
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Cout on the structure of the outbound trains. We will assume that the cars
of the inbound train Tin form the set {1, 2, . . . , n}. The inbound train Tin =
(τ1, τ2, . . . , τn) is initially on the hump track such that τ1 is on top, and τn is on
the bottom of the stack (that is, τ1 is closest to the hump). The sorting constraint
Cout specifies how many outbound trains are to be built (we denote it by m),
what cars belong to which train, and what are the requirements on the order of
cars in each outbound train. For example, a simple sorting constraint may ask
for m = 1 outbound train Tout in which the order of the cars is (1, 2, . . . , n), i.e.,
it asks for a sorted sequence of the cars of Tin.

Definition 5 (Sorting Schedule). A sorting schedule for an inbound train
Tin and sorting constraint Cout is a sequence of a roll-in operation and h sorting
steps after which the (non-empty) sorting tracks realize trains that satisfy the
sorting constraint Cout. We call h the length of the sorting schedule.

A sorting schedule thus defines the set of operations which allow to build the
outbound trains from the inbound train.

We are now ready to define the class of shunting problems we consider within
this survey.

Problem: TrainSorting

Input: A shunting yard with W tracks, an inbound train Tin realized on
the hump track, and a sorting constraint Cout.

Output: A sorting schedule S leading to a realization of the outbound
trains satisfying the constraint Cout.

Problem: TrainSortingMinStep

Input and Output as in TrainSorting

Objective: Minimize the number of sorting steps.

Problem: TrainSortingMinTrack

Input and Output as in TrainSorting, but with W = ∞
Objective: Minimize the number of used tracks.

In some of the methods we consider hereafter, the focus is to achieve a feasible
sorting schedule for any input, and no rigorous optimization goal is considered.

A commonly considered sorting constraint partitions cars into groups accord-
ing to the cars’ travel destination, and requires cars from the same group to
appear consecutively (but in arbitrary order) in an outbound train.

Definition 6 (Groups, Group Sorting Constraint). Let G = {G1, . . . , Gg}
be a partition of the cars {1, 2, . . . , n} of an inbound train Tin. We call every Gi,
i ∈ {1, 2, . . . , g}, a group. The group sorting constraint CG

out for the partition G
requires m outbound trains, specifies for every group the outbound train it belongs
to, and requires that all cars of a group appear consecutively in the corresponding
outbound train.

Let us finally note that in the literature a classification track is sometimes called
a sorting track, a sorting scheme is also called a classification schedule, a sorting
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problem is sometimes called a shunting problem, and a group is also called a
block. Blocks and groups are, however, not always used as synonyms (see e.g. [5]
for more on this topic).

3 Single-Stage Sorting

To get the flavor of the shunting problems, we first consider a special case (and
simpler case in a way) of the more general sorting problems – the problem where,
besides the initial roll-in, only one additional roll-in operation is allowed. The
problem we consider is a special case of the TrainSortingMinTrack problem
with a group sorting constraint CG

out which asks for m = 1 outbound train. The
specialty here is that after the initial roll-in operation, all tracks are pulled out
(one track after another, without a roll-in operation), and then the cars from the
hump track are rolled onto an arbitrary track, where they are asked to realize
a train that satisfies the requirements of T G

out. Thus, in this problem, there are
only two roll-ins allowed.

Dahlhaus et al. [6] study this problem under a different name, the so called
train marshalling problem. They assume that the cars of the inbound train are
sorted, i.e., T = (1, 2, · · · , n). We now outline their considerations and results
for the problem.

Observe first that for a train with g groups, we do not need more than g tracks.
We can just send every car from Gj , j = 1, · · · , g, to track j and then form an
outbound train by an arbitrary order of pull-outs of the tracks and one roll-in.
However, it is not always necessary to use g tracks. Consider for example the
situation with n = 11 cars, and g = 5 groups, where G = {G1, G2, G3, G4, G5},
and G1 = {1, 6, 11}, G2 = {2, 7}, G3 = {3, 8}, G4 = {4, 9}, and G5 = {5, 10},
and recall that the cars appear in sorted order in the inbound train. Then,
one can roll cars (1, 6, 11) onto the first track, cars (2, 7, 8) onto the second
track, cars (3, 4, 9, 10) onto the third track, and car 5 onto the fourth track.
The outbound train that is built by pulling out track 4, track 3, track 2 and
track 1 (in this order), and then rolling the cars from the hump track onto
any classification track, satisfies the condition that all cars from every Gj , j =
1, 2, · · · , g, appear consecutively (i.e., the outbound train is a concatenation of
trains that are realized in tracks 1, 2, 3 and 4).

Dahlhaus et al. further show that the decision variant of this special ver-
sion of the TrainSortingMinTrack problem is NP-complete. Furthermore
the authors show that for any instance at most  n/4 + 2! tracks are needed.
Notably, the number of necessary tracks is independent from the number of
destinations. They also conjecture that the number of needed tracks is at most
 (m − 1)d2/n + 1/m!, where m = mini{|Gi|}, and d = n/m�.

4 Multistage Sorting

While single-stage sorting can be performed also in yards with no hump, with not
much more additional effort, the multistage sorting, which uses many roll-in oper-
ations, conceptually relies on the existence of a hump, where no engine is needed
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to bring single cars to chosen classification tracks. In contrast to single-stage
sorting, in multistage sorting cars are repeatedly pulled from the classification
tracks back to the hump track to be rolled in again.

In this section we first present the objectives of the multistage methods, and
then describe and discuss various multistage sorting methods: sorting by train
in Section 4.1, and simultaneous sorting in Section 4.2, for which we describe
four particular variants.

We will also take into account the existence of groups, and constraints posed
upon them. Recall that m denotes the number of outbound trains, and G =
{G1, G2, · · · , Gg} is the partition of the cars of the inbound train into groups.
The strict group sorting constraint CG

out requires cars of the same group to appear
consecutively in the outbound trains, and also requires the groups to appear in
order of their increasing index. We will denote the number of groups in the ith
outbound train by gi, i = 1, 2, · · · , m. The biggest and smallest number among
gi, i = 1, 2, · · · , m, will be referred to by gmax and gmin, respectively.

Restrictions and Objectives in Real Life. On the one hand, train sort-
ing schedules should do the sorting quickly. The time required to carry out a
classification schedule is mainly determined by the number h of sorting steps
and the total number r of cars that rolled in, and it can be approximated by
the expression h(cpull + croll) + rcpush, where cpull, croll, and cpush are constants
denoting the time required to pull out a track, the time the last car needs to
roll from the hump onto a track, and the time for decoupling and pushing one
car over the hump, respectively. Increasing h allows reducing r and vice versa;
this correlation is described in more detail in [7], which also includes an example
with experimentally derived data for h and r. In a common classification yard,
the value of h(cpull + croll) usually dominates rcpush, so h can be regarded as the
main objective. This approach is taken, e.g., in [8].

On the other hand, we want to use as little track space as possible for a
classification process. For an existing classification yard, we want to use as few
classification tracks for the multistage method as possible since the remaining
tracks can be used for other sorting activities. Usually some number W of tracks
is reserved only for multistage sorting in real-world classification yards, and
their (say uniform) length C clearly determines how many cars fit on each track.
Hence, the values of W and C usually constrain our optimization problem, while
they would become objectives in the design process of a new classification yard.

4.1 Sorting by Train

The sorting scheme sorting by train [8,9,10], which is also called initial grouping
according to outbound trains [4], works in two stages. First, cars are rolled in
according to their respective outbound trains, where one track – or several if
one track is too short – is reserved for each outbound train. In the second stage,
there is one step for every track containing cars of an outbound train T i

out: the
track(s) with cars of this train are pulled out (sequentially), and the cars are
rolled back in, guiding cars of the same group to the same track (each group
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Fig. 3. Example for sorting by train. The input train is built by 15 cars, num-
bered from 1 to 15, and arrives at the yard in the inverted numbered sequence
Tin = (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). The cars are to be rearranged to
form the following three outbound trains, with each car forming one group, and car
numbers appearing in each train in increasing order: T 1

out = {1, 4, 7, 10, 13}, T 2
out =

{2, 5, 8, 11, 14}, T 3
out = {3, 6, 9, 12, 15}. The sorting procedure is shown in the figures

(the order of the figures is, row-wise, left to right). First, the cars are rolled in and
sorted onto three tracks, according to their outbound train (top left figure); then, the
cars of the first train are pulled out from track θ1

out, and rolled in onto 5 tracks (top
right figure); the train is then realized on track θ1

out (middle left figure). The cars of the
remaining two trains are sorted in the same way (middle right and bottom left figures
for T 2

out, bottom center and bottom right figures for T 3
out). At the end (bottom right

figure) all three trains have been sorted.

thus has a dedicated track). The groups are then hauled in the correct order to
some outgoing track, where they are finally coupled together. This procedure is
repeated for every outbound train. An example for this method is illustrated in
Figure 3.

The length of a schedule following this sorting scheme is given by h = m +∑m
i=1 gi, and every car is rolled in exactly two times – or three times if the

separated groups are connected via the hump track. After the first stage, ex-
actly m tracks are occupied, so the number of required tracks ranges between
m + gmin − 1 and m + gmax − 1, while the latter value is attained if the first
train processed in the second stage has a number of gmax groups. Regarding the
capacity constraint, no track needs to hold more cars than those of the longest
outbound train.
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4.2 Simultaneous Sorting

Different to sorting by train, in simultaneous sorting [9,11], also called the simul-
taneous method, simultaneous marshalling [12], sorting by block [10], or initial
grouping according to subscript [4], the incoming cars are first sorted according
to the group membership in their respective outbound trains, and then by train
membership in further steps.

Elementary Simultaneous Sorting. For the purpose of this method we refer
to the groups also by a second identifier: a group that has the k-th smallest index
among all groups assigned to an outbound train T j

out, j = 1, 2, · · · , m, is called
the k-th group of train T j

out.
In the first stage of the elementary version of simultaneous sorting, all cars

of the same group of different trains are sent to the same track. Thus, all the
first groups of the outbound trains are sent to the same track, every group that
appears second in its outbound train is sent to a common track, etc. Then, the
track with the cars of the first groups is pulled out, and the cars are sorted ac-
cording to their outbound trains. This procedure is repeated for all other groups
taken in increasing number. Here, one track is reserved for each outbound train,
and in every step every such train grows by one group. An example illustrating
this method is shown in Figure 4.

The number of sorting steps is h = gmax, which is a great improvement over
sorting by train. Compared to other variants of simultaneous sorting, this method
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Fig. 4. Example for elementary simultaneous sorting. The structure of the inbound
and outbound trains is as in Figure 3. The sorting procedure is shown row-wise from
left to right. First, the cars of the inbound train are rolled in and collected group-wise
onto 5 different classification tracks (top left figure). Next, the cars of the first group
are pulled out from track θ1; in the subsequent roll-in, each car rolls onto the track
where the respective outbound train is built (top middle figure). The remaining groups
are pulled out and rolled in sequentially following the same procedure, continuing with
tracks θ2 through θ5. As a result, the outbound trains are sorted, one on each track
(bottom right figure).
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Fig. 5. Left, the assignment scheme of groups to tracks in the initial roll in stage of
triangular sorting, for 15 groups. Right, the assignment of the groups to tracks during
the first roll in of the second stage. Note that the actual order of the cars assigned to
a track may be arbitrary, depending on the order of the cars in the initial roll-in.

minimizes the number of cars rolled in, with every car rolled in exactly twice.
However, it has the highest value of h compared to the methods reported in the
subsequent sections. The track requirement between m+gmin−1 and m+gmax−1
is the same as for sorting by train: exactly gmax tracks are occupied after the
first stage, and up to m − 1 further tracks are required. Furthermore, even if
the groups can be renamed in such a way that all outbound trains have a group
indexed with gmax and use the highest possible group indices for their remaining
groups, the assembly of every outbound train is forced as soon as the first of the
last gmin tracks is rolled out. This explains the lower bound on the track use.

Triangular Sorting. Triangular sorting is an extension of the basic simulta-
neous sorting scheme. In triangular sorting every car is rolled in at most three
times. This method has been considered in [4,8,9,10,11,12,13].

Triangular sorting can be subdivided into two main stages. In the first stage,
cars are initially rolled in and assigned to classification tracks according to a
certain scheme. In the second stage, all cars on the sorting tracks are pulled
out track by track, and the cars are re-assigned either to one of the other used
classification tracks, or to the track θout where the outbound train is being built.

In the first stage, the groups of cars are assigned to classification tracks by
iteratively filling an imaginary diagonal: Group 1 is assigned to track θ1, and
forms the first diagonal. Group 2 is assigned to track θ2, and group 3 to track
θ1, filling the second diagonal. The third diagonal is built by group 4, assigned
to track θ3, group 5, assigned to track θ1, group 6 assigned to track θ2. As a
general scheme, the i-th diagonal is built by assigning to track θj the group
number 1+

∑j−1
i=1 i = 1+ j2−j

2 , and each group numbered from 2+ j2−j
2 to j2+j

2
is assigned to track θ1 to θj−1, respectively. The structure of this assignment is
given in Figure 5. Clearly, each group is assigned to exactly one track.

In the second stage, the tracks are pulled out sequentially, each time processing
the track containing the cars with smallest group number, which results in pulling
out tracks with increasing index θi. In each roll in phase, the car with (group)
number i is rolled onto the classification track holding car i−1, or the track θout
if no classification track holds group i − 1. The structure of this assignment is
shown in Figure 5 for the roll in corresponding to the pull out of track θ1. Note
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Fig. 6. Example for triangular sorting. The input train is built by 35 cars, num-
bered from 1 to 35, and arrive at the yard in the inverted numbered sequence
Tin = (35, 34, . . . , 2, 1). The cars are to be rearranged to form one outbound train
Tout. Each car forms one group, and groups must appear in increasing order of the
cars: Tout = (1, 2, . . . , 34, 35). The sorting procedure is shown row-wise from left to
right. The top left figure shows the yard configuration after the initial roll in, with the
assignment according to triangular sorting. Next, track θ1 is pulled out; the car with
smallest number (i.e., car 1) is assigned to the track where the train is being realized.
The other cars are assigned as follows: car number i is assigned to the track containing
car i−1. The remaining tracks (which now contain some cars assigned during previous
pull outs) are pulled out sequentially, continuing from θ2 and ending with θ6, and clas-
sified according to the same scheme. After 6 pull-out/roll-in steps, the ordered train
has been formed on θout (bottom figure).
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Fig. 7. Left, the assignment scheme of groups to tracks in the initial roll in stage of
geometric sorting, for 15 groups. Right, the assignment of the groups to tracks during
the first roll-in of the second stage.

that because of this second stage, each car added to a classification track during
the second stage is in correct relative order with the cars with preceding group
number. Moreover, the cars added to a classification track during the second
stage appear on it in consecutive, increasing order.

An example of triangular sorting of an inbound train to be rearranged in one
outbound train is given in Figure 6 for the special case where each group consists
of one car.

The number of groups gmax of an outbound train that can be sorted with
this method within h steps is bounded by gmax ≤ 1

2h(h + 1) [9,8]. Conversely,
the number of sorting steps is h =  

√
2gmax − 1

2!, and the number of required
classification tracks ranges between  

√
2gmax − 1

2! and m +  
√

2gmax − 1
2! − 1.

We recall that every car is rolled in at most three times, so the total number of
car roll-ins is at most 3n.

Geometric Sorting. A further generalization of triangular sorting is achieved
by the sorting scheme geometric sorting [4,8,9,11,12]. This scheme uses less clas-
sification tracks than the previous ones, but a car can roll in up to log2 n times.
Similar to triangular sorting, geometric sorting can be subdivided into two main
stages. During the first stage, the cars of the inbound train are initially rolled in.
The assignment of groups to tracks is defined as follows. All groups with an odd
number (of the form (2k−1), k ∈ N) are assigned to the first track θ1. The track
θj , j ∈ N, contains all groups with number of the form (2k−1) ·2j−1. It is easy to
see that each group is assigned to exactly one track. A schematic representation
of the assignment for group (car) number up to 15 is given in Figure 7. Observe
that the number of groups in the tracks form a geometric series.

In the second stage, the classification tracks are pulled out sequentially. The
track containing the group with smallest number is pulled out first. After each
pull out, the pulled out cars are rolled in again. Cars of group number i are
assigned to the track θj which holds cars of group number i − 1, or, if the cars
with group number i−1 are on the track θout where the outbound train is being
realized, to track θout. The structure of this assignment is shown in Figure 7
for the pull-out of track θ1. In the second phase, the sorting method ensures
that each group of cars newly assigned to a classification track is in the correct
relative order with the group with previous number. The ordering of the initial
roll-in ensures that at the end the groups are in the correct order.
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Fig. 8. Example for geometric sorting. The structure of the inbound and outbound
train is as in Figure 6. During the initial roll-in, the cars are assigned to a track
according to the geometric scheme (top figure). Note the geometric distribution of the
total number of cars assigned to the tracks. Next, track θ1 is pulled out. During the
roll in, in a similar way to the triangular sorting scheme, each car is assigned to the
track containing the car labeled with the preceding number (second figure from top).
Thus, for example, car number 9 is assigned to track θ4, which contains car number 8.
Note that because of this, these two cars are in the correct relative order. Car number
1 is assigned to θout. The remaining tracks are pulled out and rolled in sequentially,
continuing with θ2 and ending with θ6. After the roll-in of track θ6, the complete train
has been assembled onto θout.
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An example of this method applied to one inbound and one outbound train
is given in Figure 8.

For this method, as stated in [9], gmax ≤ 2h −1 for h sorting steps. Put differ-
ently, the number of sorting steps of this method is given by h =  log2(gmax+1)!,
which is proven in [8]. Similar to triangular sorting, the track requirement of this
method ranges between  log2(gmax + 1)! and m +  log2(gmax + 1)!− 1. In total,
there are n log2 n

2 car roll-ins, so each car rolls in log2 n
2 times on average.

5 Simultaneous Sorting with Presorted Input

All methods we have considered till now simply take the inbound train and trans-
form it using one uniform way into the desired outbound trains. In particular,
for a fixed number of cars the methods use the same number of steps, and roll
the same number of cars regardless of the structure of the input. In this section
we describe approaches that consider the order of the cars in the inbound train,
and make use of the fact that some cars come in the correct relative order to
produce sorting schedules that need less sorting steps, or use less classification
tracks. The basic idea is to handle two cars that should appear consecutively
in an outbound train, and that are in the correct relative order in the inbound
train, in the “same way”. In the literature this is often described as the presort-
edness of the input. We would like to discover how much of the input is already
sorted in the correct order, and to subsequently use it in our favor.

5.1 Parallel Pull-Outs

Dahlhaus et al. consider a special variant of the sorting problem in which after a
roll-in operation all tracks are pulled out [14]. For our purposes we call the act
of pulling out all tracks a parallel pull-out. The authors study the case where
only W tracks are available, and ask how many parallel pull-outs are needed to
sort the inbound train of n cars to single outbound train Tout = (1, 2, 3, . . . , n).
In the following we describe some of their results.

Inspired by radix sort, one can use the following technique to sort the inbound
train. The sorting scheme performs a sequence of sorting steps i = 1, 2, 3, . . .,
where one sorting step is a roll-in operation followed by a parallel pull-out. We
will call such a sorting step a parallel sorting step. After every parallel sorting step
i, the algorithm maintains the following invariant (observe that at this moment
the cars are on the hump track): Consider the cars 1, 2, 3, . . . , n in batches, where
each batch contains W i consecutive numbers; Let us denote by Bi

b the batch of
cars {τ | (b − 1)W i + 1 ≤ τ ≤ bW i}, b = 1, 2, . . .; (Observe that each batch,
but possibly the last, contains W i cars;) Then all cars within one batch are
in the correct relative order. It is now a simple observation that after logW n
parallel sorting steps the cars on the hump track realize the outbound train
Tout = (1, 2, . . . , n) and it can be rolled onto an arbitrary classification track. If
we consider the initial situation when no sorting step has been performed (i.e.,
i = 0), then every batch is a singleton and the invariant trivially holds. Now, in
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the first step, the cars are assigned to W classification tracks such that after one
parallel pull-out (where the tracks are pulled out in the order θW , θW−1, . . . , θ1)
every batch of W consecutively numbered cars are in the correct relative order.
It is easy to see that if the car 1 is rolled onto θ1, car 2 onto θ2, . . . , car W
onto θW , then after a parallel pull-out these cars are in a correct relative order.
The other cars are assigned to tracks in similar manner, in first step car τ is
rolled onto track θ� where � = 1+((τ −1) mod W ). In general, in the (i+1)-th
step, all cars in batch Bi

b are sent to track θj , where j = 1 + ((b − 1) mod W ).
Observe that after the subsequent parallel pull-out, the cars in every batch Bi+1

b ,
b = 1, 2, . . ., are in correct relative order. Thus, the invariant is maintained and
the sorting procedure needs logW n steps.

However, we do not have to start the first roll-in with every single car rep-
resenting a batch. Instead, we can identify batches of cars that are in a correct
relative order already, and handle them as one unit. Thus, we can partition the
cars into batches B0

1 , B0
2 , . . . , B0

k, where batch B0
1 contains the maximal sequence

of cars 1, 2, 3, . . . , c1 such that all cars of B0
1 are in correct relative order in Tin,

B0
2 contains the maximal sequence of cars c1 + 1, c1 + 2, . . . , c2 which are in

correct relative order in Tin, etc. This results in a certain number of batches,
say k. Similarly to the described sorting procedure, cars from batch Bi

b are sent
to track number 1 + ((b − 1) mod W ), and then new batches are formed as
in the previous approach. A new batch Bi+1

b is formed by the union of W old
batches Bi

j, j = (b−1)W +1, . . . , bW . With every step, the number of batches is
decreased by a factor of W , and thus in logW k parallel sorting steps the hump
yard realizes the train (1, 2, 3, . . . , n).

5.2 Sequential Pull-Outs

We now concentrate on the original sorting problem in which the sorting scheme
operates with sorting steps, i.e., every pull-out of a track is followed by a roll-
in operation. In this section we describe approaches that aim to design, for a
given inbound train Tin, an optimum sorting scheme for various optimization
goals – minimizing the number of sorting steps, or minimizing the number of
used tracks. As before, sorting is required to build an outbound train with cars
representing numbers in increasing, sorted order.

This problem is studied by Jacob et al. in [5,8]. We describe their ideas for
the case of minimizing the number of sorting steps. In particular, in this case,
we can assume there are arbitrarily many classification tracks at our disposal
(the effect of this assumption, as compared with dropping it, are shown in [5]).
Assuming this, we can, for simplicity, assign a new track θi to each sorting step
i, i = 1, 2, 3, . . ., i.e., we can assume that in sorting step i a track θi is pulled
out. Observe that now a sorting scheme is fully specified by prescribing which
tracks each car visits during the shunting.

Intuitively, to minimize the number of sorting steps, the cars shall share the
classification tracks as much as possible. For example, if all cars come sorted
in the inbound train Tin, all cars can roll in to one classification track with
no subsequent sorting steps. We will call the classification track on which the
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outbound train is built a destination track. As no car is pulled out from this
track, it does not add to the number of sorting steps. Observe now that if two
cars τi and τj from the inbound train Tin, i < j, are in the correct order, i.e.,
τi < τj , the cars can be assigned to the same tracks in a classification schedule.
Doing so, car τi will be always in front of τj , regardless of where other cars roll
in. If the cars τi and τj appear in the wrong order in Tin, i.e., τi > τj , the cars
cannot use the same tracks, i.e., the cars have to “split” at some point (before
they meet again, the latest on the destination track). In particular, car τj has
to “overtake” the car τi at some point. This can be done, in a simple way, by
rolling in the cars τi, τj to tracks k and l, where l < k, and then in the next
sorting steps, to roll the cars onto the destination track. In general, however,
more than one such overtaking may be necessary, and the course of a car may
access more tracks. In this case we need to make sure that τi does not overtake
τj after the proper order has been restored.

Jacob et al. devised a neat description of sorting schemes which includes all
aspects of the previous discussion. The description encodes in a binary form the
course of each car through the classification tracks (recall that the classification
tracks correspond one-to-one with the sorting steps). As we shall see, this encod-
ing allows a simple analysis of sorting schemes (in terms of needed sorting steps),
and characterization of optimal sorting schemes. For a sorting scheme with h > 0
sorting steps, the bitstring bj = bj

h−1b
j
h−2 · · · b

j
0 of h bits assigned to the car j,

j = 1, 2, · · · , n, represents which classification tracks out of θ0, θ1, · · · , θh−1 ,
besides the destination track, the car visits. The bitstring bj is thus read from
left to right with the interpretation that bj

k = 1 if and only if the car j visits
the track θk that is pulled out in sorting step k. The subsequent roll-in of the
car j in sorting step i is to the track � which is the index of the next bit set to
one, i.e., � = mink<i≤h−1{i | bj

i = 1}. If such a bit does not exist, i.e., bj
i = 0 for

all i > k, the car j is rolled onto the destination track. Figure 9 is the example
given in [8] that illustrates the encoding of sorting schemes with bitstrings.

Deriving Optimal Schedules using the Bitstring Encoding. Given sort-
ing scheme, we can describe it with the bitstring encoding, which immediately
tells the number of sorting steps of the sorting scheme. Conversely, using the
encoding and the conditions posed on the “overtaking” of cars within a sorting
scheme, we can derive an optimum sorting scheme for a given inbound train Tin
[8]: if two consecutively numbered cars τ and τ + 1 are in the correct order in
the inbound train, the same bitstring can be assigned to both cars as they can
take the same course and never need to change their relative order during the
classification. However, if two consecutive cars τ and τ + 1 are in the reverse
order in the inbound train, τ +1 must be assigned to a bitstring b′ = b′h′−1 . . . b′0
that, if regarded as the binary representation of the integer number

∑h′−1
i=0 (2ib′i),

is strictly greater than the bitstring b = bh−1 . . . b0 assigned to τ . Then, with
b < b′, let k be the most significant index (i.e., the leftmost index) with bk = 0
and b′k = 1. Car τ + 1 is sent to some track θnext in sorting step k. As bi = b′i
for all i > k (i.e., the cars are handled the same way in the remaining sorting
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Fig. 9. A classification procedure for h = 4 and n = 6, using track θout for the output
train. The encoding is shown in (a), the input train in (b). (c)–(j) show the consecutive
situations during the procedure, always pulling out the cars of the rightmost occupied
track.

steps) car τ was already sent to θnext in a previous step. Hence, τ appears at a
position in front of τ +1 on track θnext. The two cars will not swap their relative
order at any later step, so τ ends up on the output track at a position in front
of τ + 1 in the outbound train.

This insight directly yields a process to derive feasible schedules: all cars of
an ordered subsequence of consecutive cars in the inbound train can get the
same bitstring. Two cars of different maximal such subsequences, however, are
in reversed order and must thus be assigned different bitstrings as explained
above. Therefore, if c denotes the number of maximal ordered subsequences
of consecutive cars in the inbound train, c different bitstrings are required to
produce the outbound order. The number of steps h equals the length of the
longest used bitstring, so the number of steps required to sort the train is given
by h =  log2 c!. This sorting scheme thus needs less pull-out operations than
the sorting scheme of Dahlhaus et al. [14], which needs logW c parallel pull-outs,
which corresponds to W log2 c

log2 W single pull-outs. The number of roll-ins per car of
this sorting scheme is clearly at most h.



Shunting for Dummies: An Introductory Algorithmic Survey 329

Approximate Schedules for Restricted Capacity. As mentioned before,
the classification tracks have a restricted capacity in practice, i.e. there is an
upper bound on the number of cars that fit on each track. Even for an unre-
stricted number of classification tracks and the same upper bound C for each
track, finding a length-optimal schedule is an NP-hard problem as shown in [8,5].
Nevertheless, there is a polynomial-time 2-approximation [5], which is outlined
in the following.

The capacity constraint requires that, for every track at every step of the
classification procedure, the number of cars on this track does not exceed C. In
terms of bitstrings, for each i this translates to

n∑
j=1

bj
i ≤ C (1)

The 2-approximation also uses a constraint called the weight constraint, which
is a relaxation that considers only the sum of all capacity constraints instead of
the individual capacity constraint per track:

h−1∑
i=0

n∑
j=1

bj
i ≤ hC (2)

The 2-approximation works in two phases: first, a length-optimal schedule is
derived that has minimum weight among all schedules that satisfy the weight
constraint. This is done with a dynamic programming approach. The resulting
schedule may violate the capacity constraint. Then, this schedule is successively
modified until it satisfies the capacity constraint. This modification is done by
introducing additional steps for every column of the schedule that violates the
capacity constraint, but the details go too far to be described here.

Finding Optimal Schedules Using Integer Programming. The aforemen-
tioned encoding is an elegant way to describe sorting schemes, and its binary
character allows for a straightforward modeling of various train sorting optimiza-
tion problems as an integer program (IP) with binary variables. This approach
was followed in [15] to derive a basic integer program. This work also showed how
various real-world restrictions can be implemented by linear constraints using
the binary encoding. This approach is taken for the purpose of deriving actual
sorting schedules for real-world instances.

A basic IP model to compute a sorting schedule is shown in Figure 10. Given
a fixed number of sorting steps h, the objective is to minimize the total number r
of cars rolled in. The constants rev(x, y) indicate whether two cars x and y are in
the correct order: rev(j−1, j) = 1 if the jth and (j−1)th car are in reversed order
in the inbound train; otherwise, rev(j−1, j) = 0. Furthermore, F denotes the
subset of cars that are the first in their respective outbound train. Constraint (3)
ensures that the bitstrings assigned to consecutive cars of the same outbound
train that appear in reversed order in the inbound train are different, and that the
car with smaller number gets the smaller bitstring. In other words, (3) enforces
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min
∑

1≤j≤n
0≤i<h

bj
i

s.t.
∑

0≤i<h

2ibj
i ≥ rev(j−1, j) +

∑
0≤i<h

2ibj−1
i ∀j ∈ {2, . . . , n} \ F (3)

∑
1≤j≤n

bj
i ≤C ∀i ∈ {0, . . . , h − 1} (4)

bj
i ∈ {0, 1} ∀i ∈ {0, . . . , h − 1}, j ∈ {1, . . . , n} (5)

Fig. 10. Basic IP model [15] for deriving a feasible schedule of length h on h sorting
tracks of restricted capacity C and a total of n cars

a feasible schedule. Constraint (4) is a capacity constraint, and enforces that at
most C cars are assigned to a track in the sorting schedule (recall that as defined
earlier, the constant C denotes the number of cars that fit on each track). As
previously stated, the objective is to minimize the number of cars rolled in. In
order to minimize the length h of the sorting schedule, a sequence of IPs with
increasing values of h can be solved.

The IP model shown in Figure 10 actually describes the method for sequen-
tial pull-outs of Section 5 that considers presorted input generalized to multiple
outbound trains. The basic version of this IP model can be extended to capture
various real-world restrictions as described in [15]. Therefore, this integer pro-
gramming model can be regarded as a generalized representation and solution
technique for train classification.

Robustness of Sorting Schedules. While a schedule that is optimal for a
given order of cars (in an arriving train) makes sure that resources are used in the
best possible way, it can cause problems in reality, when the actual order of the
cars within the arriving train happens to differ from what was expected. In this
case, the schedule may not produce the required, sorted order any more, and as
a consequence one may need to adjust the schedule. We note that the inherently
robust (but not optimal) sorting schemes such as the triangular sorting or the
geometric sorting do not depend on a particular input order, so they are resilient
against any changes in the input order. In this section we review the robustness
issues that were studied with respect to optimal schedules as described in the
previous paragraphs.

Cicerone et al. [16] were the first to consider robustness questions in train
sorting problems when optimality or near-optimality is the primary goal. Ci-
cerone et al. deal with several kinds of disruptions for the special case of a single
incoming and a single outgoing train in a hump yard. Some of these results can
also be found in [17].

In [16], Cicerone et al. apply the concept of recoverable robustness, which
was originally introduced in [18,19], to the problem of train classification. The
original schedule may become infeasible as a consequence of a disruption such
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as a delayed train arrival. After such a disruption, the concept of recoverable
robustness allows taking some action that alters the original schedule in order
to obtain a feasible schedule for the new situation. This action is called recovery,
and the way and the extent to which the schedule may be altered is called
recovery strategy. An initial solution that can be recovered, naturally within the
limits allowed by the recovery strategy, for every possible disruption scenario is
called recovery robust. The worst case ratio between the cost of a recovery robust
solution and the cost of an optimal (non-robust) solution is called the price of
robustness.

The disturbances with regard to train classification considered in [16] are small
deviations of key resources: a single car occurs at a different position in the in-
coming train than planned, there is one additional or one missing car, and one
track is unavailable. Cicerone et al. estimate the price of robustness with respect
to the following three basic recovery strategies: zero-recovery, which means that
no recovery action may be taken at all; assigning a limited number of cars to
a bitstring different from the one in the original schedule; and complete reas-
signment of all cars to bitstrings without increasing the length of the schedule
beyond the original length. For all these cases, the paper gives characteristics
of the binary code-representation of a classification schedule. The authors also
show that some algorithms that are optimal (for the robustness problem) for
some disruptions are infeasible for others. This approach can be seen as an in-
teresting first step to apply robustness to train classification when presortedness
is considered.

6 Other Models and Related Problems

In this survey we have presented a selection of algorithmic problems related to
rearranging railway units. In this section we would like to point out some variants
or generalizations of the TrainSorting problem that have been previously
studied in the literature.

In the introduction we briefly outlined that the TrainSorting problem can
be viewed as a specific instance of the problem of sorting an input sequence
of numbers with a network of stacks and queues, with a restricted operational
modus. A network of stacks and queues is a directed graph where every node is
(associated with) a stack or a queue. The network has two special nodes s and
t, the source node and the target node, where s has no incoming edge, and t
has no outgoing edge. The source node s is a stack containing initially the input
sequence of the first n natural numbers. The elements of s (i.e., the numbers)
shall traverse through the network and arrive at t in the sorted order 1, 2, 3, · · · .
The traversal of the elements obeys the network topology and the stack/queue
storage rules: If an element is popped from a stack/queue x then the element is
pushed into a stack/queue y that is a neighbor of x in the network. This problem
was first introduced by Knuth in 1968 and generalized by Even and Itai, Tar-
jan, and Pratt, immediately afterwards [3,20,21,22]. These early studies mainly
considered various network topologies with the aim of classifying the permuta-
tions that can be sorted by the given topology, counting the number of such
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permutations, and finding minimal unsortable permutations. As an example, a
network with one stack only (besides the two nodes s and t) can sort a permu-
tation Π if and only if it avoids the pattern (2, 3, 1), i.e., Π is a permutation
which does not contain a subsequence (a, b, c) for which c < a < b holds [3].
It can be shown that in this network the number of sortable permutations of
length n is

(2n
n

)
/(n + 1). Also, permutation (2, 3, 1) is the smallest unsortable

permutation, as clearly every permutation of length two can be sorted with one
stack. This result, combinatorial in its nature, has been then generalized and
refined in various ways. Bóna summarizes the subsequent results (again, mainly
combinatorial) in his survey [23]. Noticeably, the new results appeared only after
a gap of twenty years, with the work of Atkinson et al., Bóna et al., or West (see
the survey of Bóna [23] for references). The only early algorithmic considerations
are by Even and Itai [20] who reduce the problem of deciding whether a given
sequence is sortable by a network of parallel stacks to a graph-coloring prob-
lem (a network of parallel stacks is a network where s is connected to k stacks,
k ≥ 1, and these stacks are connected to t). A first solely algorithmic focus on
the problem appeared only recently in the work by König and Lübbecke [24],
who studied the problem of minimizing the number of “moves” in the network
that sort a given sequence in a complete network of stacks. They show that this
problem, and even the problem to find a sublinear approximation, is NP-hard
for networks with at least 4 stacks. It is rather surprising that there has been no
earlier study of this nature, as both sorting and data structures as stacks are a
natural concern of a theoretical computer scientist.

An interesting and important variation of single-stage sorting is the problem
of parking autonomous rolling stock (such as buses, trams, or trains with non-
separable engines, i.e., units that are capable of autonomous motion – unlike the
cars of trains we have considered till now) in a depot (which can be modelled
as a set of classification tracks) in the evening such that, if possible, in the
morning the rolling stock can leave from the depot in a prescribed order without
“blocking” each other on the tracks. The goal is to use the minimum number of
tracks, or, if there is a limited number of tracks, to minimize the “disturbance
caused by the blockings”.

Blasum et al. [25] and Winter and Zimmerman [26] considered a special version
of this problem in the context of trams used in local public transportation. The
depot they consider is one sided, i.e., the entrance and exit is from the same side.
Thus, each track can be seen as a stack with last-in first-out rule (LIFO). In their
setting, there are n trams, each tram is of a certain type ti ∈ {t1, t2, · · · , tc},
and the number of tracks in the depot is W , where lj , j = 1, · · · , W , denotes the
capacity of track j, i.e., the maximum number of trams that fit on that track. The
morning departure schedule requires a specific type of tram to depart (rather
than a specific tram), i.e., it prescribes the order in which trams of certain type
should depart from the depot.

The work of Blasum et al. [25] assumes that the trams are already positioned
on the tracks in the depot. The problem is to decide whether the trams can leave
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in an order (obeying the LIFO rule of each track) that preserves the required
types. Blasum et al. show that this problem is NP-complete even if the number
of types c is 2, and they present a dynamic programming algorithm that solves
the problem in time O

(
nW

)
(recall that W is the number of tracks). The authors

also report experimental results.
Winter and Zimmermann [26] consider the more general problem where no

assignment of incoming trams to tracks has been made yet. That is, for a given
order of arriving trams, they ask for a good assignment of the trams to the tracks
such that in the morning, for a given departure schedule of tram types, the trams
from the tracks can: (1) depart from the depot satisfying the departure schedule,
using the minimum number of shunting operations in the depot, or (2) depart
without a single shunting operation, minimizing the number of type-mismatches.
Not surprisingly, the decision variant of the problems remains NP-complete. The
authors model the problem as a quadratic integer program with binary variables,
and also derive its linearized version. The experiments using a commercial MIP
solver show that only relatively small instances can be solved using this approach.
The authors then present various heuristics for the problem, together with an
experimental evaluation of the presented solution approaches.

Di Stefano and Koči [27] study the problem of parking trains in a depot under
various models of the depots. For a given sequence T = (τ1, τ2, · · · , τn) of arriv-
ing trains (train τ1 arrives first, train τn arrives last) to the depot, the problem
is to assign each train to a track such that the trains can depart in the order
1, 2, 3, · · · , n. The tracks are assumed to have sufficient capacity to accommo-
date every train. The objective is to minimize the number of used tracks. Di
Stefano and Koči study various models of tracks. When each track is modeled as
a First-in First-out (FIFO) queue, the problem is solvable in polynomial time
by a straightforward application of Dilworth’s theorem (see [28] for details) and
the underlying polynomial algorithm. Alternatively, the problem is shown to be
equivalent to the coloring problem on a graph where each node is a train, and
the edges represent conflicts, i.e., the fact that two trains cannot be stored on the
same track. Secondly, for the track being modeled as a queue where trains can
be added from both ends, and depart from one end only, the problem is shown to
be equivalent to a coloring problem of a hypergraph, where an edge corresponds
to three trains that cannot be stored on one track – a hyper-edge e = {τi, τj , τk},
where τj is the smallest number among trains in e, and the train τj appears in
the arriving sequence T in between the trains τi and τk. The complexity of this
coloring problem is left open (but shown later in [29] to be NP-hard). The au-
thors show, however, that the problem is always solvable with at most 

√
8n+1−1

2 �
tracks, show that this bound is tight (in the worst case), and also present a poly-
nomial algorithm that never uses more tracks than this bound. The authors also
show that this problem is equivalent to the problem with a queue where the
trains can enter from one side only, but can leave from both sides. Finally, if the
tracks are modelled as a queue where trains can enter and depart from both ends,
the problem is shown to be equivalent to a coloring problem of a hyper-graph
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where a hyper-edge encodes which trains cannot be stored on the same track.
Every hyper-edge contains four vertices. The complexity of the coloring problem
is left open (and shown later in [29] to be NP-hard). At the end, the paper
considers the case where the trains do not necessarily have to depart after all
trains arrived, i.e., the arrival times and the departure times of the trains can be
arbitrary, and especially they can interleave. For the tracks modelled as a FIFO
queue (with one end only), the problem of computing an optimum assignment of
trains to tracks is shown to be equivalent to a coloring problem of circle graphs
(see e.g. [30] for more details on this problem in circle graphs). It is an easy
observation that for tracks modelled as FIFO it does not matter whether the
departures and arrivals are interleaved or not.

Demange and others [31,32,33] study several variants of the online version of
the problem of assigning tracks to autonomous vehicles at a depot, the so-called
track assignment problem. In their setting, trains appear online at the depot, and
disclose a time interval representing their arrival time and their departure time
from the depot. The goal is to assign the trains to tracks online, such that each
train can leave the depot at its departure time without requiring any shunting
activity. This setting is analyzed for different models of tracks and constraints
on times, and also for capacity constraints on the tracks, given by a maximum
number of train units that a track can hold. The authors tackle the online prob-
lem by constructing conflict graphs as described above: each train is represented
by a node, and an edge represents the infeasibility of assigning both correspond-
ing trains to the same track. Now, the problem of finding a valid assignment
is equivalent to coloring the resulting conflict graph in an online fashion: the
nodes of the graph are presented online, together with the edges adjacent to the
already disclosed nodes. The different settings of the track assignment problem
lead to specific graph classes, which have special characteristic with respect to
their coloring. For instance, if tracks are modeled as stacks (which implies that
trains must arrive and leave from the same direction), and all time intervals of
the trains intersect a specific time point (the so-called midnight constraint), the
resulting graph is a permutation graph. For the resulting coloring problems on
the graph classes Demange et al. show lower bounds on the competitive ratio.
The First-Fit algorithm, which in every iteration assigns to the newly presented
node the color with lowest possible number among the feasible ones, is analyzed
for different settings. For example, for the case mentioned above, and with tracks
holding at most b train units, the authors show a lower bound of 2 − 1

min{b,k}
on the competitive ratio for any online algorithm finding a b-bounded coloring,
given that the graph admits a coloring with k colors and that at most b nodes
are allowed to share the same color. For the same case, they also show that
the bounded-First-Fit algorithm matches this bound if the nodes are presented
in increasing order of arrival time of the corresponding trains. Results of this
flavor are derived for several online coloring problems, with different orders of
presentation of the nodes. For some variants, it is also shown that the First-Fit
algorithm produces an optimal coloring.
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7 Conclusion

In this work we have surveyed the main algorithmic approaches to a specific class
of shunting problems that arise in railway transportation – the TrainSorting

problems. While the early methods focused on simplicity and robustness (such as
the triangular method), the latest research focuses on algorithms that consider
the order of cars in the inbound train and design sorting schemes accordingly.
These methods are obviously not robust, as a small change in the input may
result in outbound trains that do not satisfy a given sorting constraint if the
sorting schedule is left unchanged. It is however a challenging problem to consider
also the robustness issues, which may require the development of new adaptive
methods. In this survey we have also outlined the first steps in this directions.

The theoretical problems that have attracted most of the attention in the
research community reflect the needs of practitioners only partially. This is es-
pecially the case with adaptive multistage sorting schemes, where we assume
that the input sequence of the incoming train(s) is known in advance. This is,
however, not the case in practice. The operation center of a shunting yard indeed
has a plan of the expected arrivals of trains with cars and their order, but the
trains may in reality arrive later (due to delays) or not at all (an engine break;
a strike on a part of the network, etc.). Thus, it may happen that in the mid-
dle of the shunting process the sorting schedule expects to start with a roll-in
of a certain inbound train T i

in which did not yet arrive. Any practical sorting
schedule therefore has to adapt to the new situation. Delays of the trains are
not the only cause of troubles in real-world operation of shunting yards. Other
difficulties appear when the order of cars in an inbound train is different from the
expected one. This can be detected before the first roll-in operation, but it may
also happen that the identity of a car is discovered only when an outbound train
is ready and inspected for the departure. An interesting question here is how to
adapt the sorting scheme such that it re-sorts this outbound train, together with
the sorting work it was planning to do. Last but not least, one is interested in
online scenarios where certain tracks remain temporarily unavailable (due to a
breakdown of a switch), or the number of available engines is limited (in which
case placing more cars on tracks such that fewer tracks are used is preferred).
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29. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum
k-modal partitions of permutations. Journal of Discrete Algorithms 6, 381–392
(2008)

30. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of
a circle graph. Networks 3(3), 261–273 (1973)

31. Demange, M., Di Stefano, G., Leroy-Beaulieu, B.: Online bounded coloring of
permutation and overlap graphs. Electronic Notes in Discrete Mathematics 30,
213–218 (2008); (Proceedings of the IV Latin-American Algorithms, Graphs, and
Optimization Symposium (LAGOS))

32. Leroy-Beaulieu, B.: Some coloring and walking problems in graphs. PhD thesis,
Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland (2008)

33. Demange, M., Di Stefano, G., Leroy-Beaulieu, B.: On the online track assignment
problem. Technical report, ARRIVAL (2006)



Integrated Gate and Bus Assignment at
Amsterdam Airport Schiphol

Guido Diepen1,	,		, J.M. van den Akker2,	, and J.A. Hoogeveen2,	

1 Paragon Decision Technology
Schipholweg 1, 2034 LS Haarlem, The Netherlands

Guido.Diepen@aimms.com
2 Department for Information and Computing Sciences

Utrecht University
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

{marjan,slam}@cs.uu.nl

Abstract. At an airport a series of assignment problems need to be
solved before aircraft can arrive and depart and passengers can embark
and disembark. A lot of different parties are involved with this, each of
which having to plan their own schedule. Two of the assignment problems
that the ’Regie’ at Amsterdam Airport Schiphol (AAS) is responsible for,
are the gate assignment problem (i.e. where to place which aircraft) and
the bus assignment problem (i.e. which bus will transport which passen-
gers to or from the aircraft). Currently these two problems are solved in a
sequential fashion, the output of the gate assignment problem is used as
input for the bus assignment problem. We look at integrating these two
sequential problems into one larger problem that considers both prob-
lems at the same time. This creates the possibility of using information
regarding the bus assignment problem while solving the gate assignment
problem. We developed a column generation algorithm for this problem
and have implemented a prototype. To make the algorithm efficient we
used a special technique called stabilized column generation and also col-
umn deletion. Computational experiments with data based on real-life
data from AAS indicate that our algorithm is able to compute a planning
for one day at Schiphol in a reasonable time.

Keywords: gate assigment, integrated planning, airports, column gen-
eration, stabilized column generation, integer linear programming.

1 Introduction

Between the time an aircraft lands at an airport and the time it departs again
many things must happen. One of the most obvious things is that passengers
needs to disembark the aircraft. Moreover, the aircraft need to be refueled, new
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passengers need to board, new supplies have to be put on board, the aircraft has
to get cleaned. All of the actions take place while the aircraft is standing at a
gate. We will consider the arrival of an aircraft until the following departure of
the same aircraft as one stay. The gate assignment problem deals with assigning
a given set of stays to a set of gates such that certain criteria are met.

In this paper, we consider the gate assignment at Amsterdam Airport Schiphol
(AAS). We investigate the daily planning, i.e. the creation of a planning for the
upcoming day on the basis of the available information about the stays of that
day. In Diepen et al. [4], we have presented a column generation algorithm to
create an assignment for aircraft to gates that is robust from a practical point of
view, meaning that any small deviation from the scheduled arrival and departure
times can be incorporated without lots of rescheduling.

Some stays are not assigned to a gate with an air bridge but to a so-called
remote stand. This implies that passengers have to be transported to and from
the aircraft by buses. We have shown how we can create a robust schedule
for these platform buses by a similar type of column generation algorithm (see
Diepen [3]) in case the gate assignment is given.

This approach resembles the way AAS is actually solving these two problems
currently. First the gate assignment problem is solved, the solution of which is
then used as input for the bus planning problem. Although the bus planner has
the possibility to influence the gate planning by providing preferences, in general
the two problems are solved in a sequential way.

Observe that this could imply that a schedule for the gate assignment results
in an instance for the bus planning problem for which only poor solutions are
possible. In many cases minor changes to the original solution for the gate as-
signment problem would allow better assignments for the buses. So although this
would mean a sub-optimal solution for the gate assignment problem to be used,
the solution for both the gate and bus planning as a whole would improve.

In this paper, we focus on the integration of gate assignment and bus planning.
Our goal is to achieve better overall robustness and a more efficient bus planning
without too much negative effects on the gate assignment. The airport authorities
at AAS have indicated that robustness is very important for them, in order to
limit the amount of gate changes during the day of operations.

During the last years, a significant amount of research has been performed on
the integration of real-life scheduling problems. For example Freling, Huisman,
and Wagelmans [6] look into the integration of solving the combination of the
vehicle and crew scheduling problems that arise in the public transport schedul-
ing. They present two different models and algorithms for solving the integrated
version of the two problems, and compare the results to the results obtained by
using the standard sequential approach.

One of the areas where the integration of real-life scheduling problems is
investigated a lot, is in the airline industry. Cordeau et al. [2] investigate the
integration of the aircraft routing problem with the crew scheduling problem.
They propose a solution approach based on Benders decomposition and show
that solving these two problems as one integrated problem yields significant cost
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savings. Other integrations that have been considered are schedule assignment
and the fleet assignment problems (see Rexing et al. [9] and Lohatepanont and
Barnhart [8]) and the integration of the fleet assignment and the crew scheduling
problems (see Gao [7], Clarke et al. [1], and Sandhu and Klabjan [10]).

At Amsterdam Airport Schiphol, the software package currently in use for
solving the gate assignment problem, uses a rule based approach for optimizing
the assignment. It includes many aspects, however, it does not support the main
thing we aim for: robustness. The software package is also capable of scheduling
additional processes besides the assignment of aircraft to gates. For instance, in
Vancouver the same program is used and there the scheduling of the push-back
trucks is also handled by the program.

The purpose of the research described in this paper is to enable the use of
information regarding the bus planning problem while solving the gate assign-
ment problem. Instead of an iterative method in which the separate problems
are solved in turns and are allowed to send constraints or preferences to each
other, our approach is to combine the two assignment problems into one big
problem and to solve this one big problem as a whole, where the objective is to
maximize overall robustness.

The outline for the remainder of the paper is as follows: In Section 2 we
will give the problem formulation and our model and in Section 3 we present
solution method. Furthermore, in Section 4 we will report on the results of the
experiments that we performed and finally, in Section 5 we give our conclusions.

2 Problem Formulation

In this section, we describe the problem and present an integer linear program-
ming formulation. For the upcoming day we want to create a gate assignment for
a given set of stays and a planning for the platform buses transporting passengers
to and from stays at a remote stand.

For the gate assignment several properties of the stays are important:

– Arrival and departure time
– Region of origin and destination (Schengen/EU/Non-EU)
– Size category
– Ground handler

At AAS the ground handlers are divided into two groups: KLM Ground Ser-
vices and other companies. Clearly, two stays cannot be assigned to the same
gate at the same time. At AAS the minimum amount of idle time between two
consecutive stays at a gate is 20 minutes. For each gate it is known which regions
(because of safety regulations), size categories, and ground handlers it can serve.
This results in constraints to ensure that at a gate there are only stays matching
the properties of the gate with respect to region, size of the aircraft and ground
handler.

Moreover, certain preferences might be taken into account. For example, some
airlines such as KLM have their ‘own’ gates or want their stays to be grouped
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as much as possible on certain gates, for example we could require that at least
5 out of 7 Swiss stays are on a specific gate.

Flights that stay on the ground for a longer period, e.g. 3 hours, may have to
be split. This means that after some time the stay is removed from the gate and
later is moved back to some (possibly other) gate.

According to operational rules used at AAS this proceeds as follows:

– Arrival part. After the aircraft lands, it will stay at the gate for 65 minutes,
after which it is towed to some buffer stand.

– Intermediate part. During this part the aircraft resides on a buffer stand,
where it does not use precious gate capacity.

– Departure part. The aircraft is taken from the buffer to the appropriate gate,
95 minutes before the aircraft will depart.

We have included this option in our algorithm. We have omitted it from the
upcoming LP and ILP formulations for reasons of simplicity. For the full model,
we refer to [4].

Our objective is to create an assignment schedule that is robust from a prac-
tical point of view, meaning that the resulting schedule is able to cope with
minor disturbances during the actual day as well as possible. The following pic-
ture shows an example of a schedule that is typically non-robust and can be
improved by interchanging stays 3 and 4.

Flight 1 Flight 4

Flight 2 Flight 3

Gate 2

Gate 1

Fig. 1. Example of a non-robust schedule

Observe that a schedule is best able to cope with disturbances if all idle times
between each pair of consecutive stays on a gate are as large as possible. We
model this with a cost function that greatly penalizes short idle times, while
giving very low cost to large, and thus favorable idle times.

For the cost of the idle time t between two consecutive stays v and w on a
gate we use the same cost function presented in [4]

cG(t) = conv(v, w)1000(arctan(0.21(−t)) +
π

2
),

where conv(v, w) denotes the convenience multiplier expressing the preference
of stay w directly succeeding stay v on a gate. For example, this multiplier is
small if v and w belong to the same airline since in this case the airline has a
clear incentive to make v depart on time. This cost function is devised such that
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it mimics the preferences of the planners: a solution with low cost is always one
of the solutions preferred by the planners.

If a stay is handled at a remote stand, the passengers are moved to and
from the terminal by bus. The number of buses needed depends on the number
of passengers. In this way, each stay assigned to a remote stand results in a
number of bus trips. At arrival all trips take place at the same time, and for the
departure there by rule have to be at least two trips, where the first trip starts
already some time before the departure of the stay. When ordering buses and
drivers, AAS can specify the amount buses required per 15 minutes. As a result
the bus drivers (about 60) on a day work in about 20 types of shifts, where shifts
longer than 4.5 hours contain a mandatory break.

To maximize robustness, we make use of a similar cost function of the idle
times t between consecutive trips of the same bus. The exception is that at each
given time we have significantly lowered the total cost, this to resemble the fact
that the gate assignment is still the more important problems of the two:

cB(t) = 50(arctan(0.21(−t)) +
π

2
),

By taking the sum of the total cost of both sub problems, we now have a rep-
resentation for the quality of the robustness of a solution as a whole. This is a
quite standard representation of robustness, which works well in practice.

The ILP Formulation. The model is obtained by combination and extension
of the separate models presented in [4] and [3] to solve the gate assignment and
the bus planning problems respectively.

Our model is based on so-called gate plans, which consist of a set of stays
that will be assigned to one gate. The cost of such a gate plan is equal to the
total cost of the idle times between each pair of successive stays. We aggregate
gates with the same properties into groups of gates and each such group we refer
to as a gate type. These properties contain at least the origin/destination, size
and ground handler. However, a trivial aggregation in which each separate gate
(except for the platform stands) is considered a single type is also possible.

We define the decision variable

xi =
{

1 if gate plan i is selected
0 otherwise,

Since it might be non-trivial to assign all stays to a gate, we allow a stay to be
unassigned at high cost. This is modelled by the binary variable UAFv. Let V
denote the number of stays, A the number of gate types, Sa the number of gates
of type a, and K the number of preferences. Now the robustness cost of the gate
assignment are given by:

Min
N∑

i=1

cG
i xi +

V∑
v=1

QvUAFv
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and the gate plans have to satisfy the following constraints:

UAFv +
N∑

i=1

gvixi = 1 v = 1 . . . V (1)

N∑
i=1

eiaxi ≤ Sa a = 1 . . . A (2)

N∑
i=1

V∑
v=1

A∑
a=1

pvakeiagvixi ≥ Pk k = 1, . . . , K (3)

where

gvi =
{

1 if stay v is in gate plan i
0 otherwise,

eia =
{

1 if gate plan i is for gate type a
0 otherwise,

pvak =
{

1 if stay v has preference for gate of type a in preference k
0 otherwise,

Constraint (1) ensures that all stays are either present in one of the selected gate
plans, or the unassignment variable for the stay will have the value 1, resulting
in a penalty in the objective function.

Constraint (2) ensures that we select as many gate plans of a certain type as
there are gates of the type and Constraint (3) ensures that we fulfill all of the
preferences that are given with respect to the gate assignment. Here Pk is the
minimum required number of stays with a preference for gate type a that we
have to assign to a gate of type a to meet the preference constraints, e.g. the
constraint can be that at least 7 out of the 10 stays of a certain airline are at a
given gate.

In case we need to solve the bus planning problem for a given solution of the
gate assignment problem, we know exactly which stays are assigned to which
platform. With this information we can create the trips needed to transport all
the passengers; in the model we must ensure that each of these trips is either
driven by a bus, or it is left unassigned with a penalty cost.

Similar to the gate assignment, we define bus plans as the set of trips per-
formed by one bus. We define

yj =
{

1 if bus plan j is selected
0 otherwise,

and the binary variable UATt to signal if trip t is unassigned. Let T be the
number of trips, B be the number of shift types and Tb be the number of buses
with drivers available is shift b. We now obtain the following model:

Minimize
M∑

j=1

cB
j yj +

T∑
t=1

RtUATt
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subject to

UATt +
M∑

j=1

htjyj = 1 for t = 1, . . . , T (4)

M∑
j=1

fjbyj = Tb for b = 1, . . . , B (5)

yj ∈ {0, 1} for j = 1, . . . , n. (6)

We can solve this problem in the same way we solved the gate assignment problem.
The only additional complication is that in the pricing problem we have to ensure
that bus plans which last more than 4.5 hours require a mandatory break.

When we look at the combination of the two problems, we do not yet know
which stays will be placed on the platform (and also, on which platform) and
therefore we have to find a way to determine which trips we actually need to
assign to buses.

To handle this problem, we generate all possible trips for stays that could
be assigned to the remote stands. This means that for each of these stays we
create the trips for each of the platforms that it can be assigned to. For example,
if an arriving stay requires two trips because of the number of passengers and
it can be assigned to the D/E platform, as well as the B platform it means
that we will create two trips from the D/E platform and two trips from the B
platform to the terminal building. Similarly, not only different platforms, but
also different destinations in the terminal building must be considered. For each
possible combination we would have to create the trips also. To allow for this
coupling we will work with all possible trips and determine which of these are
needed in a solution and which are not. For this purpose we will use the variables
NNTt for each trip t to denote whether the trip t needs to be assigned to a bus
or that the trip is irrelevant for the assignment problem.

Min
N∑

i=1

cG
i xi +

V∑
v=1

QvUAFv +
M∑

j=1

cB
j yj +

T∑
t=1

RtUATt

subject to

(1) − (3)
M∑

j=1

fjbyj ≤ Tb b = 1 . . . B (7)

NNTt + UATt +
M∑

j=1

htjyj = 1 t = 1 . . . T (8)

NNTt +
N∑

i=1

V∑
v=1

ttvigvirixi = 1 t = 1 . . . T (9)

xi ∈ {0, 1} i = 1 . . .N (10)
yj ∈ {0, 1} j = 1 . . .M (11)
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where

fjb =
{

1 if bus plan j is for a shift of type b
0 otherwise,

htj =
{

1 if trip t is in bus plan j
0 otherwise,

ttvi =
{

1 if assigning stay v to gate plan i implies trip t must be driven
0 otherwise,

ri =
{

1 if gate plan i is for a remote stand
0 otherwise,

Constraint (7) ensures that for each bus shift we select at most the number of
buses present in that shift.

Constraint (8) states that trip t is either not needed, or, in case it is needed,
must either be assigned to a bus plan or it must be explicitly become unassigned
at high cost.

Without any further constraints on the NNTt variables, the easiest solution
would be to set the value of all of these variables to 1 and all of the trip constraints
would be satisfied right away. Constraint (9) ensures that this cannot happen
for trips that are defined for stays assigned to the remote stands. It is also this
constraint that actually links the gate and bus model into one large model.

3 Solving the Problem

3.1 Assigning Stays to Gate Plans and Trips to Bus Plans

Observe that the above model determines for each group of gates and each
group of shifts an equal sized set of gate plans and bus plans respectively. To
approximate the optimal solution of the above ILP-formulation, we will first relax
the integrality constraints (10) and (11). After that we will solve the resulting
LP relaxation to optimality by making use of column generation.

The Pricing Problem. After each iteration of the column generation process,
we need to determine whether other columns exist that might improve the value
of the objective function, the so-called pricing problem. In our case we have to
solve two types of pricing problems, one for finding gate plans and one for finding
bus plans.

The pricing problem for the gate assignment part boils down to a set of
shortest path problems. For each gate type a we define a graph Ga, the nodes
of which are the stays that are allowed to be assigned to gate type a, and there
is an arc between each pair of stays (v, w) such that w can directly succeed v
on that gate, i.e., the difference between the arrival time T arr

w of stay w and the
departure time T dep

v is at least 20 minutes. Furthermore we add a source vertex
s with an arc to every node v and a sink t and an arc from every node to t. Now
every path in Ga corresponds to a feasible gate plan and vice versa. To be able
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to solve the pricing problem as a shortest path problem, we assign to each arc
leaving v a cost component equal to

−πv −
K∑

k=1

pvakψk −
T∑

t=1

ttvρt.

Moreover, for each arc (v, w) we add a cost component equal to the cost of the
idle time between v and w, which amounts to

cG(T arr
w − T dep

v ).

Here the dual multipliers πv for stay v and ψk for preference k follow from
Constraint (1) and Constraint (3) respectively. Moreover, ρt is the dual multiplier
of Constraint (9), which only applies to gate plans that are for remote stands
(because only then ri = 1). The last term which is due to the ‘coupling’ constraint
is the only difference with the pricing problem for the gate assignment problem.
Finally, we include the dual multiplier corresponding to Constraint (2), which is
constant, as the gate type is given.

We may assume that the stays are sorted by their arrival times, which implies
a topological order on the vertices of the graph. Because we now have a DAG
with a topological order it is possible to find the shortest path in O(|V | + |E|)
time.

The pricing problem with respect to the bus problem boils down to a similar
type of shortest path problem and is the same as the pricing problem for solving
only the bus planning problem separately (see Diepen [3]). The only difference
is that the size of the individual graphs is larger due to the increased number of
trips.

Because solving all of the pricing problems in each iteration may be rather
time consuming, we have tried out different strategies with respect to which of
the pricing problems we solve during each iteration. One possible approach is to
interleave the solving of the pricing problems; one iteration we solve the pricing
problems for the buses and the other iteration we solve the pricing problems for
the gates.

Although, after some initial tests we found that searching for both gate and
bus plans with negative reduced cost from the beginning on turned out to work
better than the other possibilities.

In [4] and [3], we generated a pool of additional columns that can be added to
the ILP and enable us to solve the ILP in a reasonable amount of time. For the
gate assignment problem we obtain these by removing from the current DAG a
stay that appears in the optimal gate plan, after which we resolve the shortest
path problem. We perform this step for every stay in the optimal solution of the
pricing problem. For bus planning we generate additional columns in the same
way. When solving the problems separately, the columns are added when we
start solving the ILP. However, when solving the integrated problem all addi-
tional columns with negative reduced cost are already added during the column
generation process.
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Improvements in Solving the LP. During our first experiments, it turned
out that the LP problem is very degenerate and tends to require a long solution
time. This degeneracy appears in two ways during the column generation process.
First, resolving the restricted master problem after new columns have been added
takes quite many iterations and second, new columns that are generated with
negative reduced cost do not improve the objective function after they have been
added to the restricted master problem.

We have applied two different approaches to improve the solving of the LP.
The first approach we used is column deletion and consists of the removal of
columns with too large positive reduced cost after every given number of iter-
ations. The effect of this removal is not only that the model is simplified and
some degeneracy is removed, but also that the resulting model is smaller and
therefore it can be solved more quickly. For solving the problems separately, this
approach showed promising results for decreasing the computation time.

The second approach we implemented is so-called stabilized column gen-
eration. This technique was introduced in du Merle et al. [5] and consists of a
combination of two techniques. One technique is the addition of extra perturba-
tion variables with a component in the cost function to the model. These extra
variables try to limit the values of the dual multipliers to within a certain box,
while still allowing the values to be outside of the box at a certain cost. This
cost when a dual variable is outside the box is linear in the size the value of the
variables violates the box. In the case of our combined model, we added such
slack and surplus variables to all our constraints.

In [5] multiple methods of updating the values for both the cost coefficients
δ− and δ+, as well as the bounds ε− and ε+ on the values of the surplus and
slack variables respectively are suggested. The way we decided to use after some
initial tests was to lower the bounds ε− and ε+ every ten iterations. For setting
the values of the cost coefficients δ− and δ+ we used the approach of setting
them to the values of the dual multipliers of the previous iteration.

Solving the ILP. After the LP is solved to optimality by means of column
generation, we are not finished yet because this solution might be fractional.
In case it is integral, we are finished since we have an integral solution that is
optimal. If we do not have an integral solution, we proceed as follows:

1. first we add all unique gate and bus plans that were generated as extra
columns while solving the pricing problems.

2. we then add all the unique variables that were taken out during the column
generation

3. we reinstate the integrality constraints (10) and (11).

Solving the resulting ILP turned out to be still quite difficult. In order to speed up
this solving, we added additional constraints to the problem. These constraints
act as a rounding-heuristic. For each stay and for each bus these additional
constraints were created in the following way:

1. Determine whether there exists a stay (trip) for which all of the selected gate
(bus) plans containing it are of the same type, meaning that in the fractional
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solution a stay or a bus trip is always assigned to one particular gate type
or one particular bus shift.

2. Create a constraint that ensures the stay or the trip has to be assigned to
that particular gate type or bus shift in an integral solution.

Although the above constraints might cause the optimal solution of our initial
ILP to be cut off, our experiments did not show any noticeable negative side
effects with respect to the cost of the integral solution compared to the optimal
fractional solution.

3.2 Assigning Gate and Bus Plans to the Actual Gates and Buses

After solving the ILP from the previous section, we have determined the set of
gate and bus plans that provide a (near) optimal solution. For each group of
gates and each group of shifts we have an equal size set of gate plans and bus
plans respectively. The one thing still left to do is to assign each gate plan and
each bus plan to each unique gate and bus respectively.

In case of the bus planning problem, this part is trivial since the buses within
one shift do not have any differences at all; it really does not matter to which of
these buses a particular bus plan is assigned to.

However, for the gate assignment problem it depends on the definition of the
gate types. If each single gate is a separate type, we already have an assignment
of stays to physical gates and this step is also trivial.

If we have grouped the gates with certain equal properties into types, the
individual gates within such a type still might be different on some other, less
important properties. These additional properties can be used for determining
to which physical gate a particular gate plan needs to be assigned.

Since the size of these problems is relatively small (in the order of 5 to 10
gates within one group) it is probably most effective to leave this up to the gate
planner to do this manually.

4 Experimental Results

For testing our model, we wrote a prototype in C++ and ran numerous exper-
iments. All experiments were ran on on Pentium 4 2.8 GHz computer equipped
with 1GB of RAM. The solver we used for solving all (I)LP problems is Cplex 9.1.3
via the Concert Technology interface.

AAS provided us with both data regarding the gate assignment problem,
which consisted of all stay information for three high-season (HS) days and
three low-season (LS) days and data regarding the bus planning problem with
all information regarding buses for one complete month.

From the supplied gate data we created two types of instances. In one type
of instances we aggregate all gates with identical properties (e.g. size, region,
ground handler, pier) into groups of gates. We refer to this type of instances
as Grouped Gates (GG). Furthermore, we constructed instances where every
gate is considered as a group with size one except for the platform gates. Recall
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Table 1. Sizes of the provided instances with regard to gates

Instance Gates Gate types Remote stands
Grouped 128 40 34
Single 128 94 34

Table 2. General LP results

Total time LP (s) Avg time (s)/iter
Instance Average Min Max Avg iter RMP Pricing
02-08-GG 1129.6 967.8 1472.0 161.67 2.8 3.9
02-08-SG 2070.1 1752.1 2657.7 171.90 4.8 6.8
03-08-GG 973.9 864.7 1213.2 148.27 2.6 3.7
03-08-SG 1847.4 1627.4 2337.8 163.07 4.4 6.5
04-08-GG 1142.6 1010.4 1641.3 157.50 3.2 4.0
04-08-SG 2575.2 2189.9 3970.3 212.77 4.6 7.2
15-03-GG 658.5 560.3 769.3 165.17 1.1 2.7
15-03-SG 1235.8 1094.6 1472.0 175.17 1.9 4.8
16-03-GG 710.0 623.8 850.4 161.90 1.3 2.8
16-03-SG 1383.4 1144.0 1661.5 175.87 2.5 5.0
17-03-GG 595.0 474.6 775.1 141.37 1.2 2.8
17-03-SG 1125.1 991.3 1422.4 151.70 2.2 4.9

that for these instances our algorithm directly assigns stays to physical gates.
We refer to this type of instances as Single Gates (SG). This disaggregation
results in over twice the number of gate types, as can be seen in Table 1. This
way we created 12 instances with regards to the gate and stay information. The
high-season instances contain about 600 stays and about 1000 arrival/departure
events for the bus planning. For the low-season instances these numbers are 500
and 900 respectively.

To avoid that our algorithm would get tailored to a small number of instances,
we created another set of instances by combining each of the 12 gate assignment
instances with the buses and shifts of all 30 of the bus planning problem in-
stances. These instances contain about 60 buses and about 20 types of shifts (of
which about 70 percent is long enough to contain a mandatory break). We may
expect the set of buses available at each given time of the day should roughly
be enough for driving all trips.

In Table 2 we present the general results with regards to solving the LP part
of the problem. We combined each instance of the gate assignment problem with
the 30 available instances of the bus planning problem and we present the average
time over these 30 instances needed for solving each combination, the minimum
time, and the maximum time. We also present the average number of iterations
needed to solve the LP relaxation and finally, we also present the average time
needed in each iteration of the column generation process to solve the pricing
problem and the time needed for resolving the Restricted Master Problem (RMP)
after we have added the columns found when solving the pricing problem.
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Table 3. Improvements with column deletion and stabilization

Improvement factor with respect to
Instance Avg. LP time Avg. iterations Avg. time RMP/iter
02-08-GG 8.80 5.20 3.11
02-08-SG 5.29 4.56 1.69
03-08-GG 10.58 5.53 4.31
03-08-SG 6.32 4.76 2.32
04-08-GG 19.49 5.54 7.34
04-08-SG 8.93 3.90 5.20
15-03-GG 3.01 2.87 1.91
15-03-SG 2.56 2.82 1.37
16-03-GG 5.30 5.33 1.54
16-03-SG 4.31 4.46 1.36
17-03-GG 8.75 6.61 2.58
17-03-SG 7.12 6.95 1.55

Our experiments indicate that the LP can be solved within a reasonable
amount of time. From Table 2 we can see that a significant amount of the time
needed for solving the LP-relaxation is spent in solving all the separate pric-
ing problems. Since all parts of the pricing problem that need to be solved can
be solved completely independent from each other, we could easily bring down
the influence of the pricing problems on the total time needed for solving the
LP-relaxation by making use of parallel programming.

To investigate the effect of the column deletion and the stabilized column gen-
eration, we also ran part of the instances without these enhancements. It could
be clearly seen that the time needed to solve the LP relaxation to optimality
explodes without the use of column deletion and stabilization. One part respon-
sible for this huge increase in time needed is the large increase in the average
time needed for solving one iteration of the RMP. This can be explained by the
fact that after a couple of iterations, the model quickly becomes very large due
to the fact that all columns stay in the model.

We have put the improvement factors in Table 3. It turns out that without
column deletion and stabilized column generation, the average number of itera-
tions needed to solve the LP-relaxation to optimality is higher than when both
are enabled, while the average time needed for solving the pricing problems is
lower. The increase in number of iterations needed is an example of the so-called
tailing-off effect. In the beginning there are big improvements in each iteration,
while more and more iterations are needed when closer by the optimum. Using
the stabilized column generation has a positive effect on this tailing-off effect, as
can be seen by the number of iterations needed.

It turns out that the combination of column deletion and stabilized column
generation are responsible for a huge improvement, in our experiments by a fac-
tor 2.5 up 19, in the time needed for solving the LP-relaxation to optimality with
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Table 4. General results ILP

Average additional constraints Average solving
Instance Flight constraints Trip constraints time ILP (s)
02-08-GG 121.4 57.6 43.5
02-08-SG 103.4 57.9 54.1
03-08-GG 117.8 57.1 42.0
03-08-SG 105.4 57.7 103.3
04-08-GG 119.3 57.2 82.7
04-08-SG 108.7 57.5 95.2
15-03-GG 108.9 58.4 86.5
15-03-SG 91.0 59.0 271.0
16-03-GG 107.0 59.1 45.8
16-03-SG 84.2 59.3 170.6
17-03-GG 118.5 59.9 20.6
17-03-SG 105.6 59.6 29.5

column generation. Interesting is the fact that the improvement seems larger
when the instances are larger (see HS versus LS).

The results for solving the ILP are given in Table 4. The table shows that we
were able to solve the very large ILP within a few minutes. In our experiments
the integrality gap turned out to be very small.

As mentioned in Section 3 we added additional constraints to the model before
solving the actual ILP. These additional constraints can be considered as a kind
of rounding-heuristic in the way that if in the optimal solution for the LP-
relaxation a stay is always assigned to a certain type of gate in all selected gate
plans, we add a constraint that enforces the stay to be assigned to a gate plan
of that type.

The average number of constraints that were added for stays as well as for
buses is shown in Table 4. These constraints result in ILP models that are a lot
smaller and hence in a much smaller solution time. From our experiments we
found that the additional constraints did not have a significant impact on the
value of the final ILP solution and did not result in infeasibility of the ILP.

One other way to speed up the process of solving the ILP we used is to first
only solve the root node relaxation. We then add a so called cut up limit to the
model that is 0.5% above the value of the root node. This cut up limit acts for the
ILP solver as if an integral solution with that particular value has already been
found, meaning that any node with a relaxation value greater than this cut up
value is automatically pruned. Strictly speaking this might result in infeasibility
of the ILP (when the optimal ILP solution exceeds the threshold), but this never
occurred in our experiments.

Furthermore, when looking at the time needed for solving the various final
ILP models, we can see that these times are still within very acceptable ranges,
also for the Single Gate Problems. This indicates that it is feasible to assign
stays and trip directly to physical gates and buses respectively.
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5 Conclusion and Further Research

We have investigated the combination of two assignment problems that in prac-
tice are solved in a sequential fashion. We formulated the combined problem in
one large model for which we approximate the optimal solution by means of an
approach based on column generation.

We implemented our algorithm and tested it with instances based on real-
life data provided by AAS. The results show that our approach is capable of
solving these instances within acceptable time, especially given the fact that
this approach solves two problems within about the same time that currently
is available at AAS for the computer to present a solution for only the gate
assignment problem.

We also showed that our approach is still capable of solving the instances
within acceptable running times if we create a single gate type for each separate
gate, except for the remote stands. This different model leads to over twice the
number of gate types which significantly increased the size of the instances.

We are currently performing a simulation study of the platform buses, to
evaluate the robustness of the column generation planning compared to a kind
of first-come-first-served method as used at AAS. We can clearly see that the
column generation schedule is more smooth, in the sense that the idle time
is spread more evenly. Currently, the gate assignment at AAS needs a lot of
replanning during the day of operation. However, comparing the quality of our
resulting schedules to the actual schedules in use at AAS is difficult for a variety
of reasons, the main one being the fact it is not possible to retrieve the schedule
we would like to compare to, namely the initial schedule as produced by the
computer for the upcoming day.

An interesting possibility of further investigation is to start looking at a more
operational type of planning. It would be interesting to see how our suggested
approach performs if we do not let it create a schedule from scratch but we
supply it with a schedule and some disturbances and let the program try to
resolve this updated problem.

One of the main things that would have to be considered for this approach is
the fact that any new solution should not deviate too much from the currently
existing solution. So when solving the problems after some parts are fixed (since
they already happened) and other events have changed properties (e.g. earlier or
later Estimated Time of Arrivals and Departures) the cost function would not
only have to consider the robustness of the schedule, but also the similarity to
the original-day-ahead schedule, since too many changes in a schedule will result
in a lot of confusion for the different parties dependent on the schedule.
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Abstract. The propagation of delays between trains has a consider-
able impact on railway operations. Ideally, planners would like to create
timetables that avoid such propagation as much as possible. To improve
existing timetables, tools for automatic detection of systematic depen-
dencies of delays among trains would be of great aid. We present efficient
algorithms to detect two of the most important types of dependencies,
namely dependencies due to resource conflicts and due to maintained
connections. We give experimental results on real-world data that demon-
strate the practical applicability of our algorithms.

1 Problem Statement

During operations, it is unavoidable that trains get delayed. Reasons for delays
are manifold: customers blocking doors, train connections, scarce track capac-
ities, weather, technical problems, etc. From a planner’s point of view, some
causes for delay just have to be accepted, such as customer behavior, and some
have to be dealt with in disruption management, such as power failure due to
catastrophic weather conditions. There are, however, also systematic dependen-
cies between the delays of trains, which are inherent to the timetable and can
be influenced by careful planning. In this paper, we present algorithmic meth-
ods to efficiently detect such dependencies in large-scale, real-world railway delay
data. The goal is to support planners in improving timetables by providing them
with a list of potentially systematic delay dependencies of the current timetable.
These dependencies can then be more closely examined by appropriate statistical
methods in a following step. Finally, planners may be able to remove or weaken
those dependencies by means of small, local modifications to the timetable.

At Schweizerische Bundesbahnen (SBB), delay data are measured by the in-
terlocking system throughout the whole Swiss railway network and recorded on
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a less detailed level comprising about 2300 operating points. These data de-
scribe the arrival and departure times of each train for every operating point
along its route for every day the train drove. There are, however, no data on the
dependencies between delays of different trains.

Delays are usually classified into primary and secondary delays. Primary de-
lays “occur” at some point in the network, e.g., due to doors blocked by cus-
tomers, technical problems, or accidents. Secondary delays (also called knock-on
delays) are the consequences of primary or secondary delays on other trains. For
example, a punctual train may accumulate a secondary delay because it waits
for a delayed train to maintain a connection. Another example is a pair of trains
that need to leave a station via the same track segment in a fixed order, where
the first train leaving the station is late, forcing the second train to wait until
the track segment is free. If the delay of one specific train causes a secondary
delay of another on a regular basis, e.g., on at least 25% of the days, we speak
of a systematic dependency between the delays.

In this paper, we suggest models that, given certain parameters, describe
the patterns underlying the most important types of dependencies. We present
algorithms that efficiently find systematic dependencies in large-scale railway
delay data. If a train depends on the delays of several other trains, the most
significant dependency for the delay of each day can be identified by our methods.
Our approach does not rely on any assumption on the statistical distribution of
the data. We show results of our method on real-world data.

The paper is organized as follows. In Section 2, we give a brief summary
of related work. Section 3 introduces the models of dependencies along with
the algorithms to detect them. We show how the delays of a single train can
be explained by several dependencies in Section 4. In Section 5, we suggest
modifications of the algorithms to account for errors in the data or exceptions
to the model. Finally, we present results of our experiments in Section 6, and
give a conclusion and outlook in Section 7.

2 Related Work

In her PhD thesis [1], Conte examines several approaches to identify dependen-
cies among delays. Arrival and departure delays of trains are associated with
random variables. Assuming a multivariate normal distribution, the Tri-graph
method [10] is applied to construct a graph whose nodes represent the random
variables. In such a graph, edges are included on the basis of non-zero (partial)
correlation coefficients, hence missing edges represent conditional independence.
Conte and Schöbel [2] suggest to use the constructed Tri-graph in combination
with linear regression to generate so called virtual constraints for the delay man-
agement problem. For the latter, refer to, e.g., [5,9].

In this paper, we present an algorithmic approach that makes no assump-
tions about the distribution of delays. Furthermore, we give real-world examples
of dependencies that have very low correlation coefficients, and yet are impor-
tant. In contrast to the network-wide approach suggested by Conte, however, we
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are currently detecting dependencies only within a station. Further, our goal is
to support planners in improving timetables, rather than making robust delay
management decisions during operations.

The problem of distinguishing between primary and secondary delays is not
only of interest for timetabling, but also for determining fines due to perfor-
mance contracts between governments and train operating companies. Daamen,
Goverde and Hansen [3] developed a prototype software to register secondary
delays due to conflicts on track sections. Their approach requires detailed delay
data at the level of signals and track segments. Further, the approach requires
dispatchers to identify incidents leading to primary delay. Secondary delays due
to waiting for a connection could also be implemented in the prototype given
that scheduled connection times are provided.

In contrast, our approach aims at finding systematic dependencies in the
timetable rather than precisely ascribing particular delays to train operators.
Our approach works with less detailed data on the level of operating points,
requires no incidence records, and recognizes both types of delay dependencies.

For on overview of other delay propagation models, refer to [1,4].

3 Models and Algorithms

Two important types of dependencies between delays of different trains are wait-
ing and blocking. In this section, we formally characterize such dependencies be-
tween a train that is originally delayed, called the delayer, and the train to which
the delay propagates, called the victim. To be more precise, when we speak of
a delayed train, we actually mean that some event, i.e., the arrival or departure
of a train at a specific station, occurs later than scheduled.

In the following, we denote by x the delayer and by y the victim train, and by
xd and yd the delay on day d of an event of the (potential) delayer and victim
trains, respectively.

3.1 Waiting Dependency

A waiting dependency is given if a train waits for another one to maintain a
connection. Hence, the delay of the arrival event of the feeder train may propa-
gate to the departure event of the connecting train at a specific station. In order
to find such dependencies in the data, we first formulate an idealized model of
a waiting dependency. We remark that models of this kind are already known,
e.g., see [6]. Based on this model, we provide an algorithm that finds waiting
dependencies in the data.

Ignoring for a moment that the victim may depend on more than one delayer
and may also suffer from other sources of delay, we can model an idealized waiting
dependency as follows. First, there usually is some buffer time s up to which the
feeder train may be delayed without affecting the connecting train. If the feeder
train is delayed by more than s, the connecting train will wait to maintain the
connection, but only up to a maximal waiting time w, i.e., a maximal delay
e = s + w of the feeder. Denoting by xd the delay of the feeder train on day
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Fig. 1. (a) Idealized waiting dependency of the delay of a connecting train y on the
delay of a feeder train x within the interval [s, e]. The maximum waiting time is w =
e−s. (b) Hypothetical example data, where each point pd = (xd, yd) corresponds to the
observed delays on day d. The interval [s, e] = [xi −yi, xj ] is the solution of Problem 2,
i.e., it maximizes the number of points |S| above the shaded triangle, subject to the
condition that no point may lie within the triangle.

d, and by ỹd the (idealized) corresponding delay of the connecting train, the
waiting dependency can be formulated as

ỹd = f(xd, s, e) =

{
xd − s s ≤ xd ≤ e

0 otherwise,
(1)

as shown in Figure 1(a). The parameters s and e may vary depending on the
station and the specific pair of trains involved in the scheduled connection. We
remark that planned values for these parameters could be obtained in princi-
ple. Unfortunately, it may turn out that during operations, the actual parame-
ters differ from the planned ones. We therefore have to assume that the actual
parameters are unknown.

In practice, of course, one victim may depend on several delayers, and further-
more, there may be other sources of delay which we cannot explain. Therefore,
f(xd, s, e) can only be a lower bound on the actual victim’s delay within the in-
terval [s, e]. As we are interested in systematic dependencies, we want to find an
interval [s, e] containing a maximum number of points pd := (xd, yd), for which
f(xd, s, e) is a lower bound on the delay yd of the victim. Formally, given the
delay data xd and yd for a set of days d ∈ D for potential delayer x and victim
y, respectively, we get the following problem:

max
s,e

|S| (2)

S = {(xd, yd) | s ≤ xd ≤ e, yd ≥ xd − s}
∅ = {(xd, yd) | s ≤ xd ≤ e, yd < xd − s}

Geometrically, we are looking for a rectangular triangle with a maximum number
of points above it but none within. An example is given in Figure 1(b).
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This problem is solved by Algorithm 1, which sweeps through the points in
non-decreasing order of the x-coordinate, i.e., the delay of the incoming train.

Algorithm 1. Detect Waiting Dependency
Input: Delays pd = (xd, yd) of delayer x and victim y on days d ∈ {1, . . . , n}.
Sort data according to non-decreasing xi, breaking ties according to1

non-increasing yi ;
pn+1 ← (∞, 0) ; // sentinel2

for i ← 1 to n + 1 do3

si ← xi − yi ; // calculate intercepts4

end5

k, k∗ ← 0 ; // number of points in current / best solution6

s ← s1; s∗ ← 0 ; // start of current / best solution7


 ← 1 ; // index of last point in current solution8

for i ← 1 to n + 1 do9

if si > s then10

// cannot extend current solution to pi

if k > k∗ then11

// update best solution

k∗ ← k;12

s∗ ← s;13

e∗ ← xi−1;14

end15

// initialize new solution

s ← si;16

// find first point in new interval

while x� < s do17


 ← 
 + 1;18

end19

k ← i − 
 + 1 ;20

else21

k ← k + 1 ;22

end23

end24

Output: Number of points k∗ in optimal interval [s∗, e∗]

Theorem 1. Algorithm 1 computes a solution to Problem (2) in time O(n log n).

Proof. Every point pi = (xi, yi) defines an interval [si, ei] and a corresponding
set of points S as follows: The interval starts at the intercept of the 45 degree
line through pi with the x-axis, namely at si := xi − yi. The interval ends at
ei = xj , the x-coordinate of the rightmost point pj of the sequence of points
above the line, i.e., for all pk, k ∈ {i, . . . , j} it holds that yk ≥ xk − si.

Notice that in order to maximize |S| it suffices to examine only those in-
tervals [si, ei] which are defined by the points pi, i ∈ {1, . . . , n}: In any optimal
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solution there exists one point p∗i ∈ S∗ with maximal intercept s∗i . Hence, the
start of the optimal interval s∗ must be greater or equal to s∗i , for otherwise p∗i
would not be in S∗. So setting s∗ = s∗i is feasible for all points in S∗, as well
as setting the end of the interval e∗ = x∗

j , with p∗j being the rightmost point
of S∗.

The algorithm sweeps through all points in the order defined on Line 1. Main-
taining s as the starting point of the current interval, it maximally extents the
interval until the first point below the 45 degree line is met, i.e., the condition
on Line 10 is violated. The intervals corresponding to the points above the 45
degree line need not be considered, since they either are infeasible or contain
only a subset of the points of the current interval.

Clearly, sorting takes O(n log n) time, and the rest of the algorithm runs in
time O(n). ��

To detect all waiting dependencies in the data, Algorithm 1 is run on data of
pairs of trains that are scheduled to meet at station within a reasonable time
difference, say, up to 15 minutes. Depending on the number of days recorded in
the data, we define a minimum number of days that must be in S∗ in order to
call a dependency systematic. For the points in S∗ of a systematic dependency,
we say that the delay of the victim is explained by the dependency, meaning
that the delay of the delayer minus the buffer time s∗ is a lower bound on the
delay of the victim on the days corresponding to the points in S∗.

3.2 Blocking Dependency

If two trains have to use the same infrastructure element, such as a track segment
or a platform, then a blocking dependency may exist, since one of them must
pass that element first. This dependency can occur between any combination of
arrival and departure events, as exemplified in Figure 2.

For reasons of operational safety, a certain headway time must be respected
between two consecutive trains accessing the same infrastructure element. If we
depict the delay data of two blocking trains as in Figure 3, one can identify a 45
degree line representing all the hypothetical arrival/departure times that would
lead to a crash of the two trains. In our model of a blocking dependency, we
assume that the headway times are always respected. Hence, there is a stripe
around the 45 degree line in which no points may lie. The stripe also partitions

dep1

dep2

d1

d2

(a)

dep1

arr2

d1

d2

(b)

Fig. 2. Examples for conflicting trains, driving (a) in the same direction and (b) in
opposite directions. From their arrival/departure location, they have to travel distances
d1 and d2 to their first point of conflict.
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Fig. 3. Example of a blocking relationship between two trains departing in the same
direction. The axes denote the delay of the respective train. The intersect c defines
a 45 degree line (dotted) on which each point would represent a crash scenario, so
c = (dep2 + d2) − (dep1 + d1), where depi is the planned departure time of the event
and di the driving time to the conflict point of train i. Around this line, a stripe (solid
lines) represents the headway time that has to be respected, ensuring a safety distance
between the trains. Every point above the stripe represents a situation where train x
precedes train y, and vice versa for points below the stripe.

the points according to the precedence of the trains. In some cases, such as in
Figure 2(b), it may practically not be possible to switch the order of trains, even
in case of large delays, such that one region is empty. If the order of trains is
fixed, a blocking dependency would also be found by Algorithm 1. We remark
that the order of trains on the conflicting track segment is not obvious from the
data, since delays are not given at the level of track segments but at the more
aggregated level of operating points. Therefore, data about the exact routes of
the trains is not available.

As in the case of waiting dependencies, we are searching for a subset of points
for which a function of the delay of the delayer is a lower bound on the delay
of the victim. Hence, we are interested in all points above the stripe. Formally,
given the delay data xd and yd for a set of days d ∈ D for potential delayer x
and victim y, respectively, we get the following problem:

max
s,e

|S| (3)

S = {(xd, yd) | xd ≥ s, yd ≥ xd − s}
∅ = {(xd, yd) | xd − e < yd < xd − s}

A subtlety of blocking dependencies is that there may be an interval in which
there are points both above and below the stripe. Therefore, the lower bound
on the delay of the victim is defined for a subset S of points, rather than for all
points falling in an interval. Algorithm 2 solves Problem (3) using a sweep-line
approach:
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Algorithm 2. Detect Blocking Dependency
Input: Delays pd = (xd, yd) of delayer x and victim y on days d ∈ {1, . . . , n}.

Minimum width of stripe w > 0.
Sort data according to non-decreasing xi;1

pn+1 ← (∞, 0) ; // sentinel2

for i ← 1 to n + 1 do3

si ← xi − yi ; // calculate intercepts4

end5

c ← array of non-descending sorted {s1, . . . , sn+1};6

k, k∗ ← 0 ; // number of points in current / best solution7

s, s∗ ← 0 ; // left intercept of current solution8

r, r∗ ← 0 ; // right intercept of current solution9


 ← 1 ; // index of first point above stripe10

for j ← 2 to n + 1 do11

s ← c[j − 1] ;12

e ← c[j] ;13

if e − s ≥ w then14

while x� < s do15


 ← 
 + 1 ; // first point above stripe16

end17

k ← j − 
 ; // number of points above stripe18

if k > k∗ then19

// update best solution

k∗ ← k;20

s∗ ← s;21

e∗ ← e;22

end23

end24

end25

Output: Number of points k∗ above the optimal stripe defined by s∗ and e∗.

Theorem 2. Algorithm 2 computes a solution to Problem (3) in time O(n log n).

Proof. Every point pi = (xi, yi) defines a 45 degree line through the intercept
(si, 0) and itself. W.l.o.g., we consider only those stripes whose left and right
intercepts are defined by consecutive intercepts of the points (and hence, there
are no points in the stripe). The condition on Line 14 ensures that only stripes
respecting the minimum width w > 0 are considered. When k is computed on
Line 18, it holds that e > s and that the n−j +1 points below the stripe defined
by s and e all have an intercept greater or equal to e. Thus, k is computed
correctly, and the algorithm computes a solution to Problem (3).

Clearly, sorting takes O(n log n) time, and the rest of the algorithm runs in
time O(n). ��

As for the waiting dependency, we consider only those dependencies to be sys-
tematic which hold on at least the minimum number of days required. To account
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for reasonable headway times, we further require an appropriate minimum width
of the stripes. The detection of pathological cases can be prevented by com-
puting reasonable bounds on the location of the center of the stripe from the
timetable.

4 Multiple Dependencies

It is straightforward to generalize the lower bound obtained from a single de-
pendency to the case where a train is the victim of several dependencies. In
the following, we assume that for a victim train several such dependencies have
been found. Thus, we may get several lower bounds on the delay of the victim
on a particular day, namely from those dependencies that can explain it on that
day. We make the usual assumption that the victim is delayed by the worst
cause, i.e., the delayer providing the maximum lower bound for the victim’s
delay.

Formally, we are given a train y that is the victim of k dependencies with
delayers xi, i ∈ {1, . . . , k}. Generalizing from the lower bound for the victim’s
delay from above, we observe that for each day d

g
(
f1(x1

d), . . . , fk(xk
d)

)
= max

{
f1(x1

d), . . . , fk(xk
d)

}
(4)

is a lower bound on the victim’s delay yd, where fi is the function of the cor-
responding waiting or blocking dependency with delayer xi. For a given day d,
we call the delayer xi which assumes the maximum in g

(
f1(x1

d), . . . , fk(xk
d)

)
the best explanation for yd. Note that for a given day d, there may be no
delayer explaining yd, yielding only a trivial lower bound as the best
explanation.

To visualize the quality of a certain multiple dependency, we plot the victim’s
delays against the best explanations, see Figures 6, 7, and 8.

5 Extensions

The recorded delay data are subject to inaccuracies, because the measurements
on the tracks are aggregated to the level of operating points. SBB requires from
their systems that such errors in the data be less than 20 seconds. Furthermore, it
may well be the case that on a few days, the operational waiting rule described by
Model (1) is violated. Such exceptions are unavoidable during operations. They
may be caused by human mistake or as an intentional reaction to an exceptional
situation.

For these reasons, there may be points pi in the data that one would like to
ignore, because otherwise, they may prevent a dependency from being detected.
A similar problem in statistics is known as the least trimmed squares estimator
for linear regression as surveyed in [7], where one seeks to find a subset of points
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minimizing the squared residuals for that subset. In our case, however, we are
restricted to subsets corresponding to intervals, and have a fixed slope for the
line we would like to “fix”.

Exceptional points may prevent Algorithm 1 from detecting a dependency
completely or worsen the resulting lower bounds (by increasing s). It is possible
to extend the algorithms to allow for a maximal number r of allowed excep-
tional points. Clearly, practical values of r are very small. In the case of waiting
dependencies, we want to solve the problem

max
s,e

|S| (5)

S = {(xd, yd) | s ≤ xd ≤ e, yd ≥ f(xd, s, e)}
r ≥ | {(xd, yd) | s ≤ xd ≤ e, yd < f(xd, s, e)} |

We sketch the necessary modifications of Algorithm 1 in order to solve Prob-
lem (5): We introduce a variable r that keeps track of the number of exceptional
points in the current solution’s interval [s, e]. Further, we keep a priority queue
of these r points ordering them by their intersects si. We need the queue be-
cause points will leave the solution in the order of their intersects, whereas they
enter the solution in the order of their x-coordinate. Now, we modify the crite-
rion in Line 10, such that a solution is only extended if less than r exceptional
points are in the current solution. If the solution is extended and the current
point is exceptional, we add it to the priority queue. If the solution is not ex-
tended, i.e., there are already r exceptional points in the current solution, we
remove the point pl with smallest intercept sl from the queue and increase s
to sl.

During execution of the algorithm, no more than r < n points are in the
priority queue, and each point may only be inserted and removed once, at a cost
of O(log r). Hence, Problem 5 can still be solved in time O(n log n).

6 Experiments

In this section, we present some of the dependencies which can be found in real-
world data. The data comprised several important operating points of the SBB
network during two months of the 2008 timetable. We required a minimum num-
ber of 15 explained days, a minimum interval width of 90 seconds for waiting
dependencies, as well as a minimum interval width of 120 seconds for blocking
dependencies. The following plots were created with R [8], as well as the cor-
relation statistics (based on Pearson’s product moment correlation coefficient).
Some of the examples presented here were specifically selected to demonstrate
that there are important dependencies which are hard to detect by means of
correlation. Even if only the explained points, i.e., those which lie in the interval
of a waiting dependency, are taken into account, the correlation of those delays
can be very low, see Figure 4(b).
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Fig. 4. Two examples of waiting dependencies in Basel. (a) The correlation between
arrival and departure over all days is as low as 0.1602 (with a p-value of 0.2215). In the
explained interval (between the dashed lines), the correlation is 0.9513 (p-value 3.652e-
11). (b) In this example, the correlation over all days is 0.2151 (p-value 0.0959), higher
than the correlation over the explained interval, which is 0.0998 (p-value 0.6845).
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Fig. 5. Examples of blocking dependencies. (a) Two departures in Bern, blocking each
other; the correlation is 0.3969 (p-value 0.0015). (b) Blocking dependency in Basel,
with correlation 0.2040 (p-value 0.1147).
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Fig. 6. Multiple dependency of a victim train T with delayers A, B, and C. (a) A
blocking T on 34 explained days. (b) Waiting dependency with B, 17 days explained.
(c) C blocking T on 16 days. (d) The arrival and departure delays of T have no obvious
pattern. (e) Best explanation by delayers. A (circles), B (filled squares), and C (hollow
squares) are the best explanation on 65.8%, 23.7%, and 10.5% of the explained days,
respectively.

The dependencies in Figures 4 and 5 are single waiting or blocking depen-
dencies for different victims. Multiple dependencies are given in Figures 6, 7,
and 8, each showing a victim for which several dependencies could be found.
We included a plot of the victim’s own arrival delay, where available, and plots
showing the best explanation for its delay upon departure for each day.

Notice that in the examples of Figures 6 and 7, arrival and departure delays
of the victim do not follow an obvious pattern. Looking at the best explanation
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Fig. 7. Multiple dependency of a victim train T with waiting dependencies only.
(a),(b) Waiting dependencies with trains A, B, on 17 days, each. (c) The arrival and
departure delays of T have no obvious pattern. (d) Best explanation by delayers. A
(circles) and B (filled squares) are the best explanation on 60.8% and 39.2% of the
explained days, respectively.

plot, however, there is an almost linear dependency of the departure delay of the
victim on the respective best delayer. Notice that a perfect explanation would
have all points on a 45 degree line through the origin.
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Fig. 8. Multiple dependency of a train T on three trains at the first station of T ’s trip,
for which no arrival delay is available in the data. (a),(b),(c) Waiting dependencies with
trains A, B, and C, explaining 20, 38, and 35 days, respectively. (d) Best explanation:
A (circles), B (filled squares), and C (hollow squares) are the best explanation on
15.2%, 54.3%, and 30.4% of the explained days, respectively.

7 Conclusion

The results of our experiments are very encouraging. We analyzed real-world
delay data from SBB. Using the approach presented in this paper, we were
able to find dependencies which have significant impact on daily operations.
Allowing for exceptional points as described in Section 5 turned out to be helpful.
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We implemented a prototype that is connected to the SBB database, enabling
planners to search for dependencies at all operating points of the Swiss railway
network.

Our approach is useful to quickly find candidate dependencies from large real-
world data sets that provide lower bounds on the delay of trains. In a second
step, a statistical examination of the dependencies could be useful to assess their
significance, especially in the presence of exceptional data points. It would be
interesting to collect additional data that allows the distinction between primary
and secondary delay, and to compare these with the dependencies found by our
algorithms.

A third step would be the extension of our approach to global dependencies,
i.e., to trace back the propagation of delays along the route of trains, possibly
yielding a network of delay propagations. Ideally, it would be possible to estimate
the effect of a small local change of the timetable, say, by adding a small buffer
time, on a network of delay propagations.
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Abstract. Railway rescheduling is the task of restoring feasibility in
case of disturbances and limiting the propagation of delays through a
railway network. This task becomes more difficult when dealing with
complex interlocking areas, since operational rules constrain the pas-
sage of trains through short track sections. This paper presents a de-
tailed microscopic representation of the railway network that is able to
tackle the complexity of a station area with multiple conflicting routes
and high service frequency. Two alternative graph formulations are pre-
sented to model the incompatibility between routes: one based on track
sections and another based on the aggregation of track sections into sta-
tion routes. An extensive computational study gives useful information
on the performance of the two formulations for different disturbance
scenarios.

Keywords: Train Rescheduling, Alternative Graph, Incompatibility
Graph.

1 Introduction

Railway traffic is usually operated according to an existing plan of operations
(off-line timetabling) that specifies train departure and arrival times at sta-
tion platforms and other relevant points on the network where trains interact,
e.g. at the merging and crossing points of lines and routes. During operations,
disturbances cause deviations from the original plan which therefore has to be
adjusted to resolve route and timetable conflicts as quickly as possible (real-time
dispatching).

The real-time process needs accurate modeling of the evolution of train traffic
and propagation of delays, starting from an initial disturbed status of the net-
work, with the aim to compute new scheduling plans that should result in feasible
train movements. In this context, high density of traffic, severe disturbances, and
complex interlocking areas, are factors causing multiple interrelations between
train services and increasing the complexity to predict the traffic flow in the net-
work. At present, there is no advanced decision support tool available to traffic
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controllers who thus have to rely solely on their experience and rules-of-thumb
to deal with real-time disturbances. The complexity, time constraint, and lim-
ited decision support often leads to sub-optimal dispatching solutions. For these
reasons, there is a need for Conflict Detection and Resolution (CDR) systems
that are able to (i) model running and headway times using the signaling and
safety systems in use, (ii) forecast the delay propagation in a large network, and
(iii) propose good dispatching measures in a short time.

The recent literature related to advanced CDR systems can be classified ac-
cording to two levels of approximation. Macroscopic models represent the railway
network as a simplified series of links connecting stations. A fixed running time
is used for train runs between two stations, and a fixed headway time is im-
posed between consecutive trains on the same link or at stations. These models
are usually adopted in the planning stage for designing plan intentions or draft
timetables, in order to keep complexity manageable. On the other hand, mi-
croscopic models use detailed infrastructure and rolling stock characteristics to
simulate accurately individual speed profiles and running times taking into ac-
count the dynamic constraints of the signaling systems. The latter approach is
required when dealing with real-time dispatching of train operations.

For the Dutch railways, DONS is a macroscopic timetable design tool con-
sisting of a user interface and two main computation modules. The network
scheduler module, CADANS [1], computes a feasible periodic network timetable,
based on periodic interval constraints on e.g. running, dwell, transfer, and head-
way times, while neglecting capacity constraints at (large) stations that are con-
sidered black boxes. If the problem instance is infeasible CADANS returns a
minimal set of conflicting constraints that has to be relaxed by the user before
a feasible solution can be found. The other module, STATIONS (see e.g. [2]),
computes feasible routes in station areas given the arrival and departure times
computed by CADANS and train preferences for platforms. For each train a set
of possible routes is derived including the blocking time for each track section on
the route given the fixed platform arrival and departure times, train characteris-
tics, and interlocking constraints (e.g. sectional-release route locking). From this,
conflicting train/route pairs are derived with overlapping infrastructure claims,
which results in a conflict graph where each node represents a train/route pair
and edges connect nodes associated with conflicting routes or with the same
train (each train is assigned to only one route). In this formulation, a complete
set of compatible routes translates into a node packing problem, i.e., find a max-
imum set of nodes in the conflict graph such that no edge connects two nodes. A
branch and cut algorithm has been implemented that computes a solution with
an average computation time of one minute per station. Solving a larger station
like Utrecht takes a few minutes [2].

Caimi et al. [3] also consider the problem of routing trains with a given
timetable through a station using the conflict graph. The problem is modeled
as an independent set problem over the conflict graph, which is solved by a
fixed-point iteration heuristic. The fixed-point iteration algorithm finds feasible
routings within seconds or minutes depending on the traffic density, although the
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algorithm also failed for particular dense instances [4]. Moreover, Caimi et al. [3]
describe a local search algorithm to find an improved routing with increased
buffer times between the most tight train paths. However, this optimization is
much more time consuming (hours). Fuchsberger [4] describes two extensions of
the conflict graph: the tree conflict graph and the resource tree conflict graph.
In these graphs, all train routes are given by a list of route nodes in the sta-
tion network topology with associated blocking time intervals. For each train,
all routes are combined in a directed (routing) tree with a common entrance
point as root. A conflict occurs when two train routes of distinct trains would
block a resource at the same time. In the tree conflict graph, these conflicts are
modeled by adding a conflict edge between the associated route nodes in both
routing trees. In the resource tree conflict graph, groups of conflicting inter-
vals for all trains simultaneously are modeled. Instead of conflict edges between
pairs of trains as in the tree conflict graph, resource vertices are added to the
graph which are connected to all associated nodes with overlapping intervals.
The big advantage of the (resource) tree conflict graphs is that the conflicting
route nodes are identified explicitly together with all routes branching from this
node. A feasible routing is now obtained by finding directed paths from each root
node of the trees to one of the leafs such that the directed paths are not inter-
connected by a conflict edge or conflict group, respectively. This problem can be
formulated as a multi-commodity flow problem. Experiments by Fuchsberger [4]
showed that the tree conflict graph model can be solved faster than the conflict
graph model, however the construction time of the tree conflict graph is much
higher than that of the conflict graph, so that overall the computation time may
still take minutes. In contrast, constructing and solving the resource tree conflict
graph model took only up to a few seconds for the same test instances.

Caimi et al. [5] solve the joint scheduling and routing problem in large station
areas using a time discretization and a conflict graph, where a scheduling solu-
tion is represented by an independent set over the conflict graph. Multiple routes
are considered for each train in order to find route sets that have some degree of
robustness against delays. The running time of a train is assumed the same for all
possible routes as a result of the time discretization. The fixed point iteration al-
gorithm of Caimi et al. [3] was adjusted to incorporate the timetabling problem.
Together with a heuristic to reduce the number of routings, the approach is able
to generate timetables with feasible routings for large stations and dense traffic
in less than a minute. The model must be combined with another timetabling
problem in the so-called compensation zones between the main stations (or con-
densation zones) and a coordination procedure that sets the passing times and
tracks at the portals between the compensation and condensation zones. A global
feasible timetable is obtained by solving the local timetabling problems in the
compensation and condensation zones with matching boundary conditions at
the portals.

Rodriguez [6] uses a job shop scheduling model with state resource constraints
in order to detect and solve train conflicts in a short computation time. Syn-
chronization constraints are formulated to keep trains running with sufficient
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headway distances, even in case of yellow or red signal aspects. Constraint
programming is adopted to dispatch trains in a station area with up to 12
trains.

D’Ariano et al. [7] propose an alternative graph model of the train scheduling
problem to compute optimal train orders. A detailed problem formulation is
presented that considers the route of each train running in stations and corridors
as a set of consecutive block sections. Each train reserves one block section at a
time. The problem is solved by a branch and bound algorithm truncated after
a given time of computation. Results on a Dutch railway area and a two-hour
timetable with 108 trains are reported to assess the effectiveness of the proposed
approach. The branch and bound algorithm outperforms simple dispatching rules
within a few seconds of computation.

Most of the previous work on train rescheduling investigated simplified railway
networks and an implicit representation of route incompatibilities in large station
interlocking areas, while this is a challenging issue when dealing with multiple
interactions between inbound and outbound routes [8].

This paper presents microscopic representations of railway networks to tackle
the complexity of busy station areas with multiple conflicting routes and high
service frequencies. The next section describes basic terminology and the con-
flict detection and resolution problem. Section 3 presents two formulations to
model the incompatibility between station routes: one based on track sections
and another based on the aggregation of track sections into station routes.
Section 4 describes briefly the algorithms used to solve the CDR problem in
complex interlocking areas. Section 5 reports the computational results for the
two formulations in terms of delay minimization and computation time. The last
section discusses the main achievements and gives further research directions.

2 Basic Terminology and Problem Formulation

A railway network can be partitioned into interlocking areas and open tracks.
Open tracks are railway lines without diverging or converging tracks. In modern
railways safe operation on open tracks is guaranteed by automatic block systems.
In fixed block systems a safe separation distance between successive trains is
obtained by dividing the open track into block sections which may occupy at
most one train at a time. A train is only allowed to enter a block section after
the train ahead has completely left the block. Blocks are protected by block
signals that can show stop (red) or proceed (green) aspects. Figure 1 shows a
typical speed profile of a train facing a red signal aspect while traversing a line
with five signals. The first signal aspect is green, which enables the train to
traverse the subsequent block section at its scheduled speed SS. The aspect of
the second signal is yellow, therefore the train decreases its speed to a prescribed
approaching speed AS until the next signal aspect, which happens to be red. The
train must stop until the signal aspect turns to yellow, and when this happens it
increases its speed up to AS. When arriving at the sight distance from the next
signal, it can accelerate up to SS if the fourth signal aspect is green.
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Fig. 1. Three aspects Dutch signaling system

The minimal separation time between two successive trains is thus given by a
sight and reaction time of the block signal, the running time over the block, the
clearing time until the entire train has left the block, and a switching time until
the block signal is released. However, a train must be warned for a red signal over
at least the braking distance before the signal which generally exceeds the sight-
ing distance. In three-aspect signaling the block signals can also show warning
aspects (yellow) indicating that the next signal shows red and a braking action is
required to be able to stop in front of the next (red) signal. Hence, the minimal
train separation distance for successive unhindered train movements is two free
blocks. The associated blocking time is the minimum signal headway time for
unhindered following consisting of the above mentioned time components and
the approaching time from the approach signal (previous block signal) to the
block signal. Block signals operate automatically based on track-free detection.
For this, the railway line consists of track sections that are able to detect the
presence of a train. A block section contains one or more track sections. When a
train enters a block this is detected by the first track section causing the block
signal to show a stop aspect. When a train clears the last track section of a block
the block signal at the beginning is released and shows a warning aspect until
also the next block is cleared.

In contrast, interlocking areas contain merging, diverging, and/or crossing
railway lines. Interlocking areas include station layouts with platform tracks
for scheduled stops and junctions for merging and crossing railway lines without
platforms. Safety in interlocking areas is guaranteed by interlocking systems that
prevent simultaneously authorizing conflicting routes. A route in an interlocking
area is a sequence of tracks sections and switches between two signals. Routes
are set by signalers or automatic route setting systems. After a route calling
the interlocking system checks if all track sections are available, switches are
in the correct position or free to move, and no opposing routes are called. If
the route is proved available the switches move to the required positions and
are locked, and finally the route is locked. After a proved route locking the
interlocking (or controlled) signal at the beginning of the route can be cleared.
The route is released when a train traverses the route. Modern interlocking
systems have a sectional-release route locking, where the sections are released
one-by-one after track-free detection. This way, a switch becomes available to
another route as soon as it is released. Older interlocking systems have a route-
release route locking, where the locked switches are released simultaneously after
a common release point (behind the last switch) is released. Thus, in interlocking
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areas each track section has its own blocking time: all track sections on a route
are blocked at the same time and released one-by-one according to the passage
of a train. Note the difference with a block section on the open track which is
released as one section. Also note that the route behind an interlocking signal
and the next signal can be different based on the set switch positions. For more
information on interlocking and block systems, we refer the interested reader to
Hansen and Pachl [8] or Pachl [9].

A station route can be partitioned into an inbound route from an interlocking
signal to the platform track(s) and an outbound route from the exit signal at
the platform to a block signal on the open track or an intermediate interlocking
signal. An inbound route thus connects an interlocking signal at the end of
an open track (the home signal) or an intermediate interlocking signal to an
exit signal after a platform. The blocking times of the platform track section(s)
include the dwell time at the platform and are thus typically much larger than the
preceding track sections on the route. Two station routes are called compatible if
they can be used at the same time by different trains, and they are incompatible
if they have a track section in common.

We consider a timetable which describes the movement of all trains running
in the network. Each train has a scheduled arrival/through time at a set of
relevant points along its route (such as station platforms, railway junctions, and
exit points of the network). Furthermore, a train is not allowed to depart from
a platform before its scheduled departure time. A train is considered to be late
when arriving at the platform later than the scheduled arrival time.

During operations, process time variations and disturbances cause delays that
require the timetable to be adjusted to prevent an accumulation of delays. Ex-
amples of perturbations are temporary speed limitations due to technical failures
or track maintenance work and extended dwell times at scheduled stops. Other
serious disturbances are disruptions corresponding to a track blockage. In this
case, an alternative route has to be provided for each train scheduled over the
unavailable track. A route conflict occurs when two or more trains claim the
same track section at the same time. In this case, a movement authority is given
to only one of the trains involved, while the others must wait until the route
becomes available or are rerouted. A conflict is called a deadlock if at least one
train has to be moved backwards to allow other train movements.

We next introduce some definitions of delays. A delay is the positive difference
between the actual arrival time and the scheduled arrival time, and is defined
for a set of relevant points in the network such as scheduled station stops and
signal passages at the boundaries of the area under study. The total delay is the
sum of all delays at the relevant points. A primary (or original) delay is directly
caused by process time variations, failures, or disturbances and can only be
recovered by exploiting available running time and dwell time supplements, i.e.,
by running trains at maximum speed and minimum dwell times. A consecutive
(or secondary) delay is caused by train interactions and can be minimized by
pro-actively managing the railway traffic.



Rescheduling Dense Train Traffic over Complex Station Interlocking Areas 375

The conflict detection and resolution problem can be defined as follows: given a
railway network, a time horizon of operations, a set of train routes and scheduled
event times at the relevant points in the network, and the actual position and
speed of each train at an initial time t0, find a conflict-free and deadlock-free
schedule for the trains in the network, with feasible speed profiles respecting the
signaling system, no early departures, and trains arriving at the relevant points
with the smallest consecutive delay.

3 Alternative Graph Modeling of the CDR Problem

This section presents two alternative graph formulations of the CDR problem
in complex station areas. The disaggregated formulation is a straightforward
extension of existing CDR models [7] that takes into account incompatibility of
station routes at the level of track sections, and results in optimistic minimum
headway times. On the other hand, the aggregated formulation aggregates track
sections into station routes, leading to slightly pessimistic minimum headway
times when dealing with sectional-release route locking.

3.1 Disaggregated Formulation

The combinatorial structure of the CDR problem is similar to that of a job shop
scheduling problem with several additional constraints. In job shop scheduling,
a job must be processed by a prescribed sequence of servers, machines. Each
machine is characterized by the ability to process at most one job at a time.
The processing of a job on a machine is an operation. The job shop scheduling
problem therefore consists of defining starting times of all the operations such
that each operation starts after the completion of its predecessor and no machine
processes two operations simultaneously.

In the disaggregated formulation, the passage of a train over a track section
represents an operation. Here, block sections on the open track are assumed to
consist of a single track section, but station routes in an interlocking area are
separated in the track sections making up the route. The starting time of an
operation corresponds to the time ti a train starts running over the associated
track section. In interlocking areas, the sectional-release approach is adopted,
i.e., every track section becomes available as soon as it is released by the current
train. A machine represents a track section, since it cannot host two or more
trains simultaneously. The setup time of a machine consists of the clearing time
and switching time. A CDR solution is feasible if the running and setup time
constraints are satisfied for each pair of operations associated to the same track
section, and there is no deadlock in the network.

Mascis and Pacciarelli [10] introduce alternative graphs to model variants of
job shop scheduling problems. An alternative graph is a triple G = (N, F, A)
with N a set of nodes, F a set of fixed arcs, and A a set of pairs of so-called
alternative arcs. A graph selection S is a set of alternative arcs chosen from A
such that at most one arc is selected for each pair. A solution to the scheduling
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Fig. 2. Infrastructure layout and the corresponding alternative graph when modeling
the network at the level of track sections

problem is a complete (exactly one arc from each pair is chosen) and consistent
(there are no positive length cycles) graph selection.

The alternative graph model is able to include all operational time constraints
of running trains. This can be done by using blocking time theory that describes
the minimum required headway times between trains (see e.g. [8]). Specifically,
a node of the alternative graph represents the passage of a train into a track
section, which starts an operation. The fixed arcs connect the successive nodes
of the alternative graph associated to a train route and are weighted with the
running time. The alternative arcs are used to model choice of orders between
operations on the same machine and are weighted with the setup time. A com-
plete and consistent selection in the alternative graph G(S) therefore corresponds
to a conflict-free and deadlock-free schedule.

Figure 2 presents an example of the disaggregated formulation of the CDR
problem. The left-hand side shows a complicated interlocking area layout with
15 track sections numbered 1 to 15. Four trains, A, B, C, and D, are running
from left to right, and their destination is, respectively, platform track section
15, 14, 13, and 15. The routes of trains A and C cross, over track sections 5 or
8, all other routes in the interlocking area, while the routes of trains B and D
do not interfere with the other routes. The right-hand side of Figure 2 shows
the resulting alternative graph. A node in the alternative graph corresponds to
the passage of a train over a track section. For reason of simplicity, the weight
of fixed and alternative arcs is not depicted.

As shown in the example, the disaggregated formulation is able to model the
incompatibility between station routes at the microscopic level of track sections
but does not take into account the following operational constraints: (i) un-
scheduled stops are generally not allowed along consecutive track sections of the
interlocking area, and (ii) the headway time between the running trains cannot
be computed on the basis of short track sections. This formulation thus leads
to a larger perceived capacity when scheduling trains in complex interlocking
areas. In the next subsection, we cope with these limitations by introducing an
aggregated formulation of the CDR problem.

3.2 Aggregated Formulation

Accurate management of complex interlocking areas requires an aggregate for-
mulation of the CDR problem. The idea is to group together the track sections
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Fig. 3. Infrastructure layout, alternative graph and incompatibility graph resulting
when track sections are aggregated into station routes

of each station route, so that all the required operational constraints can be
taken into account explicitly. The headway time between trains with incompat-
ible station routes is approximated according to a route-release route locking as
follows. When the train releases the last switch section (the release point) on
a station route, all track sections up to that point are released simultaneously,
and thus become available to other trains. In this way, each train runs over its
station route without being delayed by other trains. The setup time computed
for the release point of the station route is used as the headway time needed
before another conflicting route can be operated.

The aggregated formulation needs the complementary information of routes
that are incompatible with each other, since the detailed routes of trains are
lost when aggregating the track sections into station routes. The route incom-
patibility can be represented by means of an incompatibility graph, in which
each node corresponds to a station route and edges connect every two nodes
corresponding to incompatible station routes. Note the difference with the con-
flict graph [2,5] that defines timing conflicts between train/route pairs and thus
depends on arrival/departure times. The incompatibility graph is a characteris-
tic of an interlocking area and used to determine the corresponding alternative
graph.

We now show the aggregated formulation of the CDR problem for the example
of Section 3.1. The infrastructure layout is depicted in Figure 3 (left-hand), in
which the detail of each track section is lost in favor of station routes.

Figure 3 (center) presents the resulting alternative graph. Since only station
routes are modeled in the graph, the number of nodes and fixed arcs is decreased
considerably. The alternative pairs are also less (7 against 12 for the disaggre-
gated formulation), so the scheduling problem becomes easier to solve, even if
there can be alternative arcs implied by the choice of other arcs [7].

The four trains running in the proposed network have the following station
routes: i and v for train A, i and iv for train B, ii and iii for train C, ii and
vi for train D. Table 1 reports the link between the microscopic train routes of
Figure 2 and the station routes of Figure 3.

The incompatibility graph is shown in Figure 3 (right-hand). The incompatible
pairs of station routes are the following: (iii, iv) ,(iii, v), (iii, vi), (iv, v) and
(v, vi). The routes i and ii are compatible with the others.

A compact representation of the information necessary to model the incom-
patibility graph is as follows. To determine whether two station routes are
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Table 1. Station routes and the corresponding list of track sections

Station routes List of track sections
i 1
ii 2
iii 4,6,5,7,10,13
iv 3,5,8,11,14
v 3,5,8,9,12,15
vi 4,6,9,12,15

incompatible, it is sufficient to calculate the intersection between the list of track
sections associated to each station route. This procedure can be implemented
in the alternative graph model by associating virtual machines to station routes
such that two station routes are incompatible if and only if they are associated to
at least a shared virtual machine. In other words, virtual machines represent all
the incompatibilities between conflicting routes in a complex interlocking area.

The number of virtual machines is given by the number of nodes of the incom-
patibility graph that are not connected with all the other nodes. The procedure
adopted in this paper is to scan the incompatibility graph and search for the
virtual machines needed to model all the incompatibilities between conflicting
routes. The virtual machines are then introduced in the alternative graph for-
mulation of the CDR problem, allowing to translate the characteristics of the
non-aggregated model into the aggregated one.

3.3 Sectional-Release Route Locking Principle

We now discuss a further sophistication of the aggregated formulation of the
CDR problem that models exactly the sectional-release route locking principle.
The resulting CDR problem can be represented as a special job shop problem
with a careful modeling of the setup times.

The aggregated formulation described in the previous subsection makes the
assumption that for each train running on a station route all track sections up
to the platform track (if the train stops) or to the end of the station route are
released simultaneously. With this assumption, the setup time of each station
route only depends on the current train that is running on that route. However,
the headway time between consecutive trains, considered by the aggregated for-
mulation, can be safely shortened. To achieve this result, the setup time of each
train running on a station route should also depend on the successive trains
traversing the same route.

If two trains follow exactly the same station route, the sectional release results
in the same setup time as for the aggregated formulation. On the other hand,
if two consecutive trains have station routes that diverge at some intermediate
point of the interlocking area, the route of the preceding train would be released
when the last shared track section has been cleared. This can be achieved by a
slight modified formulation of the CDR problem with sequence-dependent setup
times, i.e., the setup time between job i and job j depends on both job i and
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Table 2. Aggregated formulation with sequence-dependent setup times

Node of origin Node of destination Last track section Arc weight
Aout Biv 8 S8 − RA

9 − RA
12

Aout Ciii 5 S5 − RA
8 − RA

9 − RA
12

Aout Dvi 12 S12

Bout Av 8 S8 − RB
11

Bout Ciii 5 S5 − RB
8 − RB

11

Cout Av 5 S5 − RC
7 − RC

10

Cout Biv 5 S5 − RC
7 − RC

10

Cout Dvi 6 S6 − RC
10

Dout Av 12 S12

Dout Ciii 6 S6 − RD
9 − RD

12

job j. A good state-of-the-art overview concerning the job shop problem with
sequence-dependent setup times can be found e.g. in Artigues and Feillet [11].

In the aggregated formulation with sequence-dependent setup times, the al-
ternative arcs modeling the setup time in a station interlocking area have to
consider both the preceding and following trains running in that area. Table 2
shows how to model the interlocking area of the illustrative example of the previ-
ous subsections. The first two columns present the origin and destination nodes
for each alternative arc of the interlocking area. The third column indicates the
last track section in common between the routes of the two involved trains, e.g.
in the first row of this table trains A and B follow different paths that diverge
on track section 8. The fourth column shows how to compute the weight of each
alternative arc.

The idea is first to compute the setup time as for the aggregated formulation
with no sequence-dependent setup time, and then to subtract from this value the
difference between the running time to traverse the complete station route in the
interlocking area and the running time to traverse the part of the station route
that is shared between the preceding and following trains. For example, the third
row reports the same value of setup time (S12, i.e., the setup time on track section
12) for the two formulations since both trains A and D follow the same station
route up to track section 12, while the fifth row reports different values of setup
time (S5 versus S5−RB

8 −RB
11, where RB

8 and RB
11 are the running times of train

B on track sections 8 and 11) for the two formulations since the station routes
of trains B and C differ after track section 5. Precisely, the station route of train
B is B3, B5, B8, B11 while the station route of train C is C4, C6, C5, C7, C10.
Clearly, in this alternative graph formulation some alternative arc can assume
a negative weight, as e.g. the weight of the arc between nodes Bout and Ciii if
S5 < RB

8 + RB
11.

3.4 A Qualitative Comparison

In this section we compare the two interlocking approximation formulations with
the actual sectional-release route locking principle using an illustrative example.
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Figure 4 shows a simple illustrative example with two trains (depicted in
different gray colors) running from an open track (at the left) to a station in-
terlocking area. The block section on the open track contains two track sec-
tions which are however reserved and released simultaneously according to the
fixed block system principles. The station interlocking area contains two plat-
form tracks and two station routes from the open track to the platform track
sections. The two routes diverge at the second switch section and lead via an
intermediate track section to one of the platform track sections. The routes thus
have the first two (switch) track sections in common. The first (light-gray) train
traverses the station area over the upper platform track without stopping, while
the second (dark-gray) train has a scheduled stop at the lower platform track.
The three diagrams (a)–(c) represent the blocking time diagrams corresponding
to three-aspect signaling and the three interlocking variants, where the second
train follows the first train as close as possible without being hindered, i.e., at
the minimum headway distance facing only green signals at sight distance all the
way. The blocking time for each track section starts at (the sight time before)
the time that the section is reserved and ends after it is released [8,9].

Figure 4(a) shows the blocking time diagram where the second train follows
the first at the minimum headway according to the sectional-release route locking
principle. The critical section for following at the minimum headway time is the
second (switch) track section on the station route. As soon as this section is
released, the route to the other platform track can be set, locked, and cleared
for the second train. In the blocking time diagram this is visualized by the
touching blocking times of both trains in the second shared track section of the
station routes. Note that the blocking times of the last two sections seem to
overlap (shown by the dotted line), but these sections correspond to a different
route for each train which can be used in parallel.

t i m e t i m e t i m e

R

R

(a) Sectional Release (b) Disaggregated Model (c) Aggregated Model

Fig. 4. Blocking time diagrams illustrating the effect of three interlocking principles
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Figure 4(b) shows the blocking time diagram when train traffic in the inter-
locking area is modeled with the disaggregated formulation. Here, each track
section in an interlocking route is treated as a separate block. In comparison to
Figure 4(a) the blocking times are much shorter and a smaller minimum head-
way time is obtained corresponding to a larger perceived capacity. The critical
section is now given by the first (switch) track section of the station routes. Note
that this model leads to an infeasible solution since the second switch section is
still occupied by the first train when the second train claims the route after the
release of the first switch section. In practice, the interlocking signal will still be
red and therefore the block signal at the block section on the open track will be
yellow so that the second train has to brake and is hindered.

Figure 4(c) shows the blocking time diagram using the aggregated formulation
with non sequence-dependent setup times. Here, the route is released in two
steps: first all switch and track sections before the common release point (the
last section before the platform track section) indicated by the symbol ‘R’, and
second all platform track sections. Clearly, this solution is more conservative
than the one of Figure 4(a) since all track sections up to the platform track are
released simultaneously. The critical section is now the third section of the first
train’s route corresponding to the release point. The solution of the aggregated
formulation with non sequence-dependent setup times is compatible with the
sectional-release route locking principle giving a slightly larger headway time
than the minimum required.

In conclusion, the disaggregated model is too optimistic about station capac-
ity utilization and may give infeasible solutions. On the other hand, aggregated
formulation with non sequence-dependent setup times is pessimistic about the sta-
tion capacity utilization but leads to feasible solutions. The headway time increase
depends on the distance of the critical section in the sectional-release route locking
solution to the common release point of the route-release route locking solution.
This time difference will generally be small and can be considered as a practical
buffer time, i.e., a slightly larger-than-necessary headway time. The discussed dis-
aggregated and aggregated formulations lead to a lower and upper bound, respec-
tively, on the maximum consecutive delay with respect to sectional-release route
locking. Since the aggregated formulation with non sequence-dependent setup
times yields feasible solutions, a small gap between the two bounds implies that
the aggregated model solution is a good approximation of the optimal solution.

4 Algorithms for Train Scheduling and Speed
Coordination

The scheduling procedure used in this paper is the Branch and Bound (BB) algo-
rithm described in [7]. This algorithm is able to compute near-optimal solutions
to practical sized CDR problems with fixed speed profiles. The objective function
is the minimization of the maximum consecutive delay at each relevant point of
the studied area. For the aggregated formulation with non sequence-dependent
setup times, the lower bound procedure adopted for the BB algorithm is the
Jackson Preemptive Schedule [12], adapted to deal with the virtual machines.
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The scheduling solutions obtained by the BB algorithm do not consider pos-
sible speed adjustments needed to satisfy the Dutch three-aspect signaling sys-
tem in case of conflicts between trains. Therefore, after the train orders have
been computed by the BB algorithm, the train speed coordination procedure of
D’Ariano et al. [13] is adopted to increase the traversing times for all trains fac-
ing yellow and red signal aspects. A typical drivers’ behavior is implemented in
which the trains proceed at their scheduled speed in case of green signal aspects,
decrease speed to an approaching speed (usually 40 km/h in the Netherlands) in
case of yellow signal aspects, stop in case of red signal aspects, and re-accelerate
after a signal aspect improves. The traversing times for all the trains facing
yellow (and red) signal aspects may therefore increase. This simple procedure
enables us to compute feasible speed profiles and to predict the practical effects
of the proposed train schedules. A more detailed discussion on speed adjustment
and driver behavior can be found in [14].

5 Computational Experiments

This section presents the experiments performed to evaluate the two interlocking
approximation formulations of the CDR problem, over a large sample of real-
life instances. Algorithms have been implemented in C++ and run on a PC
equipped with a processor Intel Pentium D (3 Ghz), 1 GB Ram and Linux
operating system.

The test case is Utrecht Central station, which is one of the most complex
station areas in the Netherlands. This station area has 20 platforms, more than
100 switches and 200 track sections, leading to a large number of possible inbound
and outbound routes. The network topology is similar to a star with 5 main
traveling directions (Figure 5). In total, the diameter of the entire dispatching
area under study is around 20 km and includes more than 600 track sections. We
consider one hour of traffic prediction for the 2008 timetable, up to 80 (passenger
and freight) trains running in the station area.

The alternative graphs used to model the CDR problem in the case of the
disaggregated formulation have 4067 nodes and 12235 alternative pairs. In the
aggregated formulation, the alternative graphs have 1847 nodes and 4773 alter-
native pairs. Note that the smaller the alternative graph, the faster the compu-
tation of the CDR solutions.

We test a set of 450 timetable perturbations by combining 30 delay scenar-
ios at the entrance of the network and 15 delay scenarios at Utrecht Central
station. The latter delay scenarios are dwell time extensions for trains stopping
at station platforms. Realization data were collected and made available by the
Dutch infrastructure manager ProRail and random disturbances are generated
according to Weibull distributions, as in [15].

We also consider three infrastructure scenarios (case 0: all infrastructure avail-
able; case 1: platform 2 of Utrecht Central unavailable; case 2: platform 15 of
Utrecht Central unavailable), resulting respectively in 0%, 2% and 5% of the
trains having to follow an alternative route to perform their scheduled trip.
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Fig. 5. Utrecht Central station in the center of the diagram; the scheduled hourly
traffic per direction is given for each line of the dispatching area

The proposed perturbations are combined with the three infrastructure sce-
narios, leading to a total amount of 1350 disturbance scenarios with a maximum
entrance delay for the trains of around 700 seconds and an average entrance
delay experienced by every train of around 30 seconds.

Table 3 reports the average results over all the tested perturbations and dis-
ruptions scenarios for the CDR problem with fixed speed profiles (no train speed
coordination algorithm is used). The disturbances are divided in the perturba-
tion scenario (case 0) and in the two disruption scenarios, separately (case 1
and 2). For the disaggregated formulation, the maximum consecutive delay (in
seconds), the average consecutive delay (in seconds), and the total computation
time (in seconds) are shown in Columns 2, 3 and 4, respectively. For the aggre-
gated formulation with non sequence-dependent setup times, the same type of
information is presented in Columns 5, 6 and 7.

The fixed-speed CDR solutions presented in Table 3 are computed by the
BB algorithm with no time limit of computation. So, the average value of the
maximum consecutive delay reported in Column 2 (Column 5) is optimal for
the disaggregated (aggregated) formulation. However, since the disaggregated

Table 3. CDR solutions without train speed coordination

Infra Disaggregated formulation Aggregated formulation
Scenario Max Avg Comput Max Avg Comput

delay (s) delay (s) time (s) delay (s) delay (s) time (s)
Case 0 91.8 1.5 1.7 108.6 2.6 0.9
Case 1 309.4 4.9 1.7 309.4 6.3 0.4
Case 2 199.4 3.3 1.8 200.7 4.3 1.3
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Table 4. CDR solutions with train speed coordination

Infra Disaggregated formulation Aggregated formulation
Scenario Max Avg Comput Coord Max Avg Comput Coord

delay (s) delay (s) time (s) iter delay (s) delay (s) time (s) iter
Case 0 125.7 2.6 18.0 47 243.6 10.3 3.7 62
Case 1 309.4 6.2 18.8 49 317.4 14.1 3.8 63
Case 2 204.1 4.5 19.5 51 235.5 10.7 3.7 63

formulation does not take into account all the operational constraints in the
station interlocking areas, the average value reported in Column 2 is a lower
bound on the maximum consecutive delay at all the relevant points. But there is a
small gap between the lower bound and the corresponding average value obtained
for the aggregated formulation with non sequence-dependent setup times, that
is an upper bound for the exact CDR formulation of the sectional-release route
locking principle, leading to the conclusion that relaxing or tightening some
operational constraints at these interlocking areas has a limited impact on the
minimization of train delays.

When comparing the disturbance cases in Table 3, the delay figures are larger
when dealing with disruption case 1, since trains have to be rerouted to very
busy platforms nearby platform 2 of Utrecht Central.

Table 4 reports the average results over all the tested perturbations and dis-
ruptions scenarios after the train speed coordination procedure. In addition to
the information presented in Table 3, Column 5 (Column 9) reports the aver-
age number of train speed coordination iterations required by the disaggregated
(aggregated) formulation in order to satisfy the signaling system constraints
when dealing with train conflict situations. The solutions of the disaggregated
formulation are better than the ones of the aggregated formulation with non
sequence-dependent setup times in terms of delay minimization. The difference
between the solutions of the two formulations is more evident when dealing with
the perturbation scenarios. However, a longer computation time is required to
compute the former solutions since the corresponding alternative graph has a
large number of operations (nodes) to be managed.

A comparison between the solutions obtained with and without train speed
coordination underlines the impact of varying the speed profiles of the trains
facing yellow and red signal aspects. The CDR solutions with fixed speed profiles
are found, on average, in less than one third of the time to compute the CDR
solutions with variable speed profiles. However, the latter solutions give more
precise information on the delay propagation since the speed profiles of the
trains involved in the conflicts are managed more accurately.

Another interesting point is to study how the output delays depend on the
magnitude of the input delays. Table 5 shows the average results obtained for
three group of instances of increasing entrance disturbances. For each group of in-
stances, Column 1 and 2 report the maximum and average entrance delays while
the other columns report the maximum and average consecutive delays for the
CDR solutions computed with the disaggregated and aggregated formulations
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Table 5. Increasing delays versus the two formulations with train speed coordination

Entrance disturbance Disaggregated formulation Aggregated formulation
Max Avg Max Avg Max Avg

delay (s) delay (s) delay (s) delay (s) delay (s) delay (s)
467 20.2 197 3.2 267 10.3
706 31.9 216 4.7 267 11.9
925 35.8 209 4.3 247 12.6

and train speed coordination. For the disaggregated formulation, increasing en-
trance disturbances do not result necessarily in more conflicts and larger consec-
utive delays. In fact, this formulation does not include all the relevant constraints
in station interlocking areas. On the other hand, the aggregated formulation is
more accurate and presents consecutive delays that increase in a rather regular
way compared to the different groups of entrance disturbances.

6 Conclusions

The development of advanced conflict detection and resolution systems is an
important direction of research since there is a clear need to improve railway
traffic management in case of disturbed operations. This paper proposes dis-
aggregated and aggregated formulations, based on alternative graphs, to model
large train scheduling instances with high accuracy. We focus on solving con-
flicts between consecutive trains at network level and modeling feasible headway
distances in complex station interlocking areas. Computational experiments on
a main dispatching area of the Dutch railway network, with up to 80 trains per
hour, have been presented using existing scheduling and train speed coordination
algorithms. The two formulations are compared in terms of delay minimization
and computation time for different disturbance scenarios. The aggregated for-
mulation with non sequence-dependent setup times has shown to be a good
approximation of sectional-release route locking operations resulting in small
extra buffer times.

A number of other issues remain that need further development.

– It would be interesting to design more robust conflict solutions by addressing
the question on where and how much extra buffer time should be placed
between consecutive train paths in presence of disturbances.

– The potential of the aggregated formulation with sequence-dependent setup
times has not been quantified since the train scheduling algorithms need to
be adapted to deal with this additional level of model sophistication.

– It remains to be solved the challenging problem of studying the full benefits
of dispatching trains in larger networks and for heavily disturbed operations.
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Abstract. We deal with an online problem arising from bus/tram/train
disposition problems. In particular, we look at the case in which the delay
is unknown and the vehicle can only wait in a station so as to minimize
the passengers’ waiting time.

We present deterministic polynomial-time optimal algorithms and
matching lower bounds for several problem versions. In addition, all lower
bounds also apply to randomized algorithms, thus implying that using
randomization does not help.

1 The Setting

While many of the optimization problems encountered in transportation have
already been studied in the early days of operations research [3, 5, 7] and have
even stimulated the development of the field, this is not the case for disposition
problems. Disposition (also known as operations control) deals with the real
time reaction against the negative effects of unexpected events. For railways, the
goal is to maintain high service quality in spite of events such as delays due
to disturbances. Problems of this sort have been attacked mostly by computer
simulations [14, 20] (see also [16] for a survey). In this paper, we pursue a different
approach: we aim at an understanding of the fundamental algorithmic nature of
these problems. In particular, we will look at worst case analysis of algorithms
that must work with partial information (e.g., we know that a vehicle has been
delayed, but we do not exactly know by how many time units). To this aim, we
will show how these questions can be treated as an online problem [4, 8]. Then,
we will characterize the performance of algorithms depending on several factors
like (i) number of vehicles, (ii) whether the algorithm has some estimation of the
delays, (iii) whether it can use randomization, etc. This problem is closely related
to the delay management problem: a schedule and a delay for one or more vehicles
is given and good decisions (e.g., to wait or to depart) for the consecutive trains
must be taken. In contrast to our problem, most delay management studies
� A preliminary version of this paper appeared in [2].
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assume that the exact delay is known to the algorithm. In [1, 19] simulation
systems are used for analyzing the delay management problem. Other authors,
such as [18] (see also [12] for a survey), formulate an optimization problem
in which the goal is to minimize the total waiting time subject to different
constraints (slack times available at stations and tracks, connections can be
dropped, etc.). For the same objective function, [9] described polynomial time
algorithms for special cases, such as a limited number of transfers, or a railway
network with a path topology. In a follow-up paper [10], a more general variant
of the delay management problem was shown to be NP-complete both with and
without slack times (or buffer times) in the timetable. More work on the delay
management problem has been done in [6, 13]. The online delay management
problem has been addressed further in [11] where the authors again considered
also the case of a single line. The main difference between the model in that
paper and the one here is on the delay incurred by the passengers. In [11],
passengers’ delay is exclusively due to the fact that a train at a station does not
wait and thus a connection is missed. In our model, instead, passengers arrive
at the station and we consider how much each of them should wait before their
train leaves.

1.1 The Disposition Problem

Consider the following scenario from high-frequency bus (or tram or train) sys-
tems: we are given a station with r > 0 passengers arriving at each time unit on
average (i.e., r is the arrival rate of passengers at the station). Buses reach the
station regularly every t time units if no delay occurs. Whenever a bus reaches
the station, it picks up all waiting passengers (i.e., the seating capacities of the
bus are not our concern). We assume that picking up the passengers is instan-
taneous, i. e., requires no time. This implies that the overall passenger waiting
time at the station (sum of all individual waiting times) is r · t2/2 per t time
units between any two consecutive buses. Now consider the case in which one
bus is currently at some station and the next bus is delayed by some amount of
δ > 0 time units. Assume the only action we can take is to make a bus wait in
a station (this is sometimes referred to as holding [17]). The problem now is to
decide how long the bus in the station should wait, if at all.

A convenient way of looking at this problem is to consider a snapshot of only
three buses B3, B2 and B1 as in Figure 1 that are travelling from left to right
(we will drop the limitation to three buses later and consider more buses). Then,
from the point of view of the passengers in the station, making B2 wait for w
time units is equivalent to “shift” B2 leftwards by the distance that a bus travels
in w time units. The overall waiting time (denoted as cost) can be computed
according to which bus passengers get in (Figure 2 shows the case w = 0), as

cost = r(t + w)2/2︸ ︷︷ ︸
B2

+ r(t + δ − w)2/2︸ ︷︷ ︸
B3

. (1)

Clearly, knowing δ, the best choice (i.e., the choice that minimizes the value in
Equation 1) is w = δ/2. However, for our problem of interest, we only know that
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Fig. 1. The case of three buses
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waiting
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Fig. 2. Passengers waiting time when bus B3 has a delay δ

B3 is delayed (e. g., because of a traffic jam), but we do not exactly know δ. In
this case, should B2 leave immediately or wait for a while? In the latter case,
how much should it wait for?

1.2 An Algorithmic Perspective

We view this question as an online problem in which we have to choose a good w
without knowing δ (ideally, w should be good for all possible delays δ). Because
the value of t is purely a matter of scaling time units, we will assume from
now on that t = 1. Then, the actual waiting time, denoted as cost, is r(1 +
w)2/2 + r(1 + δ − w)2/2, and the optimum waiting time is r(1 + δ/2)2. For the
competitive ratio, that is, the ratio between the actual and the optimum waiting
times, the arrival rate r cancels, and therefore we assume for simplicity of the
presentation from now on that r = 2. That is, we get the actual waiting time
cost(w, δ) = (1+w)2 +(1+δ−w)2, and the competitive ratio within the interval
of arrival times from bus B1’s departure to B3’s arrival is

ρ(w, δ) =
cost(w, δ)

opt(δ)
=

(1 + w)2 + (1 + δ − w)2

2(1 + δ/2)2
. (2)

We are interested in online algorithms that minimize the above ratio without
knowing δ, that is, algorithms that decide w in such a way that maxδ≥0 ρ(w, δ)
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is as small as possible. This is clearly equivalent to find minw≥0 maxδ≥0 ρ(w, δ).
Note that if we choose a waiting time w > 1 and the adversary chooses not to
delay bus B3 then the situation is as if there is no bus B2. The competitive ratio
becomes strictly greater than two. As choosing not to wait gives a competitive
ratio of less than two (compare also Section 2 and the proof of Theorem 3) we
only need to consider w in [0, 1] respectively find minw∈[0,1] maxδ≥0 ρ(w, δ).

We consider two versions of this problem: (a) the unbounded case in which
δ can be any positive integer; (b) the bounded case in which δ ≤ Δ, where Δ
is a positive integer known to the algorithm, that is, an upper bound on the
maximum delay that can occur.

Remark 1 (Competitive measures). Notice that we are adopting the definition of
strictly c-competitive algorithms. However, for our problem(s) this is equivalent
to that of c-competitiveness. Indeed, we have assumed t = 1 only for the sake of
simplicity, but we do not consider t constant (or as a parameter of the problem),
since we want to derive algorithms that perform well for any t known to the
algorithm. Under this assumption, we can always construct an instance whose
cost is arbitrarily large by increasing t. This allows to apply any lower bound on
the strict competitiveness also to the (weaker) definition of c-competitiveness.
On the other hand, if t is a constant of the problem, then the definition of c-
competitiveness is meaningless: the worst solution we can get has cost at most
opt + Δr = opt + O(1). This would imply a 1-competitive algorithm, regardless
of what we do, while the (strictly) competitive ratio tells us whether the strategy
is good or not.

1.3 Our Contribution

We consider the above mentioned online problem and its natural extension in
which a set of n + 2 buses (instead of three) is given: bus B1 already left the
station, bus Bn+2 has a delay δ and we have to decide the waiting time wi

for each Bi, for i = 2, . . . , n + 1. This provides a family of basic disposition
problems that capture some fundamental aspects of the real situations. For these
problems, we completely characterize the competitive ratio of both deterministic
and randomized algorithms, depending on n and Δ. In particular, we prove the
tight bounds shown in Figure 3.

Interestingly, all the upper bounds are given via deterministic algorithms,
while the lower bounds also apply to randomized ones. Indeed, we show that the

Problem version Lower bound Upper bound

Unbounded delays n + 1 n + 1

Bounded delays (δ ≤ Δ) 1 + n
(

Δ
2+2n+Δ

)2

1 + n
(

Δ
2+2n+Δ

)2

Fig. 3. Our results on the competitive ratio of online algorithms. All upper bounds are
obtained via deterministic algorithms, while lower bounds also apply to randomized
ones.
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competitive ratio attained by our deterministic algorithms cannot be improved
even when considering randomized algorithms against an oblivious adversary
[4, 8]. In other words, randomization is useless for our disposition problems.

Paper organization. For the sake of clarity, we first present our results for the case
n = 1. In particular, Sections 2 and 3 deal with the unbounded and the bounded
case, respectively. We then extend the results to the case n > 1 in Section 4.
Finally, in Section 5 we discuss further extensions and open questions.

2 Unbounded Delays

We first observe that two strategies are always possible:

No wait. In this case w = 0 and ρ(w, δ) = 1+(1+δ)2

2(1+δ/2)2 . For δ → ∞, this ratio
tends to 2 from below.

Wait “forever”. This means that B2 waits until B3 arrives in the station.
Then, ρ(w, δ) = 2.

The above two strategies seem quite inefficient. Indeed, a better choice might be
a compromise of them (i.e. wait, but not too much). Unfortunately, the following
result shows that finding such a compromise is impossible:

Theorem 1. No (randomized) algorithm can be better than 2-competitive in the
case of unbounded delays.

Proof. Every (randomized) algorithm Alg chooses an upper bound W ∈ R+ ∪
{∞} on the waiting time according to some probability distribution independent
of δ (this value is chosen by the adversary and is not known to the algorithm).
For every δ, the waiting time is min(W, 1 + δ) because we never wait more than
the time the delayed bus arrives at the station (at that point δ is disclosed to
the algorithm and the optimal decision is to have the bus to leave). In particular
W = ∞ corresponds to the “wait forever” strategy meaning that, for every δ,
the waiting time w is equal to 1 + δ. Observe that the “no wait” strategy (W =
0) strictly dominates the “wait forever” strategy (W = ∞) because ρ(0, δ) =
1+(1+δ)2

2(1+δ/2)2 = 2+δ2+2δ
2+δ2/2+2δ ≤ 2 = ρ(1 + δ, δ), for every δ ≥ 0 (see Equation 2).

Therefore, for every Alg that chooses W = ∞ (the “wait forever” strategy)
with nonzero probability, there is another algorithm Alg

′ which has the same
or a better competitive ratio and that chooses W = ∞ with probability zero.

We can thus focus on algorithms that choose always a finite upper bound
W on the waiting time according to some probability distribution. This implies
that, for any p ∈ (0, 1], there exists w such that Pr[W ≤ w] ≥ 1−p. Since ρ(w, δ)
is decreasing for w ∈ [0, δ/2] (see Equation 2) we have that ρ(W, δ) ≥ ρ(w, δ) for
all W ≤ w and δ ≥ 2w. Therefore, the competitive ratio is at least (1−p)·ρ(w, δ)
for every δ ≥ 2w. Since p can be arbitrarily small and since the adversary can
choose δ arbitrarily large to make ρ(w, δ) close to 2 (note that, for any fixed w,
ρ(w, ·) tends to 2 for δ → ∞), the lower bound (1−p)·ρ(w, δ) on the competitive
ratio can be made arbitrarily close to 2. Hence the theorem follows. ��
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Although the above theorem implies that both strategies above are optimal for
large delays, it is clear that “no wait” is always better than “wait forever”.
Moreover, the former performs quite well whenever δ is small. In the subsequent
section we investigate this version of the problem.

3 Bounded Delays

In this section we consider the version of the problem in which δ ≤ Δ, where
Δ is a positive constant known to the algorithm. The purpose of this is twofold:
on the one hand we want to study whether this additional information allows
for improved competitive ratios; on the other hand, we are interested in finding
tight bounds that show how fast the competitive ratio tends to 2 as Δ increases.
The “no wait” strategy provides a first upper bound. However, the reader can
easily check that choosing w = Δ/2 gives already an improvement. In the next
section we give a tight bound for deterministic algorithms.

3.1 Deterministic Algorithms

Our algorithm Det should choose a good value of w based solely on the infor-
mation that δ ≤ Δ. To this aim, we first restrict ourselves to a weaker adversary
that chooses only δ = 0 or δ = Δ. Therefore, our goal will become

min
w

max{ρ(w, 0), ρ(w, Δ)}. (3)

In order to determine the best value for w according to Equation 3, we look for
which values of w the adversary would give us δ = 0, that is ρ(w, 0) ≥ ρ(w, Δ).
The latter condition is equivalent to

(1 + w)2 + (1 − w)2

2
≥ (1 + w)2 + (1 + Δ − w)2

2(1 + Δ/2)2
,

which corresponds to w ≥ Δ/(4 + Δ) =: w0(Δ). Since ρ(w, Δ) is monotonically
decreasing in [0, w0(Δ)] and ρ(w, 0) is monotonically increasing in [w0(Δ), Δ],
we have (see also Figure 4)

min
w

max{ρ(w, 0), ρ(w, Δ)} = ρ(w0(Δ), 0) = 1 +
(

Δ

4 + Δ

)2

. (4)

The following lemma is used to show that Det performs well also against an
adversary choosing any δ ∈ [0, Δ].

Lemma 1. For any w ≥ 0, max0≤δ≤Δ ρ(w, δ) ≤ maxδ∈{0,Δ} ρ(w, δ).

Proof. We distinguish the two cases w ≥ w0(Δ) and w < w0(Δ). For w ≥ w0(Δ),
we show that ρ(w, δ) ≤ ρ(w, 0) whereas for w < w0(Δ), we show that ρ(w, δ) ≤
ρ(w, Δ). So, let us assume that w ≥ w0(Δ). Then
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1

Δ

ρ(w, δ)

w0(Δ)

adversary

δ

w

Fig. 4. The worst cases for the deterministic algorithm

ρ(w, δ) − ρ(w, 0) = −
(

δ(1 + w)(w(δ + 4) − δ))
(2 + δ)2

)
≤ −

(
δ(1 + w)(w0(Δ)(δ + 4) − δ)

(2 + δ)2

)
= −

(
δ(1 + w)(δ(w0(Δ) − 1) + 4w0(Δ))

(2 + δ)2

)
≤ −

(
δ(1 + w)(Δ( Δ

Δ+4 − 1) + 4 Δ
Δ+4 )

(2 + δ)2

)
= 0

Hence, in the first case ρ(w, δ) is maximized for δ equal zero.
For the case w < w0(Δ), we consider the difference ρ(w, δ) − ρ(w, Δ). Since

d2

dw2 [ρ(w, δ) − ρ(w, Δ)] =
8

(2 + δ)2
− 8

(2 + Δ)2
≥ 0 (for δ ≤ Δ),

the difference is convex between 0 and Δ with respect to w. Hence over the
region w ∈ [0, w0(Δ)] the maximum of ρ(w, δ)−ρ(w, Δ) must be either at w = 0
or at w = w0(Δ). But

ρ(0, δ) − ρ(0, Δ) =
4(δ − Δ)(δ + Δ + δΔ)

(2 + δ)2(2 + Δ)2
≤ 0

and

ρ(w0(Δ), δ) − ρ(w0(Δ), Δ) =
8δ(δ − Δ)(2 + Δ)
(2 + δ)2(4 + Δ)2

≤ 0.

Hence, in the second case ρ(w, δ) is maximized for δ equal Δ. ��

Because of the above lemma and the definition of w0(Δ), we obtain the following:
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Theorem 2. No deterministic algorithm can be strictly better than 1 + w0(Δ)2

competitive, where w0(Δ) = Δ/(4 + Δ). Therefore, Det is optimal for any
Δ ≥ 0.

As expected, this bound tends to 2 when Δ goes to infinity (which corresponds
to the case of unbounded delays).

3.2 Lower Bound for Randomized Algorithms

In this section, we show that no randomized algorithm Rand can achieve an ex-
pected competitive ratio smaller than the competitive ratio of the deterministic
algorithm Det.

Theorem 3. For any Δ > 0, no randomized algorithm Rand can be better than
Det.

Proof. Suppose w is chosen randomly with corresponding random variable W .
Then, for any W , the adversary chooses δ such that E[ρ(W, δ)] is maximized.
Because ρ(w, δ) is a convex function in w (see Equation 2), we can apply Jensen’s
inequality [15], and reduce the randomized case to the deterministic one. In
particular, Jensen’s inequality implies

max
δ

E[ρ(W, δ)] ≥ max
δ

ρ(E[W ], δ).

The latter quantity is the competitive ratio of the deterministic algorithm choos-
ing w = E[W ]. Hence, the result is implied by Theorem 2. ��

4 Many Buses

Consider a set of n + 2 buses {B1, . . . , Bn+2} such that: (i) B1 already left
the station, (ii) Bn+2 has been delayed by δ, and (iii) the set {B2, . . . , Bn+1}
corresponds to the control set of n buses that we can delay in order to minimize
the overall waiting time. Let w = (w2, w3, . . . , wn+1) represent such waiting
times, i.e., bus Bi is delayed by wi, i = 2, . . . , n + 1. The cost is clearly

cost(w, δ, n) = (1 + w2)2︸ ︷︷ ︸
B2

+
n∑

i=2

(1 + wi+1 − wi)2︸ ︷︷ ︸
Bi+1

+ (1 + δ − wn+1)2︸ ︷︷ ︸
Bn+2

. (5)

As we do assume that Bi always precedes Bi+1, for i = 1, . . . , n + 1, we restrict
ourselves to those w for which wi ≤ wi+1, i = 2, . . . , n. In fact, we next show
that without loss of generality it is enough to consider certain “balanced” waiting
times:

Definition 1 (Balanced vector). Let the balanced vector u(x) be the vector
assigning waiting time wi = (i − 1)x/n to bus Bi for i = 2, . . . , n + 1.
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Observe that for a balanced vector u(x) the distance between two any consecu-
tive buses is identical, namely equal to 1+x/n (except between buses Bn+1 and
Bn+2 where it is 1+ δ−x). The following fact then follows from Equation 5 and
Definition 1.

Fact 4. For every w that is not balanced it holds that

∀δ : cost(w, δ, n) > cost(u(wn+1), δ, n).

Because of the above fact, we have to choose an optimal waiting time for bus
Bn+1 to compensate the delay δ. The buses B2 to Bn are then evenly distributed.
That is, we have to set wn+1 = x so that

max
δ

ρ(u(x), δ) = max
δ

cost(u(x), δ)/opt(δ)

is as small as possible. In the sequel, we let

ρ(x, δ, n) := ρ(u(x), δ) =
n(1 + x/n)2 + (1 + δ − x)2

(n + 1)(1 + δ/(n + 1))2
. (6)

Observe that, for all x > 1, ρ(x, 0, n) ≥ maxδ ρ(0, δ, n). Hence, we will re-
strict ourselves to x ∈ [0, 1]. The following result is a simple generalization of
Theorem 1.

Theorem 5. For the case of n+2 buses and unbounded delays, no (randomized)
algorithm can be better than (n + 1)-competitive.

4.1 Bounded Delays

We first consider an adversary that always picks δ ∈ {0, Δ}, as in the case n = 1.
Then, we observe that ρ(w, 0, n) is equal to ρ(w, Δ, n) for

w = nΔ/(2 + 2n + Δ) =: w0(Δ).

Further, ρ(w, Δ, n) is greater than ρ(w, 0, n) and monotonically decreasing in
[0, w0(Δ)]. In [w0(Δ), Δ], ρ(w, 0, n) is greater than ρ(w, Δ, n) and mononton-
ically increasing. Therefore, the best deterministic algorithm Det against the
restricted adversary is given by the value w0(Δ) with competitive ratio equal to
ρ(w0(Δ), 0, n). From Equation 6, it follows that

∀w, ρ(w, 0, n) = 1 + w2/n,

thus implying a competitive ratio of 1 + n
(

Δ
2+2n+Δ

)2
.

The next lemma shows that the adversary cannot profit from choosing δ in
[0, Δ].

Lemma 2. For any w ≥ 0, max0≤δ≤Δ ρ(w, δ, n) ≤ maxδ∈0,Δ ρ(w, δ, n).
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Proof. The proof follows the same steps as Lemma 1.
For w ≥ w0(Δ):

ρ(w, δ, n) − ρ(w, 0, n) =
δ(n + w)(δn − (δ + 2n + 2)w)

n(δ + n + 1)2

≤ δ(n + w)(δn − (δ + 2n + 2)w0(Δ))
n(δ + n + 1)2

=
δ(n + w)(δ(n − w0(Δ)) − (2n + 2)w0(Δ))

n(δ + n + 1)2

≤ δ(n + w)(Δ(n − w0(Δ)) − (2n + 2)w0(Δ))
n(δ + n + 1)2

= 0

For w < w0(Δ): Since for δ ≤ Δ

d2

dw2 [ρ(w, δ, n) − ρ(w, Δ, n)] = (n + 1)
(

2 + 2
n

(δ + n + 1)2
−

2 + 2
n

(Δ + n + 1)2

)
is greater equal zero, the maximum of this difference is either at w = 0 or at
w = w0(Δ). But

ρ(0, δ, n) − ρ(0, Δ, n) = (n + 1)
(

n(δ − Δ)(nδ + 2Δδ + δ + nΔ + Δ)
(δ + n + 1)2(Δ + n + 1)2

)
≤ 0

and

ρ(w0(Δ), δ, n)− ρ(w0(Δ), Δ, n) =
4δn(n + 1)(δ − Δ)(n + Δ + 1)

(δ + n + 1)2(2n + Δ + 2)2
≤ 0. ��

Lemma 2 together with the definition of w0(Δ) implies the following:

Theorem 6. For any n ≥ 1 and for any Δ > 0, no deterministic online al-
gorithm can have competitive ratio better than 1 + w0(Δ)2/n, where w0(Δ) =
nΔ/(2 + 2n + Δ). Therefore, Det is optimal.

Similar to Section 3 we can extend this result to any randomized algorithm
Rand.

Theorem 7. For any n ≥ 1 and for any Δ > 0, no randomized algorithm Rand

can be better than Det.

Proof. We first observe that the function ρ(·, δ, n) is convex, that is, for every
δ ≥ 0 and for any two vectors w, z it holds that

λ · ρ(w, δ, n) + (1 − λ) · ρ(z, δ, n) ≥ ρ(λw + (1 − λ)z, δ, n), (7)

for λ ∈ [0, 1]. This follows from Equation 5 and from the fact that the func-
tion (1 + x)2 is convex. In particular, for e = (E[W2], . . . , E[Wn+1]) being the
expected vector of W = (W2, . . . , Wn+1), we obtain

max
δ

E[ρ(W , δ)] ≥ max
δ

ρ(e, δ) (Jensen’s inequality)

≥ max
δ

ρ(u(en+1), δ) (apply Fact 4 with en+1 = E[Wn+1])
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The latter quantity is the competitive ratio of the deterministic algorithm corre-
sponding to the vector u(en+1). Theorem 6 thus implies the desired result. ��

5 Conclusion

Disposition in a transportation system is critical for customer satisfaction. In
this paper we look at a disposition problem arising in high-frequency bus (or
tram or train) systems from an algorithmic point of view. We formulate the
problem as an online problem and prove tight bounds on the competitive ratio
of the problem.

This work provides a basis for competitive analysis of disposition in more
complex high-frequency transportation systems. We prove our results for a basic
setting which captures some of the main aspects of more complex situations.
In particular, our model focuses on the waiting time experienced by passengers
waiting at a station. Our results characterize the loss of efficiency (w.r.t. the
total waiting time) depending on the amount of resources available (i.e., the
number of buses) and on the amount of information about the delay we have
(i.e., an upper bound Δ on the delay δ).

We have shown that optimal solutions can be obtained from very simple de-
terministic algorithms which fix the waiting time of the bus Bn+1 preceding the
delayed bus to a value w0(Δ) · t, where t is the time two consecutive buses reach
the station if not delayed. The optimal waiting time for the other buses is always
uniquely determined by the waiting time chosen for Bn+1. This simple strategy
outperforms any possible randomized choice of buses waiting times.

As future research, our setting can be extended in several ways to reflect real
world aspects. For instance, several stations with different arrival rates, several
bus lines sharing some stations, or other cost functions can be considered.

Moreover, the formulation as an online problem can be applied to other dispo-
sition problems in transportation systems. In this context, the model should be
adapted to the different types of possible reactions in the case of an unexpected
event and the appropriate cost function.

Acknowledgments. The authors wish to thank an anonymous reviewer for sug-
gesting the use of Jensen’s inequality argument in the analysis of randomized
algorithms and for suggesting a simpler proof of Lemma 1. This work has been
partially supported by the Swiss National Science Foundation under Project no.
200021-107685 (Algorithmic Methods for Delay Management). Most of this work
was done while the second author was working at ETH Zürich.
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13. Ginkel, A., Schöbel, A.: To Wait or Not to Wait? The Bicriteria Delay Management
Problem in Public Transportation. Transportation Science 41(4), 527 (2007)

14. Heimburger, D.E., Herzenberg, A.J., Wilson, N.H.M.: Using simple simulation
models in operational analysis of rail transit lines: Case of study of boston’s red
line. Transportation Research Record 1677, 21–30 (1999)

15. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs
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Abstract. This paper deals with disruption management in passenger
railway transportation. In the disruption management process, many ac-
tors belonging to different organizations play a role. In this paper we
therefore describe the process itself and the roles of the different actors.

Furthermore, we discuss the three main subproblems in railway dis-
ruption management: timetable adjustment, and rolling stock and crew
re-scheduling. Next to a general description of these problems, we give
an overview of the existing literature and we present some details of the
specific situations at DSB S-tog and NS. These are the railway operators
in the suburban area of Copenhagen, Denmark, and on the main railway
lines in The Netherlands, respectively.

Finally, we address the integration of the re-scheduling processes of
the timetable, and the resources rolling stock and crew.

1 Introduction

Many Europeans travel frequently by train, either to commute or in their leisure
time. Therefore, the operational performance of railway systems is often dis-
cussed in the public debate. Travelers expect to arrive at a specific time at their
destination. If they travel by rail, they expect to arrive more or less at the time
published in the timetable. However, unforeseen events often take place, which
cause delays or even cancelations of trains. As a result, passengers arrive later
than expected at their final destinations. Due to missed connections, the delay
of a passenger can be even much larger than the delays of his individual trains.

Due to the importance for the public on one hand and the deregulation of the
railway market on the other, railway operators now put more emphasis on their
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Fig. 1. The S-tog railway network

operational performance than in the past. Furthermore, due to the separation
of the management of the infrastructure and the operations in many European
countries (including Denmark and The Netherlands), several organizations are
responsible for the performance of the railway system.

This paper deals with passenger railway transport only. However, in addition
to the passenger railway operator itself, the infrastructure manager and other
(also cargo) operators have a strong influence on the performance of the railway
services of that single operator. Therefore, the role and the objectives of the
infrastructure manager and of the operators are discussed.

We consider two passenger railway operators in more detail: DSB S-tog and
NS. DSB S-tog is the operator of local train services in the greater Copenhagen
area, see Figure 1. NS is the main operator in The Netherlands, having the
exclusive right to operate passenger trains on the so-called Dutch Main Railway
Network until 2015, see Figure 2. Both companies operate a set of lines on their
network, where a line is defined as a route between two stations, sometimes
called terminals, operated with a certain frequency, e.g. line A of S-tog runs
between Hillerød and Hundige every 20 minutes.

Unfortunately, trains do not always run on time due to unexpected events.
Examples are infrastructure malfunctions, rolling stock break downs, accidents,
and weather conditions. Such events are called disruptions. The Dutch railway
network has approximately 17 disruptions related to the infrastructure per day
with an average duration of 1.8 hours. About 35% of these infrastructure related
disruptions are related to technical failures, while another 35% is related to third
parties (e.g. accidents with other traffic). Next to the disruptions to infrastruc-
ture failures, there are also disruptions caused by the operators. The three main
causes for delays contributed to DSB S-tog are delays due to passengers (45%),
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NS
Other operators

Fig. 2. The Dutch railway network (in 2008)

rolling stock problems (30%) and drivers (15%). The proportion between the
disruptions caused by the operators and the infrastructure is roughly 50-50 in
The Netherlands as well as in Denmark.

Of course, infrastructure managers and operators try to avoid disruptions.
Unfortunately, many of them are hard to influence. Therefore, it is very impor-
tant to limit the consequences of these disruptions. A very common problem in
railways is that, due to the strong interdependencies in the railway network and
due to cost efficient resource schedules, disruptions are very likely to spread over
the network in space and time. This well-known phenomenon is called knock-on
effect. The key to a good performance of railways is to limit the knock-on effect
and thereby to limit the impact of single disruptions. Therefore, operating plans
should be robust and effective disruption management is required. In this paper,
we will only look at the second problem. In addition, note that the consequences
for passengers can be limited by delaying connecting trains such that passengers
can still have their connection even if their arriving train has a delay. This latter
problem is known as delay management ([21,22]), however this topic falls outside
the scope of the current paper.

So far, Operations Research (OR) models have hardly been applied in prac-
tice for disruption management in railway systems. Nevertheless, it is our strong
belief that OR models can play an important role to limit the impact of disrup-
tions and thereby to improve the performance of railway systems. This belief is
supported by the fact that nowadays OR models and techniques play a major
role in several railway companies during the planning phase, where the focus
is on a good balance of the service level offered to the passengers and the effi-
ciency of the resources rolling stock and crew. The best example is probably the
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introduction of the new Dutch timetable, for which NS received the 2008 Franz
Edelman Award, [14]. For an overview on these models and techniques, we refer
to surveys of [3,5,7,11], and to the book [9]. Moreover OR models have proven
to be quite effective already for supporting disruption management processes in
the airline context, see e.g. [26] and in many other fields, see [25].

The objectives of this paper are twofold. First, we intend to give a comprehen-
sive description of the problems arising in disruption management for railway
systems. Second, we aim at attracting new researchers to this field by describing
the challenges that railway companies are faced with to improve their operational
performance.

The remainder of this paper is organized as follows. In Section 2 we give a de-
scription of disruption management for railway systems, including a description
of organizations and actors involved in this process. In Sections 3-5, we discuss
timetabling, rolling stock and crew aspects of the disruption management pro-
cess. Section 6 deals with the advantages and possibilities of integrating some
of these processes. Finally, we finish the paper with some concluding remarks in
Section 7.

2 Description of Disruption Management

Clausen et al. [6] give the following definition of a disruption in relation to airline
operations: “An event or a series of events that renders the planned schedules
for aircraft, crew, etc. infeasible.” By definition, a disruption is hence a cause
rather than a consequence. In this paper we use the same definition for railway
operations, substituting “aircraft” with “rolling stock”.

A disruption does not necessarily have immediate influence on the timetable -
some disruptions like a track blockage renders the planned timetable immediately
infeasible, while others as e.g. shortage of crew due to sickness may lead to
cancelations either immediately, in the long run or not at all, depending on the
number of stand-by crews. Note that a disruption leads to a disrupted situation.
Even though this is a slight abuse of terms, we will occasionally refer to the
disrupted situation as the disruption itself.

Accordingly, we define railway disruption management as the joint approach
of the involved organizations to deal with the impact of disruptions in order to
ensure the best possible service for the passengers. This is done by modifying
the timetable, and the rolling stock and crew schedules during and after the
disruption. The involved organizations are the infrastructure manager and the
operators.

Of course, one first has to answer the question if the situation is disrupted,
i.e. if the deviation from the original plan is sufficiently large or not. Similar to
the airline world (see [13]), this question is normally answered by dispatchers
monitoring the operations. Although this is a difficult task, it is not considered
any further in the remainder of this paper.

The Sections 2.1 to 2.3 introduces a framework of organizations, actors and
processes in disruption management, which is valid for several European railway
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systems. In Section 2.4 we discuss the organizational context of the disruption
management process.

2.1 Organizations

The organizations directly involved in disruption management are the infras-
tructure manager and the railway operators. These organizations usually have
contracts with the involved government. Moreover, there are direct appoint-
ments between the infrastructure manager and the operators. These issues are
described below.

The infrastructure manager has a contract with the government that obliges it
to provide the railway operators with a railway network of a certain infrastructure
capacity and reliability. The infrastructure manager has also the responsibility of
maintaining the railway network as efficiently as possible.

A passenger railway operator obtains a license to operate passenger trains
on the network from the government. The operator is contractually bound to
provide a performance that exceeds certain specified thresholds on certain key
performance indicators. For example, there may be thresholds for the number of
train departures per station, for the (arrival) punctuality at certain stations, for
the percentage of realized connections, for the seating probability, etc. Here, the
punctuality is the percentage of trains arriving within for example 3 or 5 minutes
of their scheduled arrival time at certain stations. The realization figures on these
performance indicators have to be reported to the government periodically. If an
operator does not reach one of the thresholds, it has to pay a certain penalty to
the government. If the performance is very poor, another operator may be given
the license to operate trains on the network.

As a consequence, usually the main objective of the railway operator is to
meet all thresholds set in the contract with the government at minimum cost.
The latter is due to the fact that the railway operators are commercially op-
erating companies. Thus, the number of rolling stock units on each train must
match with the expected number of passengers. Deadheading of rolling stock
units between depots and to and from maintenance facilities must be minimized.
Furthermore, the number of crews needed to run the operations and to cover
unforeseen demand must be minimized as well.

In more detail, an important objective of the operators in the disruption
management process is to minimize the number of passengers affected by the
disruption, and to minimize the inconvenience for the affected passengers. In-
deed, small delays of trains are usually not considered as a bad service by the
passengers, but large disruptions are. If passengers are too often confronted with
large disruptions, which usually lead to long extensions of travel times and, even
worse, to a lot of uncertainty about travel options and travel times, they may
decide to switch to a different mode of transport. In relation to this, passenger
operators usually prefer to return to the original timetable as soon as possible af-
ter a disruption. Indeed, the original timetable is recognizable for the passengers.
Therefore, the original timetable provides a better service than a temporary ad
hoc timetable during a disruption.
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The passengers are the direct customers of the railway operators, and they are
only indirect customers of the infrastructure manager. This may imply that the
manager has less knowledge of the expected passenger demand on each train and
of the real-time passenger locations in the operations. The latter may prohibit
a passenger focused dispatching, and may instead lead to a network capacity
focused dispatching, i.e. dispatching focusing on supplying sufficient buffer times
in the network to recover from disruptions.

Furthermore, each delay of a train may be attributed either to a railway op-
erator or to the infrastructure manager (where the latter one is usually also re-
sponsible for delays caused by external factors), depending on the nature of the
disruption. However, this creates a natural conflict between the organizations
that may prohibit an effective communication and co-operation in the opera-
tions. The latter may be counter-productive for the operational performance of
the railway system. Thus, although the infrastructure manager and the railway
operators have the same general objective of providing railway services to the
passengers of a high quality level, there are also conflicting elements in their
objectives.

2.2 Actors

In railway disruption management, the actors are the dispatcher of the infras-
tructure manager and those of the railway operators. The major tasks to be
carried out are timetable adjustment, rolling stock re-scheduling, and crew re-
scheduling. Figure 3 shows how the responsibilities for the different elements are
shared among the actors.

The infrastructure manager controls and monitors all train movements in the
railway network. Network Traffic Control (NTC) covers all tasks corresponding
to the synchronization of the timetables of the different operators. NTC has

Fig. 3. Schematic view of actors, timetables and resource schedules
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to manage overtaking, re-routing, short turning, or canceling trains in order to
prevent them from queueing up. The latter is a permanent threat at the basically
one-dimensional railway infrastructure. Queueing up of trains immediately leads
to extensions of travel times.

On a local level, the process is managed by the Local Traffic Control (LTC).
For example, LTC is responsible for routing trains through railway stations and
for platform assignments. Safety is ensured by headways and automatic track
occupancy detection systems.

The Network Operations Control (NOC) of each passenger operator keeps
track of the operations of the operator on a network level. The dispatchers of
NOC are acting as decision makers for the operator in the disruption manage-
ment process. Depending on the size of the operator, there are one or more
dispatchers for rolling stock and crew, respectively. These dispatchers monitor
and modify the rolling stock and crew movements. NOC dispatchers are the
counterparts of the dispatchers of NTC.

Dispatchers of the Local Operations Control (LOC) of the railway operators
are responsible for coordinating several local activities at the stations, such as
shunting processes. They support NOC by evaluating whether changes to the
rolling stock schedules can be implemented locally.

Train drivers and conductors are also important elements in the disruption
management process. They are usually the first ones that are confronted with
passengers that are affected by a disruption. If train drivers and conductors
work on different lines, they may carry a delay from one line to another. In
order to avoid this situation, the crew dispatchers may have to modify several
duties. Besides making the decisions, the dispatchers also have to instruct and
sometimes to convince the crew members to carry out the modifications, see
Section 5.

2.3 Processes

NTC dispatchers constantly monitor the operations and have to decide if an
actual situation is a disruption or will lead to a disruption in the near future.
When this is the case, they start the disruption management process. Within
this process, the original timetable may need to be changed. This is done by
carrying out a dispatching plan. Figure 4 displays the information flows between
the different actors in this process.

First, NTC determines all trains that are affected by the disruption. NOC
of the corresponding operators must then be informed about the disruption
and its direct consequences. In the next step, the dispatchers have to find out
to which extent it is still possible to run traffic on the involved route. Some
pre-defined emergency scenarios give an indication about which trains should be
overtaken, re-routed, short turned, or canceled. Using this information, an initial
dispatching plan can be constructed. This dispatching plan must be evaluated
by LTC. Almost simultaneously, the proposed dispatching plan is communicated
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Fig. 4. Information flow during the dispatching plan development

to NOC of the operators. A complicating factor is the uncertainty about the
duration of the disruption, for example NTC can only estimate how long it will
take to repair a broken switch or signal.

The dispatching plan may correspond to changes in the planned operations
of several operators. As a whole, these changes are compatible with respect
to the safety regulations. However, for the operators it may be impossible to
operate the dispatching plan due to their resource schedules for rolling stock or
crew. Therefore, the decision about the dispatching plan is taken in consultation
between the infrastructure manager and the operators.

Hence, NOC dispatchers have to check whether it is possible for them to oper-
ate the proposed dispatching plan. In particular, they have to check whether they
can adapt their resource schedules to the proposed dispatching plan. Further-
more, LOC has to verify that the modified timetable and the adapted resource
schedules can be carried out locally. Because the resource scheduling problems
are NP-hard and the available time is limited, not all re-scheduling options can
be evaluated. The re-scheduling solutions represent a trade-off between the avail-
able time and the quality of the solution.

This evaluation procedure can basically have three different outcomes. First,
NOC and LOC may find a re-scheduling solution to the proposed dispatching
plan where no additional cancelations or delays are needed. Second, they may
find an initial solution, but trains have to be canceled in a second stage because
rolling stock and/or crews are unavailable. A cancelation of a train has, however,
a strong negative impact on the service level. Finally, NOC may come up with
a request for changes to the proposed dispatching plan if this enables them to
construct a much better solution.

Of course, not only one but several operators may ask for changes in the
proposed dispatching plan. When these requests are conflicting, it is the respon-
sibility of NTC to make a fair decision. This may involve another iteration of
proposal and evaluation between NTC and the operators.
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After the final decision about the dispatching plan has been taken by NTC,
it is communicated to LTC and to the operators. LTC has to implement the
new train routes and change platform assignments. NOC has to inform the train
drivers and conductors whose duties have been changed. LOC has to generate
new shunting plans. LOC communicates directly with LTC to ask for time slots
for shunting movements in the station area. Furthermore, passengers need to be
informed in trains, at stations, and via internet and teletext about the changes
in the timetable and alternative travel routes.

2.4 Organizational Issues

The description in Section 2.2 of the actors in the disruption management process
is a functional description, and not an organizational. For example, it suggests
that all dispatchers of each of the mentioned actors are located in the same office.
However, this need not be the case.

For example, in the Danish case, NTC, LTC and the timetable and rolling
stock dispatcher of the NOC of S-tog are located in the same room, but the crew
dispatcher of NOC is located at the crew depot of S-tog. This division was made
on request of the train drivers. In practice, it creates some challenges regarding
effective communication between the different dispatchers.

In The Netherlands, the situation is even more complex: The Netherlands have
been split up into 4 regions, and each region has its own NTC office and its own
NOC office of NS. Moreover, there is a central NOC office of NS for coordinating
the rolling stock re-scheduling process. Similarly, there are 13 LTC offices and 13
LOC offices of NS. Obviously, this organizational split leads to a lot of additional
communication within NTC and within NOC, which is counter-productive in the
disruption management process. Therefore, there are currently plans to bring all
offices of NTC together, and to do the same with the NOC offices. Moreover, it
is investigated how the separation between the infrastructure manager and the
operators can be reduced.

3 Timetable Adjustments

3.1 Problem Description

NTC has the overall responsibility of the railway operations and coordinates the
disruption management process. When a disruption is recorded, NTC evaluates
its effect and, if it is considered as severe, NTC tries to re-schedule the events
of the timetable affected by the disruption.

The severeness of a disruption is not easily assessed. It is described as a
combination of how much time will pass until the operations are according to
plan again and how many trains will be affected. The number of passengers that
get delayed because of a disruption also contributes to its degree of severeness.
Finally, it makes a large difference to the severeness whether the time intervals
between trains on the same track (headways) are small or large. The effect caused
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by a blockage will be less on sections of the network with much time between
the trains than on sections with little time between the trains.

Timetables are constructed with included buffer time. Therefore, a timetable
is able to absorb some disruptions. Buffer times are included in the dwell times,
the running times, and the headways. When a disruption occurs, the buffer times
in the timetable are used to gain time whenever possible. Thus they enable
recovery from a disruption.

The state of the daily operation of a train operator at some point in time is
influenced by a number of factors, including the current state of the infrastruc-
ture (the rail network), and the state of all resources necessary in the operational
phase, most notably rolling stock and crew. In the following we introduce the
concepts of infrastructural capacity, operational capacity, utilization, and resid-
ual operational capacity.

The infrastructural capacity of a rail network in a particular state is the
maximum amount of traffic (number of trains per time unit) which is continously
able to flow through the network in this state. The infrastructural capacity
is independent of the current amount of traffic. The operational capacity of
the network is the maximum amount of traffic which is continously able to
flow through the network given the current states of network and resources in
terms of crew and rolling stock. Note that this is always less than or equal to
the infrastructural capacity. The utilization of the network at the current point
in time is the amount of continuously flowing traffic. It depends on both the
network state and the state of each resource and is always less than or equal to
the operational capacity. The residual operational capacity or just the residual
capacity is the difference between the operational network capacity and the
utilization at the current point in time.

When a severe disruption occurs and it cannot be absorbed by the buffers in
the timetable, the utilization of the network decreases, and trains may queue
up. In that case, NTC aims to increase the operational capacity and thereby
the residual capacity in the network by e.g. moving trains faster through the
network, allowing overtaking at relevant stations, turning trains earlier, canceling
departures, etc. Residual capacity is in general maintained by controlling the
traffic flowing in the network and by preventing blocking situations to occur.

In Sections 3.2 and 3.3 we distinguish between disruptions with low and high
impact on the timetable. Low level impact disruptions are those where recovery
to the originally planned timetable is possible by using so-called dispatching
rules. High level impact disruptions are those where recovery in this way is not
possible, for example, if a complete blockage occurs at some part of the network.
In such a case, more significant recovery measures are needed.

3.2 Dispatching Rules at S-tog and NS

Dispatching rules are used for disruptions that have a lower level of impact on
the railway system. Dispatching rules are further divided into three subgroups
according to the level of severeness of the disruption that invoked them. For
disruptions with the lowest level of impact, where no substantial decrease in
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utilization has yet emerged, it is sufficient to make few modifications to the
timetable. At the next level, where the traffic is more affected by the disruption,
it is necessary to increase the utilization of the network. This may require that the
operational capacity is increased, for example through changes in the timetable
in stopping patterns. The severest of the low impact disruptions need an increase
in residual network capacity through a decrease in utilization before recovery to a
state with larger utilization (corresponding to the original timetable) is possible.
We give examples of dispatching rules at the two latter levels: Overtaking and
changing stopping patterns, and cancellation of single trains and entire train
lines.

The different rules have different abilities to relieve disruptions and they have
different effects for the passengers. From the passengers’ point of view, a rule may
affect the number of train departures per station or it may force the passengers
to change their routes. The effect of a dispatching rule on the delays of trains and
its effect on the passengers can be conflicting. Increasing the residual capacity
often implies a decrease in utilization through a reduction in the number of train
departures, which is undesirable from the passengers’ point of view. However,
not increasing the residual capacity will make it very hard to absorb a delay,
and this is also undesirable for the passengers.

Overtaking and Changing Stopping Patterns. Handling operations is less
complex if there is a predetermined order of train lines, which in case of a dis-
ruption can be broken on stations with multiple platforms in the same direction
i.e. where overtaking between trains is possible. This is, for example, used when
a fast train reaches a delayed stop train at a station with two platforms available
in the same direction.

If a stop train, S, is delayed and a fast train, F, catches up with it, and no
overtaking is possible, another option is to change the stopping patterns of S
and F provided that the two trains are of the same rolling stock type. This
rule is specifically used at S-tog. The passengers on train S are informed that
after the next stop S becomes a fast train. This enables passengers to get off
in time, if their destinations are stations, where fast trains do not stop. These
passengers just enter the immediately following train F (the former fast train)
and are hence not delayed further. The passengers in S for the fast train stops
experience a catch up of the delay due to the switch of stopping patterns. The
passengers on F are similarly informed that their train becomes a stop train.
Since overtaking is not possible, they experience hardly any additional delay
compared to the initial situation, where train F is blocked by the stop train
S. Hence, no passenger is delayed more than what was caused by the initial
disruption. Note that the operation does not require a platform long enough to
accommodate two trains, and that only part of the passengers from the stop
train S have to change train.

Increasing Residual Capacity. Residual capacity is increased when depar-
tures are canceled. Canceling a departure from a terminal will increase the resid-
ual capacity along the entire route of the train. However, from the point of view
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of NOC, it leaves a number of train units at the departure terminal. This might
enforce the cancelation of a departure at the terminal at the other end of the
line and may create parking capacity problems at the shunting areas.

It is also possible to cancel an entire train line. An example of how this dis-
patching rule is used in practice is the cancelation of line B+, which is a line in
the present S-tog timetable, cf. Figure 1. Suppose that there are signaling prob-
lems between Hellerup and Holte and the trains must run slower than indicated
by the timetable. The lines operated on this route are lines A and E running
from Hillerød and lines B and B+ running from Holte. To enable better absorb-
tion of the ongoing disruption, NTC decides to increase the residual capacity by
cancelling line B+. This decreases the network utilization thereby allowing an
increase in the headways between the remaining trains. The cancellation is im-
plemented by shunting trains on line B+ to shunting areas as these are reached
along the route of line B+.

The advantages of the described dispatching rules are that they all increase the
residual capacity for absorbing delays in the disrupted situation. The passengers,
however, will experience that there are less departures, which for some passengers
will obstruct their travel plans. Also, the seat capacity of the trains still in
operation is most likely insufficient. Customer questionnaires show that, like
delays and canceled departures, this is also considered as poor quality of service.

3.3 Larger Disruptions

For high impact disruptions, a set of emergency scenarios may exist, e.g. when
tracks in one or both directions are completely blocked. These emergency sce-
narios describe for each section in the network and each direction an alternative
timetable.

The immediate reaction to a high impact disruption is to apply an appropriate
emergency scenario. On heavily utilized networks, the headways are so tight that
the system will queue up immediately if no adequate measures are taken after
a high impact disruption has occurred. Therefore, almost all railway traffic is
canceled around the disrupted area. Trains may be turned as closely as possible
to this location. Otherwise, trains may be rerouted, but this requires sufficient
capacity on the detour route. Finally, some lines may be canceled completely.

As an example, consider a situation in which the tracks in both directions
between stations Dysseg̊ard and Buddinge near Copenhagen are blocked, see
Figure 1. The lines crossing this section in a normal situation are the lines A+,
H, and H+. Line A+ is operated between Køge and Buddinge, and lines H and
H+ are operated between Frederikssund and Farum. The emergency scenario for
this blockage is presented in Tables 1 and 2.

Table 1 shows how the lines are changed and whether they are canceled partly
or fully. Unless other disruptions occur, only the lines directly involved in the
blockage are included in the emergency scenario.

Table 2 specifies how many trains are necessary and which turnaround times
must be used for them. Each line is changed according to its stopping pattern.
Lines A+ and H+ are shortened, and therefore they can be run by 6 and 8
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Table 1. Changes of the lines on the section Dysseg̊ard to Buddinge

Line Changed from and to Canceled from and to

A+ Køge to Østerport Østerport to Buddinge

H
Frederikssund to Dysseg̊ard

Dysseg̊ard to Buddinge
Buddinge to Farum

H+ Frederikssund to Svanemøllen Svanemøllen to Farum

Table 2. Turnaround times and necessary numbers of trains

Line Traffic south of blockage Traffic north of blockage

Køge to Østerport
A+ Turnaround time: 10 min. Canceled

Trains necessary: 6
Frederikssund-Dysseg̊ard Farum-Buddinge

H Turnaround time: 19 min. Turnaround time: 13 min.
Trains necessary: 8 Trains necessary: 3
Frederikssund-Svanemøllen

H+ Turnaround time: 16 min. Canceled
Trains necessary: 8

trains, respectively, whereas 8 and 10 trains are necessary normally. Line H is
split into two parts and needs 8 plus 3 trains in the disrupted situation, whereas
10 trains are necessary normally.

Given the information in Tables 1 and 2, NTC knows which lines to cancel,
where to launch bus-services, how many trains to use for each line, and how
many train units to shunt to shunting areas.

4 Rolling Stock Re-scheduling

4.1 Problem Description

This section describes rolling stock re-scheduling in a disrupted situation. Here
the assumption is that, whenever this is necessary, the timetable has already
been adjusted to the disrupted situation. The main goal is to decide how the
rolling stock schedules can be adjusted to this new timetable at reasonable cost
and with a minimum amount of passenger inconvenience.

The most characteristic feature of rolling stock is that it is bound to the
tracks: rolling stock units cannot overtake one another, except at locations with
parallel pairs of tracks. A broken rolling stock unit may entirely block the traffic
– actually, this is a frequent cause of disruptions. Moreover, the operational
rules of rolling stock units are largely determined by the shunting possibilities
at the stations. Unfortunately, shunting is a challenging problem in itself, even
for a medium-size station. Therefore, NOC must constantly keep contact with
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LOC and check whether or not their intended measures can be implemented in
practice. The modifications may be impossible due to lack of shunting drivers or
infrastructure capacity.

In the re-scheduling process, the timetable services must be provided with
rolling stock which is usually available in several different types. The assignment
must fulfill some elementary requirements. For example, electrical rolling stock
units cannot run on lines without catenary wires, and no train should be longer
than the shortest platform on its route. The shunting capacity of most stations is
severely restricted in a disrupted situation. Therefore the re-scheduling process
aims at reducing the number of modification of previously planned shunting
operations, without introducing new ones at locations or points in time where
they do not occur in the original schedules.

Railway operators usually keep rolling stock on stand-by. These units can
be used only in case of disruptions. Moreover, many of the rolling stock units
are idle between the peak hours, since the available rolling stock capacity is
usually larger than than the off-peak passenger demand. If a disruption takes
place during off-peak hours, these idle units can act as stand-by units.

In case of a disruption, the first dispatching task is to assign the available
rolling stock units to train tasks. These decisions are taken under high time
pressure, often guided by the emergency scenarios which tell how the trains
have to turn. Whenever there is room for changes, the planners try to cover
the seat demand as well as possible. In some cases, however, they are forced to
cancel trains due to lacking rolling stock.

After a disruption, it is preferable for the rolling stock schedules to return to
the originally planned schedules as quickly as possible, since the feasibility of
the originally planned schedules has been checked in detail. As a consequence of
all these measures, the rolling stock units will not finish their daily duties at the
locations where they were planned prior to the disruption. This is not a problem
if two units of the same type get switched: rolling stock units of the same type
can usually take each other’s duty for the rest of the day. It is more likely that,
at the end of the day, some stations have more units of a type than originally
planned, and others have less. Thus, unless expensive deadheading trips are used,
the traffic on the next day is influenced by the disruption. Modifications of the
schedules for the busy peak hours of the next morning are highly undesirable.
Therefore additional measures are to be taken so that the rolling stock balance
at night is as close to the planned balance as possible.

A further important element in rolling stock re-scheduling is maintenance of
rolling stock. Train units need preventive maintenance regularly. The railway
operators limit the maximum number of kilometers a unit can serve between
two maintenance checks. The train units undergo these large-scale inspections
typically once a month. Due to efficiency reasons, units are usually in service
just until they reach the maintenance limit. Units that are close to this limit
and have to undergo a maintenance check in the forthcoming couple of days
are monitored permanently. The latter is particularly important during and af-
ter a disruption which may have cut the planned route of the units towards a
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maintenance facility. NOC has to make sure that these units reach a maintenance
facility in time. Usually, only a small number of rolling stock units is involved in
planned maintenance routings. Other units of a given type are interchangeable,
both in the planning and in the operations.

4.2 Current Practice at S-tog and NS

Both companies operate a dense railway system. This basically allows for many
alternative rolling stock schedules through exchanges of train units. However,
usually trains have short turn-around times, which rules out complex shunting
operations at end points. Also, the shunting capacity (shunting area and crews) of
stations is often a bottleneck. NS and S-tog operate rolling stock units of several
types. Moreover, a train may contain units of different types, and then the order
of the train units in the train is important. Notice that combining different
types allows adjusting the seat capacity well to the passenger demand. In case
of disruptions, however, the dispatchers have the additional task of monitoring
and re-balancing exchanged rolling stock types.

Both NS and S-tog do use sophisticated computer systems for rolling stock
management. NS uses an automated tracking and tracing system for real-time
monitoring the individual units. At S-tog, the tracking and tracing data is up-
dated manually. These systems, however, lack algorithmic decision support tools;
nearly all decisions have to be taken and to be fed to the system manually. As a
consequence of the lack of decision support, the dispatchers focus on the imme-
diately forthcoming time period only. Dispatchers identify possible conflicts, and
handle them in order of urgency. This approach is commonly known as rolling
horizon. Note that even if there were decision support tools available, the rolling
horizon approach is still a natural candidate for handling disruptions since it can
deal with the intrinsic uncertainty of future events.

As mentioned in Section 3.3, a recovery method employed by S-tog for large
disruptions is canceling train lines. NOC at S-tog has the responsibility of deter-
mining a plan how to re-insert the lines after the disruption. A model has been
constructed for finding an optimized re-insertion plan, see [12]. Based on the
given number of trains that must be re-inserted from each depot along the line
and the start time of the re-insertion, the model calculates which trains must
be re-inserted from which depots, and how the drivers for these trains can get
to these depots. The automatic decision support system for re-inserting train
lines is used in the operations. Moreover, in an ongoing project, the problem of
re-allocating rolling stock units to trains in the operations is addressed.

4.3 New Developments

Compared to medium-term planning, there is a very scarce literature on real-
time rolling stock re-scheduling. In the recent years intensive research has been
conducted to develop methods for the real-time problems as well.

Budai et al. [4] study the Rolling Stock Balancing Problem. It is assumed that
the timetable and a feasible rolling stock schedule are given. Moreover, the target
rolling stock balance is given. This target is equal to the number of units per type
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that were originally supposed to arrive at the stations at the end of the planning
horizon. The Rolling Stock Balancing Problem aims at modifying the input sched-
ule in such a way that the realized end-of-day balance is as close to the target as
possible.

Although the problem was first studied for the operational planning phase, it
is also relevant in real-time re-scheduling after a disruption when all immediate
conflicts have been resolved (that is, there is a feasible schedule) but the realized
end-of-day rolling stock balance differs from the target balance.

Budai et al. [4] prove that an off-balance of a single train unit leads to an
NP-hard optimization problem. Also, two heuristic algorithms are developed and
compared to exact optimization methods. The computational results on real-life
problem instances of NS indicate that the heuristic algorithms provide solutions
of promising quality very quickly, within a few seconds.

Another track of research aims at applying an existing rolling stock circulation
model of [8] for real-time planning.

Nielsen [16] measures the overall performance of the rolling stock re-scheduling
algorithm by three objective criteria: (i) cancellation of trips; (ii) deviation from
the originally planned shunting process; and (iii) deviation from the originally
planned end-of-day balance.

Criterion (i) is related to keeping a high service quality, while criteria (ii) and
(iii) measure the deviation from the undisrupted schedule. In particular, minimiz-
ing criterion (ii) enhances the chance that the found solution can be implemented
in practice. Indeed, new, non-planned shunting operations can turn out to be im-
possible due to lacking shunting capacity. Finally, minimizing criterion (iii) tries
to reduce the disruption’s consequences for the next day.

The algorithm of [16] is based on the flexible linear integer programming model
of [8]; this model has been used by NS since 2004 for medium term planning. To
find a schedule for the disrupted timetable, the model of [8] is extended in such a
way that the criteria (i), (ii) and (iii) are taken into account. However, the model
cannot deal with uncertainties of the input data, and solving it by commercial
MIP software can take several hours. Therefore [16] developed a rolling horizon
based solution approach for dealing with real-time re-scheduling problems of NS.
The main idea of the rolling horizon algorithm is to consider at any moment the
forthcoming, say, 3 hours only. Based on the latest forecasts on the duration
of the disruption, the updated timetable is created. Then the extended MIP
model is solved for the considered time horizon. This optimization can indeed be
performed in a few seconds. An hour later, or whenever new, relevant information
arrives, the model is solved again for the forthcoming 3 hours. This process is
repeated until the end of the day. The algorithm is inspired by the current rolling
stock disruption management process in practice.

While the criteria (i) and (ii) are easily incorporated in a rolling horizon
framework, the deviation from the target rolling stock balance is conceptually
more difficult: The end of the day is not visible before the very last iteration.
Nielsen [16] proposes a heuristic way to guide the rolling horizon algorithm to
the originally planned end-of-day balance.
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Nielsen [16] reports computational results on several realistic problem in-
stances of NS. These include disruptions on the so-called “Noord-Oost” case, a
particularly complex rolling stock scheduling instance. The rolling horizon based
algorithm found solutions with very little deviations from the undisrupted sched-
ule, both in terms of shunting and in terms of rolling stock balance. On-going
research focuses on making the algorithm fully comply with the restrictions of
railway practice. This includes fine-tuning the algorithm as well as some exten-
sions such as dealing with maintenance of rolling stock units.

5 Crew Re-scheduling

5.1 Problem Description

Recall that the recovery of the timetable, the rolling stock schedule, and the crew
schedule is usually done in a sequential fashion. For an estimated duration of the
disruption, a modified rolling stock schedule has been determined for a modified
timetable. Both are input for the crew re-scheduling problem, in which the crew
schedule needs to be modified in order to have a driver and an appropriate
number of conductors for each task of the modified timetable. Tasks can be either
passenger train movements, empty train movements, or shunting activities.

The modified timetable contains the unchanged tasks from the original
timetable which have not yet started and additional tasks which were created
as reaction to the disrupted situation. A duty becomes infeasible due to a time
or a location conflict. The latter may occur, e.g. when one of its tasks has been
canceled, and hence the corresponding driver cannot perform the remaining part
of his duty.

In Figure 5, we show an example of an infeasible duty. Because of a disruption,
the train containing task t3 is canceled. Driver d has already finished task t1 and
is at station B. He can perform the next task in his duty, but since t3 is canceled
he cannot go from station C to D. Hence, he will not be able to perform the two
last tasks of his duty. Furthermore, this means that, if no action is taken, these
two tasks need to be canceled as well. Moreover, driver d has to get back to his
crew depot at station A in an appropriate way and at a reasonable time.

The crew re-scheduling problem tries to re-assign tasks, such that the new
crew schedule covers all tasks of the modified timetable. Stand-by crews located
at major stations play an important role as they can be utilized in the new crew
schedule.

Fig. 5. An infeasible duty
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The possibilities for changing duties on the day of operation are based on
rules and agreements between the railway company and labor unions. These
possibilities usually vary from company to company. For example, the driver’s
route knowledge has to be taken into account as well as his license for certain
rolling stock types. In order to increase the flexibility of the crews, they can be
repositioned to another station by traveling on trains as passengers. This option
is called crew deadheading.

The objective of the crew re-scheduling problem is a combination of different
aspects, namely feasibility, operational costs, and stability. The feasibility aspect
is by far the most important, since infeasibility usually implies that trains have
to be canceled. It is the decision of the operator how to balance the aspects
operational costs and stability.

First of all, there is the feasibility aspect. It is not evident that all tasks can
be covered by a solution. Given two solutions with different uncovered tasks,
there may exist a preference for one of them, depending on the urgency and
the expected numbers of passengers of the uncovered tasks. If a task cannot
be covered, canceling it will lead to a feasible crew re-scheduling solution. An
additional cancelation, however, leads to more inconvenience for the passengers,
which is against the general aim of disruption management. Moreover, such a
cancelation has to be approved by the rolling stock dispatchers and the local
planners, since it disturbs the rolling stock circulation. Because a cancelation is
a change of the timetable, it has to be approved by NTC.

Operational costs are the second aspect in the objective. In the railway con-
text, the crew payments are often based on fixed salaries. Nevertheless, some
parts of a re-scheduling solution influence the operational costs. Crew dead-
heading on trains can be considered to have no costs other than time, whereas
using other transport options for repositioning and taking home stranded crews
is not free. Also, operator specific compensations for extra work due to modified
duties need to be considered.

The third aspect in the objective is stability. Humans are involved in the
implementation of every re-scheduling solution and can cause its failure. A crew
dispatcher may, for example, forget to call a driver and inform him about the
modifications in his duty. Therefore, a solution is considered to be more stable
if the number of modified duties is smaller.

5.2 Current Practice at S-tog and NS

A closely related problem is crew re-scheduling in short term planning. This
occurs for instance due to timetable changes based on maintenance work on
tracks. The resulting crew schedule is called a special plan. For the construction
of special plans additional rules have to be taken into account. If a special plan is
made prior than 72 hours before the day of operation, duties may start and end
up to 30 minutes earlier (respectively later) compared to the planned schedule.
Within the last 72 hours before the day of operation duties may start earlier or
end later only if this is accepted by the crew member.
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Both railway operators S-tog and NS nowadays use optimization software to
construct special plans. The optimization software TURNI, described e.g. in [2],
is used at S-tog. TURNI was designed for and has been used successfully for
solving ’classical’ crew scheduling problems in long term planning. NS is using a
dedicated approach ([10]) which has been integrated into the CREWS planning
system ([15]). Both applications rely on a combination of column generation and
Lagrangian relaxation.

For crew re-scheduling on the day of operation neither of the two companies is
using a decision support system. The crew dispatchers use an interactive software
system. This provides them with information about the actually planned duties,
and enables them to store their duty modifications in the system. The system
informs them about delays of trains and about modifications in the timetable
and rolling stock schedules. The system also indicates time and location conflicts
in the duties. Recovery options, however, have to be found manually without
algorithmic support. In the manual procedure, conflicts are resolved one at a
time in order of urgency.

As mentioned earlier several agreements exist about the way duties may be
modified on the day of operations. However, if a dispatcher finds an option out-
side these rules he might ask the affected drivers if they are willing to accept
the changes to their duties. Experiments were carried out to inform crew mem-
bers automatically via SMS about duty modifications. However, communicating
modifications via telephone is still common practice.

5.3 New Developments

Crew re-scheduling within disruption management was subject to several re-
search projects within S-tog and NS. Experience from short term planning made
already clear that is is not possible to consider all duties and tasks in the re-
scheduling problem due to too long computation times. Therefore all studies on
re-scheduling on the day of operations consider only a small part of the crew
schedule, given by a subset of the duties and a time window.

In a first study at S-tog, the standard version of TURNI was tested. The tests
have shown that in general these kinds of re-scheduling problems can be tackled
with column generation based optimization methods. However, tailored systems
are needed in order to reduce computation time.

One such tailored solution method to solve the crew re-scheduling problem
was developed by [20] and [19]. The problem is formulated as a set partitioning
problem and possesses strong integer properties. The proposed solution approach
is therefore a depth-first search in a branch-and-price tree. The LP-relaxation of
the problem is solved with a column and constraint generation algorithm. The
problem is first initialized with a very small disruption neighborhood, which
contains only duties that cover delayed, canceled or re-routed tasks and is lim-
ited by a recovery period. As long as tasks are uncovered, while solving the
LP-relaxation, the disruption neighborhood is extended by either adding more
duties to the problem or by extending the recovery period. In order to deal
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with new information becoming available the author(s) propose to use the crew
re-scheduling algorithm in a rolling time horizon approach similar to the one
proposed by [16] for rolling stock re-scheduling. The algorithm was tested on
instances based on historic disruptions using real-life crew schedules from S-tog.
The obtained results are very good in terms of solution quality as well as in
terms of computation time.

Potthoff et al. [18] extended the approach of [10] to crew re-scheduling during
disruptions. A column generation based heuristic computes solutions for core
problems containing a small subset of duties and tasks. Lagrangian relaxation
and subgradient optimization is used to obtain dual solutions for the restricted
master problems. A greedy Lagrangian heuristic constructs feasible solutions
from the generated columns. First an initial core problem is made of the affected
duties and a small number of duties that cover tasks on the same train lines
as canceled or re-routed trains within a specified time interval. If tasks remain
uncovered in the solution, new core problems are generated containing duties
in the “neighborhood” of an uncovered task. The main idea is similar to the
approach by [20] and [19]. Start with a small core problem and consider more
possibilities when tasks cannot be covered. While in [20] and [19] the initial
problem gets extended, [18] propose to consider different core problems. They
present a rule for the construction of a core problem based on a “neighborhood”
of an uncovered task. The idea behind the “neighborhood” is to find a set of
duties such that all tasks can be covered. The paper contains experiments on
disruptions that took place at NS and provides very promising results.

Finally, there are some experiments at NS with multi-agent technology. In this
approach each driver is represented by a driver-agent. If due to the disruption
a driver-agent can no longer perform a certain task, this driver-agent starts
a negotiation process with other driver-agents to transfer the task to another
driver-agent. For more details, we refer to [1].

6 Integrated Recovery

The integrated recovery approach has received little attention up till now. To the
best of our knowledge [24] is the only paper presenting a model that manipulates
the timetable and the crew schedule at the same time. The objective is to simul-
taneously minimize the deviation of the new timetable from the original one, and
the cost of the crew schedule. One part of the model represents the timetable
adjustment, a second part corresponds to a set partitioning model for the crew
schedules. In addition, there are some constraints linking the timetabling and
crew scheduling part. It should be mentioned that the railway system addressed
in the research is of a relatively simple structure.

The benefits of such an approach compared to the sequential approach may,
however, be large in terms of quality of service, and the field is expected to
become an active research field in the future.
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7 Conclusions

Railway operators pay much attention to improve their operational performance.
One of the key issues is to limit the number of delays by reducing the knock-on
effect of single disruptions. To achieve this goal, effective disruption management
is required. In this paper, we have explained the role of the different organizations
and actors in the disruption management process. An important issue here is that
next to the operator itself, the infrastructure manager plays a major role in the
disruption management process. The different objectives of both organizations
on one hand and difficult communication schemes on the other hand, complicate
the disruption management process a lot.

After the description of disruption management, we discussed the three sub-
problems arising in railway disruption management: timetable adjustment, and
rolling stock and crew re-scheduling. To adjust the timetable, several dispatching
rules are applied in practice. Unfortunately, no optimization techniques are in-
volved to solve this problem currently. For the re-scheduling of rolling stock and
crew some first attempts have been made in the literature to come up with OR
models and solution techniques. Most of these have been derived from similar
problems in the airline world. However, most of these ideas are in an early stage
and have not been applied in practice yet.

In other words, there is a major challenge for the OR community to develop
new models and come up with new solution approaches to tackle these prob-
lems. Therefore, we hope and expect that another review paper on railway dis-
ruption management in about 5 years contains much more models and solution
approaches than this one, and moreover that many of them have been applied
in practice.
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