
Preface

The area of stochastic programming was created in the middle of the last
century, following fundamental achievements in linear and nonlinear
programming. While it has been quickly realized that the presence of
uncertainty in optimization models creates a need for new problem formul-
ations, many years have passed until the basic stochastic programming models
have been formulated and analyzed. Today, stochastic programming theory
offers a variety of models to address the presence of random data in
optimization problems: chance-constrained models, two- and multi-stage
models, models involving risk measures. New problem formulations appear
almost every year and this variety is one of the strengths of the field.

Stochastic programming can be quite involved, starting with sophisticated
modeling and is based on advanced mathematical tools such as nonsmooth
calculus, abstract optimization, probability theory and statistical techniques.
One of the objectives of this Handbook is to bring these techniques together
and to show how they can be used to analyze and solve stochastic program-
ming models.

Because of the inherent difficulty of stochastic optimization problems, it
took a long time until efficient solution methods have been developed. In the
last two decades a dramatic change in our abilities to solve stochastic
programming problems took place. It is partially due to the progress in large
scale linear and nonlinear programming, in nonsmooth optimization and
integer programming, but mainly it follows the development of techniques
exploiting specific properties of stochastic programming problems. Computa-
tional advances are also due to modern parallel processing technology.
Nowadays we can solve stochastic optimization problems involving tens of
millions of variables and constraints.

Our intention was to bring together leading experts in the most
important sub-fields of stochastic programming to present a rigorous
overview of basic models, methods, and applications of stochastic pro-
gramming. We hope that this Handbook will prove useful to researchers,
students, engineers and economists, who encounter in their work optimiza-
tion problems involving uncertainty. We also hope that our work will
encourage many to undertake research in this exciting and practically impor-
tant field.
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Chapter 1

Stochastic Programming Models

Andrzej Ruszczyński
Department of Management Science and Information Systems, Rutgers University,

94 Rockefeller Rd, Piscataway, NJ 08854, USA

Alexander Shapiro
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,

GA 30332, USA

Abstract

In this introductory chapter we discuss some basic approaches to modeling of
stochastic optimization problems. We start with motivating examples and then
proceed to formulation of linear, and later nonlinear, two stage stochastic
programming problems. We give a functional description of two stage pro-
grams. After that we proceed to a discussion of multistage stochastic program-
ming and its connections with dynamic programming. We end this chapter by
introducing robust and min–max approaches to stochastic programming.
Finally, in the appendix, we introduce and briefly discuss some relevant
concepts from probability and optimization theories.

Key words: Two stage stochastic programming, expected value solution,
stochastic programming with recourse, nonanticipativity constraints, multistage
stochastic programming, dynamic programming, chance constraints, value at
risk, scenario tree, robust stochastic programming, mean–risk models.

1 Introduction

1.1 Motivation

Uncertainty is the key ingredient in many decision problems. Financial
planning, airline scheduling, unit commitment in power systems are just few
examples of areas in which ignoring uncertainty may lead to inferior or simply
wrong decisions. Often there is a variety of ways in which the uncertainty can be
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formalized and over the years various approaches to optimization under
uncertainty were developed. We discuss a particular approach based on
probabilistic models of uncertainty. By averaging possible outcomes or
considering probabilities of events of interest we can define the objectives and
the constraints of the corresponding mathematical programming model.

To formulate a problem in a consistent way, a number of fundamental
assumptions need to be made about the nature of uncertainty, our knowledge
of it, and the relations of decisions to the observations made. In order to
motivate the main concepts let us start by discussing the following classical
example.

Example 1 (Newsvendor Problem). A newsvendor has to decide about the
quantity x of newspapers which he purchases from a distributor at the begin-
ning of a day at the cost of c per unit. He can sell a newspaper at the price s per
unit and unsold newspapers can be returned to the vendor at the price of r per
unit. It is assumed that 0� r< c< s. If the demand D, i.e., the quantity of
newspapers which he is able to sell at a particular day, turns out to be greater
than or equal to the order quantity x, then hemakes the profit sx� cx¼ (s� c)x,
while if D is less than x, his profit is sDþ r(x�D)� cx¼ (r� c)xþ (s� r)D.
Thus the profit is a function of x and D and is given by

Fðx,DÞ ¼
ðs� cÞx, if x � D,
ðr� cÞxþ ðs� rÞD, if x > D:

�
ð1:1Þ

The objective of the newsvendor is to maximize his profit. We assume that
the newsvendor is very intelligent (he has Ph.D. degree in mathematics from a
prestigious university and sells newspapers now), so he knows what he is
doing. The function F( � ,D) is a continuous piecewise linear function with
positive slope s� c for x<D and negative slope r� c for x>D. Therefore, if
the demand D is known, then the best decision is to choose the order quantity
x*¼D. However, in reality D is not known at the time the order decision
has to be made, and consequently the problem becomes more involved.

Since the newsvendor has this job for a while he collected data and has quite a
good idea about the probability distribution of the demand D. That is, the
demand D is viewed now as a random variable with a known, or at least well
estimated, probability distribution measured by the corresponding cumulative
distribution function (cdf) G(w) :¼P(D�w). Note that since the demand
cannot be negative, it follows that G(w)¼ 0 for any w<0. By the Law of Large
Numbers the averageprofitover a longperiodof time tends to the expected value

E½Fðx,DÞ� ¼

Z 1
0

Fðx,wÞ dGðwÞ:

2 A. Ruszczyński and A. Shapiro



Therefore, from the statistical point of view it makes sense to optimize the
objective function on average, i.e., to maximize the expected profit E[F(x,D)].
This leads to the following stochastic programming problem1

Max
x�0

f ðxÞ :¼ E½Fðx,DÞ�
� �

: ð1:2Þ

Note that we treat here x as a continuous rather than integer variable. This
makes sense if the quantity of newspapers x is reasonably large.

In the present case it is not difficult to solve the above optimization problem
in a closed form. Let us observe that for any D� 0, the function F( � ,D)
is concave (and piecewise linear). Therefore, the expected value function f( � ) is
also concave. Suppose for a moment that G( � ) is continuous at a point x>0.
Then

f ðxÞ ¼

Z x

0

½ðr� cÞxþ ðs� rÞw� dGðwÞ þ

Z 1
x

ðs� cÞx dGðwÞ:

Using integration by parts it is possible to calculate then that

f ðxÞ ¼ ðs� cÞx� ðs� rÞ

Z x

0

GðwÞ dw: ð1:3Þ

The function f( � ) is concave, and hence continuous, and therefore formula
(1.3) holds even if G( � ) is discontinuous at x. It follows that f( � ) is
differentiable at x iff (that is, if and only if) G( � ) is continuous at x, in which
case

f 0ðxÞ ¼ s� c� ðs� rÞGðxÞ: ð1:4Þ

Consider the inverse G� 1(�) :¼min{x:G(x)��} function2 of the cdf G,
which is defined for �2 (0, 1). Since f( � ) is concave, a necessary and sufficient
condition for x*>0 to be an optimal solution of problem (1.2) is that
f 0(x*)¼ 0, provided that f( � ) is differentiable at x*. Note that because
r< c< s, it follows that 0< (s� c)/(s� r)<1. Consequently, an optimal
solution of (1.2) is given by

x* ¼ G�1
s� c

s� r

� �
: ð1:5Þ

This holds even if G( � ) is discontinuous at x*. It is interesting to note
that G(0) is equal to the probability that the demand D is zero, and

1 The notation ‘‘ :¼ ’’ means equal by definition.
2 Recall that G� 1(�) is called the �-quantile of the cdf G.
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hence if this probability is positive and (s� c)/(s� r)�G(0), then the optimal
solution x*¼ 0.

Clearly the above approach explicitly depends on the knowledge of the
probability distribution of the demand D. In practice the corresponding cdf
G( � ) is never known exactly and could be approximated (estimated) at best. In
the present case the optimal solution is given in a closed form and therefore its
dependence on G( � ) can be easily evaluated. It is well known that �-quantiles
are robust (stable) with respect to small perturbations of the corresponding
cdf G( � ), provided that � is not too close to 0 or 1. In general, it is important
to investigate sensitivity of a considered stochastic programming problem with
respect to the assumed probability distributions.

The following deterministic optimization approach is also often used for
decision making under uncertainty. The random variable D is replaced by its
mean �¼E[D], and then the following deterministic optimization problem is
solved:

Max
x�0

Fðx,�Þ: ð1:6Þ

A resulting optimal solution x is sometimes called the expected value
solution. In the present example, the optimal solution of this deterministic
optimization problem is x¼�. Note that the mean solution x can be very
different from the solution x* given in (1.5). It is well known that the quantiles
are much more stable to variations of the cdf G than the corresponding
mean value. Therefore, the optimal solution x* of the stochastic optimization
problem is more robust with respect to variations of the probability
distributions than anoptimal solutionxof the corresponding deterministic opti-
mization problem. This should be not surprising since the deterministic
problem (1.6) can be formulated in the framework of the stochastic
programming problem (1.2) by considering the trivial distribution of D being
identically equal to �.

For any x, F(x,D) is concave in D. Therefore the following Jensen’s
inequality holds:

Fðx, �Þ � E½Fðx, DÞ�:

Hence

max
x�0

Fðx,�Þ � max
x�0

E½Fðx,DÞ�:

Thus the optimal value of the deterministic optimization problem is
biased upward relative to the optimal value of the stochastic optimization
problem. This should be also not surprising since the optimization problem
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(1.6) is ‘‘too optimistic’’ in the sense that it does not take into account possible
variability of the demand D.

Another point which is worth mentioning is that by solving (1.2) the
newsvendor tries to optimize the profit on average. However, for a particular
realization of the demand D, on a particular day, the profit F(x*,D) could be
very different from the corresponding expected value f (x*). This may happen
if F(x*,D), considered as a random variable, has a large variability which
could be measured by its variance Var [F(x*,D)]. Therefore, if the newsvendor
wants to hedge against such variability he may consider the following
optimization problem

Max
x�0

f�ðxÞ :¼ E½Fðx,DÞ� � �Var½Fðx, dÞ�
� �

: ð1:7Þ

The coefficient �� 0 represents the weight given to the conservative part of
the decision. If � is ‘‘large’’, then the above optimization problem tries to find
a solution with minimal profit variance, while if �¼ 0, then problem (1.7)
coincides with problem (1.2). Since

Var½Fðx,DÞ� ¼ E½Fðx,DÞ2� � ½EFðx,DÞ�2,

from a mathematical point of view problem (1.7) is similar to the expected
value problem (1.2). Note, however, that the additional (variance) term in
(1.7) destroys the convexity of the optimization problem (see Section 4 for a
further discussion).

The newsvendor may be also interested in making at least a specified
amount of money, b, on a particular day. Then it would be reasonable
to consider the problem of purchasing the minimum number of newspapers,
x, under the condition that the probability of making at least b is not
less than 1��, where �2 (0, 1) is fixed. Such a problem can be formulated in
the form

Min x ð1:8Þ

s:t: P Fðx,DÞ � b
� �

� 1� �: ð1:9Þ

The newsvendor can solve this problem, too (remember that he is really
smart). It is clear that the following inequality should be satisfied

ðs� cÞx � b, ð1:10Þ

since otherwise there is no way of making b. For a fixed x satisfying this
condition, the profit F(x,D) is a nondecreasing function of the demand D.

Ch. 1. Stochastic Programming Models 5



Therefore

P Fðx,DÞ � b
� �

¼ P D � dðx, bÞ
� �

,

where (after straightforward calculations)

dðx, bÞ ¼
bþ ðc� rÞx

s� r
:

It follows from (1.9) that d(x, b)�G� 1(�), which can be written as

bþ ðc� rÞx � ðs� rÞG�1ð�Þ: ð1:11Þ

It is clear that the solution can exist iff the constraints (1.10)–(1.11) are
consistent, that is, if

b � ðs� cÞG�1ð�Þ: ð1:12Þ

Therefore, we obtain that problem (1.8)–(1.9) is feasible iff (1.12) holds, in
which case it has the optimal solution

x̂ ¼
b

s� c
: ð1:13Þ

1.2 The basic model

Let us formalize optimization problems of the type discussed in the
newsvendor example. To this end we use the following notation and
terminology. By X we denote the space of decision variables. In most
applications considered in this book X can be identified with a finite
dimensional vector space R

n. It is assumed that there is a given set X�X of
feasible (or permissible) decisions and an (objective) function F(x,!) of
decision vector x�X and random element !. In an abstract setting
we consider ! as an element of a sample space � equipped with a sigma
algebra F. In typical applications considered in this book, the involved
random data is formed by a finite number of parameters. Consequently, the
objective function is given in the form Fðx,!Þ :¼ Vðx, �ð!ÞÞ, where �(!) is a
finite dimensional random vector and V(x, �) is a function of two vector
variables x and �.

Of course, the mathematical programming problem of minimization
(or maximization) of F(x,!) subject to x2X depends on ! and does not make
much sense. For different realizations of the random parameters one would
obtain different optimal solutions without any insight which one is ‘‘better’’
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than the others. A way of dealing with that is to optimize the objective function
on average. This leads to the following mathematical programming problem

Min
x2X

f ðxÞ :¼ E½Fðx,!Þ�
� �

: ð1:14Þ

The above formulation of a stochastic programming problem assumes
implicitly that the expected value is taken with respect to a known probability
distribution (measure) P on (�,F ) and that the expected value operator

E½Fðx,!Þ� ¼

Z
�

Fðx,!Þ dPð!Þ ð1:15Þ

is well defined. We refer to the function f(x), defined in (1.14), as the
expectation or expected value function. Note that we will have to deal with
extended real valued functions. That is, the function F(x,!) (as well as its
expectation) is allowed to take values þ1 or �1. The precise meaning of
the involved concepts is discussed in the Appendix (Section 5).

1.3 Modeling the constraints

In (1.14) we have assumed that we have an explicit description of the
feasible set X. For example, the feasible set X can be written in a standard
mathematical programming formulation as follows

X :¼ fx 2 X0 : giðxÞ � 0, i ¼ 1, . . . ,mg, ð1:16Þ

where X0 is a convex subset of X :¼R
n and gi (x) are real valued functions.

When the uncertain quantities enter the ‘raw’ constraints of our
background model,

Giðx,!Þ � 0, i ¼ 1, . . . ,m, ð1:17Þ

we need to specify what we mean by ‘feasibility’. Some values of x may satisfy
(1.17) for some ! and violate these conditions for other !. Often it is
unrealistic to require that constraints (1.17) should hold for all !2�. In our
newsvendor example, for instance, the requirement to make at least profit
b can hardly be satisfied for all realizations of the demand D.

Several approaches can be used to introduce a meaningful notion of
feasibility in this context. One of them is to consider the expected values,

giðxÞ :¼ E½Giðx,!Þ�, i ¼ 1, . . . ,m, ð1:18Þ

as constraint functions in (1.16).

Ch. 1. Stochastic Programming Models 7



Expected value constraints usually occur in situations when we have, in
fact, several objectives, and we put some of them into the constraints, as in the
example below.

Example 2 (Reservoir Capacity). Consider the system of two reservoirs (Fig. 1),
whose objective is to retain the flood in the protected area. The flood is
produced by two random inflows, �1 and �2. Flood danger occurs once a year,
say, and �1, �2 appear simultaneously. The damage from flood of size y� 0 is
modeled as a convex nondecreasing function L( y), where L(0)¼ 0. Our
objective is to determine the reservoir capacities, x1 and x2, so that the
expected damage from the flood is below some specified limit b, and the cost of
the reservoirs, f (x1,x2) is minimized.

The size of the flood is random and is given by the expression

y ¼ max 0, �1 þ �2 � x1 � x2, �2 � x2f g:

Our problem takes on the form

Min f ðx1,x2Þ

s:t: E Lðmaxf0, �1 þ �2 � x1 � x2, �2 � x2gÞ½ � � b:

x1 � 0,x2 � 0: ð1:19Þ

It would be an error to replace the random inflows in this problem by their
expected values, �1 and �2. By Jensen’s inequality we have

Lðmaxf0,�1 þ �2 � x1 � x2,�2 � x2gÞ

� E Lðmaxf0, �1 þ �2 � x1 � x2, �2 � x2gÞ½ �;

and the difference may be large, even for a linear function L( � ). As a result,
the expected losses from a flood may be much higher than foreseen by a naive
deterministic model.

Another way to define the feasible set is to use constraints on the
probability of satisfying (1.17):

P Giðx,!Þ � 0
� �

� 1� �, i ¼ 1, . . . ,m, ð1:20Þ

Fig. 1. The water reservoir system.
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with some fixed �2 (0,1) (as in our newsvendor example). Such constraints are
called probabilistic or chance constraints.3

For a set A we denote by 1A( � ) its characteristic function,

1AðtÞ :¼
1, if t 2 A,
0, if t 62 A:

�
ð1:21Þ

Then (1.20) can be written as the expected value constraints

E½1ð�1, 0ÞðGiðx,!ÞÞ� � 1� �, i ¼ 1, . . . ,m: ð1:22Þ

Note, however, that the discontinuity of the characteristic function makes
such constraints very specific and different from the ‘standard’ expected value
constraints.

Following is an example where probabilistic constraints appear in a natural
way.

Example 3 (Value at Risk). Suppose that there are n investment opportunities,
with random returns R1, . . . ,Rn in the next year. We have a practically
unlimited initial capital and our aim is to invest some of it in such a way that
the expected value of our investment after a year is maximized, under the
condition that the chance of losing no more than some fixed amount b>0 is at
least 1��, where �2 (0, 1). Such a requirement is called the Value at Risk
constraint.

Let x1, . . . , xn be the amounts invested in the n opportunities. The
net increase of the value of our investment after a year is Gðx,RÞ ¼

Pn
i¼1 Rixi:

Our problem takes on the form of a probabilistic constrained stochastic
program:

Max
Xn
i¼1

�ixi

s:t: P

Xn
i¼1

Rixi � �b

( )
� 1� �,

x � 0, ð1:23Þ

where �i ¼ E½Ri�. Note that for the sake of simplicity we do not impose here
the constraint x1þ � � � þxn¼W0, where W0 is the total invested amount, as
compared with the example of financial planning (Example 7) discussed later.

3 In the extreme case when �¼ 0, conditions (1.20) mean that constraints Gi(x,!)� 0, i¼ 1, . . . ,m,

should hold for a.e.!2�.
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If the returns have a joint normal distribution with the covariance matrix
�, the distribution of the profit (or loss) is normal, too, with the expected
value �Tx, and variance xT�x. Consequently, ðGðx,RÞ � �TxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
xT�x
p

has the
standard normal distribution (i.e., normal distribution with mean zero and
variance one). Our probabilistic constraint is therefore equivalent to the
inequality

bþ �Txffiffiffiffiffiffiffiffiffiffiffiffi
xT�x
p � z�,

where z� is the (1��)-quantile of the standard normal variable. If �� 1/2 then
z�� 0. After elementary manipulations we obtain the following convex
programming equivalent of problem (1.23)

Max �Tx

s:t: z�
ffiffiffiffiffiffiffiffiffiffiffiffi
xT�x
p

� �Tx � b,

x � 0: ð1:24Þ

If we ignore the nonnegativity constraint on x we can solve this problem
analytically. Indeed, x¼ 0 is a feasible solution and both functions are
positively homogeneous in x, so either the probabilistic constraint has to be
satisfied as an equality or the problem is unbounded. Let �� 0 be the
Lagrange multiplier associated with this constraint. We obtain the equation

ð1þ �Þ��
�z��xffiffiffiffiffiffiffiffiffiffiffiffi
xT�x
p ¼ 0:

From here we deduce that there must exist a scalar t such that �x ¼ t�. We
assume that the matrix � is nonsingular and � 6¼ 0. Substitution to the
constraint yields (after simple calculations) t ¼ b=�ðz� � �Þ and � ¼
ðz�=�� 1Þ�1, with � :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T��1�

p
(note that ��1 is positive definite and

hence �T��1� is positive). If �� z�, then the problem is unbounded, i.e., its
optimal value is þ1. If �< z�, then the vector

x̂ :¼
b

�ðz� � �Þ
��1�

is the solution to the problem without sign restrictions on x. If, in addition,
��1�� 0, then the vector x̂ solves our original problem. Otherwise, numerical
methods of convex programming are needed to find the optimal solution.

10 A. Ruszczyński and A. Shapiro



In many practical situations, though, the returns are not jointly normally
distributed, and even the single Value at Risk constraint, like the one analyzed
here, may create significant difficulties.

Let us now assume that our planning horizon is T years, and let
R1(t), . . . ,Rn(t) be the random investment returns in years t¼ 1, . . . ,T. We
want to maximize the expected value of our investment after T years, under
the condition that with probability at least 1�� the value of our investment
will never drop by more than b from the initial amount invested. We do not
want to re-allocate our investment, we just want to invest once and then watch
our wealth grow (hopefully).

Let x1, . . . ,xn be the amounts invested in the n opportunities. The net
change in the value of our investment in year t is

Gðx,R, tÞ ¼
Xn
i¼1

SiðtÞxi,

where SiðtÞ :¼ �t
�¼1ð1þ Rið�ÞÞ � 1 is the compounded return of investment

i up to year t. Denoting �i :¼E[Si (T)], our problem takes on the form:

Max
x�0

Xn
i¼1

�ixi

s:t: P Gðx,R, tÞ � �b, t ¼ 1, . . . ,T
� �

� 1� �: ð1:25Þ

This is an example of a problem with a joint probabilistic constraint,
which is different from imposing the constraints PfGðx,R, tÞ � �bg �
1� �, t ¼ 1, . . . ,T , requiring that for each year the probability of losing
no more than b is 1�� or higher. A joint probabilistic constraint can be
formally treated as a constraint for one function, defined as the worst case
among the individual constraints. In our example we may define
Gðx,RÞ :¼ min1�t�T Gðx,R, tÞ and require that

PfGðx,RÞ � �bg � 1� �: ð1:26Þ

Such constraints may be difficult to handle, both theoretically and
computationally.

2 Two-stage models

2.1 The linear model

We can view the decision problem which the newsvendor faces in Example 1
as two stage. In the morning, before a realization of the demand D is known,
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he has to decide about the quantity x of newspapers which he purchases for
that day. By the end of the day when value of D becomes known, he optimizes
his behavior by selling as many newspapers as possible. Although simple, his
second stage decision can be also formulated as an optimization problem.
His second stage decision variables can be defined as the quantity y which he
sells at price s, and the quantity zwhich he returns at price r. Then, given a value
of the first stage decision variable x and a realization of the demand D, the
second stage problem consists of maximizing the profit and can be written as
follows

Max
y, z

syþ rz

subject to

y � D, yþ z � x, y � 0, z � 0:

The optimal solution of the above problem is y* ¼ minfx,Dg,
z* ¼ maxfx�D, 0g, and its optimal value is the profit F(x,D) defined in (1.1).

This is the basic idea of a two stage process. At the first stage, before a
realization of the corresponding random variables becomes known, one
chooses the first stage decision variables to optimize the expected value of an
objective function which in turn is the optimal value of the second stage
optimization problem. A two-stage stochastic linear program can be written as
follows

Minx c
Txþ E½Qðx, �ð!ÞÞ�

s:t: Ax ¼ b, x � 0, ð2:2Þ

where Q(x, �) is the optimal value of the second stage problem

Miny q
Ty

s:t: TxþWy ¼ h, y � 0: ð2:3Þ

Here x and y are vectors of first and second stage decision variables,
respectively. The second stage problem depends on the data � :¼ (q, h,T,W ),
some (all) elements of which can be random. Therefore we view �¼ �(!) as a
random vector. The expectation in (2.2) is taken with respect to the probability
distribution of �(!), which is supposed to be known. The matrices T andW are
called the technology and recoursematrices, respectively. If the matrixW is fixed
(not random), the above two-stage problem is called the problem with fixed
recourse. In a sense the second stage problem (2.3) can be viewed as a penalty
term for violation of the constraint Tx¼ h, hence is the name ‘‘with recourse’’.

For any x and � the function Q(x, �), although not given explicitly, is a well
defined extended real valued function: it takes the value þ1 if the feasible set
of the second stage problem (2.3) is empty, and the value �1 if the second
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stage problem is unbounded from below. As it is discussed in Section 5.2, it
should be verified that the expected value in (2.2) is well defined. It is
worthwhile to note at this point that problem (2.2) is a particular case of the
stochastic programming problem (1.14) with Fðx,!Þ :¼ cTxþQðx, �ð!ÞÞ and
X :¼ fx : Ax ¼ b, x � 0g.

By the definition of the function Q(x, �) we have that it can be written in the
form Qðx, �Þ ¼ Qðh� TxÞ, where

Qð�Þ :¼ inffqTy : Wy ¼ �, y � 0g: ð2:4Þ

By the duality theory of linear programming the optimal value Q(�)
of the linear program in the right hand side of (2.4) is equal to sup
f	T� : WT	 � qg,unlessbothsystems:Wy¼�,y� 0andWT	� q,are infeasible.
Consequently,

Qðx, �Þ ¼ sup 	T ðh� TxÞ : WT	 � q
� �

: ð2:5Þ

The feasible set {	:WT	� q} of the dual problem is convex polyhedral.
Therefore, for any realization of random data �, the function Q( � , �) is
convex piecewise linear. Chapter ‘‘Optimality and Quality in Stochastic
Programming’’ of this book provides a detailed analysis of the properties of
Q( � , �) and of its expected value.

2.2 The case of discrete distributions

There are equivalent formulations of the two-stage linear recourse problem
(2.2)–(2.3) which are useful in different situations. In order to simplify
the presentation and to defer technical details let us assume now that the
random data have a discrete distribution with a finite number K of possible
realizations �k¼ (qk, hk,Tk,Wk), called scenarios, with the corresponding
probabilities pk. In that case E½Qðx, �Þ� ¼

PK
k¼1 pkQðx, �kÞ where

Qðx, �kÞ ¼ inffqTk yk : TkxþWkyk ¼ hk, yk � 0g: ð2:6Þ

Consequently, we can write (2.2)–(2.3) in the form

Min
x, y1,..., yk

cTxþ
XK
k¼1

pkq
T
k yk

s:t: Ax ¼ b,

TkxþWkyk ¼ hk, k ¼ 1, . . . ,K ,

x � 0, yk � 0, k ¼ 1, . . . ,K : ð2:7Þ

That is, the two-stage problem can be formulated as one large linear
programming problem.
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Example 4 (Capacity Expansion). Consider a directed graph with node set N
and arc set A. With each arc a2A we associate a decision variable xa and call
it the capacity of a. There is a cost ca for each unit of capacity of arc a.

For each pair of nodes (m, n)2N�N we have a random demand Dmn for
shipments from m to n. These shipments have to be sent through the network
and they can be arbitrarily split into pieces taking different paths. We denote
by ymn

a the amount of the shipment from m to n sent through arc a. There is a
unit cost qa for shipments on each arc a.

Our objective is to assign arc capacities and to organize shipments in such a
way that the expected total cost, comprising the capacity cost and the shipping
cost, is minimized. The condition is that the capacities have to be assigned
before the actual demands Dmn become known, while the shipments can be
arranged after that.

We recognize in this model a linear two-stage stochastic programming
model with first stage variables xa, a2A, and second stage variables
ymn
a , a2A, (m, n)2N�N.
Let us define the second stage problem. For each node i denote by Aþ (i)

and A� (i) the sets of arcs entering and leaving node i. The second stage
problem is the multicommodity network flow problem

Min
X

m, n2N

X
a2A

qay
mn
a

s:t:
X

a2AþðiÞ
ymn
a �

X
a2A�ðiÞ

ymn
a ¼

�Dmn, if i ¼ m,

Dmn, if i ¼ n,

0, otherwise,

8><
>:X

m, n2N
ymn
a � xa, a 2 A,

ymn
a � 0, a 2 A, i,m, n 2 N : ð2:8Þ

This problem depends on the random demand vector D and on the arc
capacities, x. Its optimal value will be denoted Q(x,D).The first stage problem
has the form

Min
x�0

X
a2A

caxa þ E½Qðx,DÞ�:

In this example only some right hand side entries in the second stage
constraints are random. All the matrices and cost vectors are deterministic.
Nevertheless, the size of this problem, even for discete distributions of the
demands, may be enormous. If the number of nodes is 
, the demand vector
has 
(
� 1) components. If they are independent, and each of them has r
possible realizations, we have to deal with K¼ r
(
� 1) scenarios. For each of
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them the second stage vector has j
ð
� 1ÞjAjj components and there are

2ð
� 1Þ þ jAj constraints (excluding nonnegativity constraints). As a result,
the large scale linear programming formulation has jAj þ 
ð
� 1ÞjAjr
ð
�1Þ
variables and ð
2ð
� 1Þ þ jAjÞr
ð
�1Þ constraints. These are large numbers,
even for moderately sized networks and distributions with only few
possibilities.

A more complex situation occurs when the arcs are subject to failures and
they may lose random fractions �a of their capacities. Then the capacity
constraint in the second stage problem has a slightly different form:X

m, n2N
ymn
a � ð1� �aÞxa, a 2 A,

and we have a two-stage problem with a random ‘technology’ matrix. Its
complexity, of course, is even higher than before.

2.3 Scenario formulation and nonanticipativity

Let us relax problem (2.7) by replacing the first stage decision vector x by K
possibly different vectors xk. We obtain the problem

Min
x1,...,xK
y1,..., yK

XK
k¼1

pkðc
Txk þ qTk ykÞ

s:t: Axk ¼ b,

Tkxk þWkyk ¼ hk;

xk � 0, yk � 0, k ¼ 1, . . . ,K : ð2:9Þ

Problem (2.9) is separable in the sense that it can be split into K smaller
problems, one for each scenario, and therefore it is much easier for a
numerical solution. However, (2.9) is not suitable for modeling a two stage
process. This is because the first stage decision variables xk in (2.9) are now
allowed to depend on a realization of the random data at the second stage.
This can be fixed by introducing the additional constraints

xk ¼ xj, for all 1 � k < j � K : ð2:10Þ

Together with the additional constraints (2.10), problem (2.9) becomes
equivalent to (2.7).

Constraints (2.10) are called nonanticipativity constraints. They ensure that
the first stage decision variables do not depend on the second stage realization
of the random data. Such nonanticipativity constraints will be especially
important in multistage modeling which we will discuss later.
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In fact, some of the constraints in (2.10) are redundant; for example, it is
sufficient to require that xk¼ xkþ 1 for k¼ 1, . . . ,K� 1. There are many other
ways to express these conditions, but they all define the same linear subspace
of the space of decision variables of (2.9). A way to express the non-
anticipativity condition is to require that

xk ¼
XK
i¼1

pixi, k ¼ 1, . . . ,K; ð2:11Þ

which is convenient for extensions to the general case.

2.4 General formulation

As it was discussed above the essence of two stage modeling is that there are
two distinct parts of the decision vector. The value of the first vector x2X,
with X¼R

n, has to be chosen before any realization of the unknown
quantities, summarized in the data vector �¼ �(!), are observed. The value of
the second part, y, can be chosen after the realization of � becomes known and
generally depends on the realization of � and on the choice of x. Consequently,
at the first stage one has to solve the expectation optimization problem

Min
x2X

E½Fðx,!Þ�: ð2:12Þ

In the case of two-stage linear problem (2.2),

Fðx,!Þ :¼ cTx þ Qðx, �ð!ÞÞ

with Q(x, �) being the optimal value of the second stage optimization problem
(2.3) (viewed as an extended real valued function). In such formulation an
explicit dependence on the second stage decision variables y is suppressed. It
will be convenient to discuss that formulation first.

As in the example of problem (2.9), we may relax the expectation problem
(2.12) by allowing the first stage decision variables to depend on the random
data and then to correct that by enforcing nonanticipativity constraints.
Denote by M¼M(�,F,X ) the space of measurable mappings4 x( � ):�!X
such that the expectation E[F(x(!),!)] is well defined. Then the relaxed
problem can be formulated in the form

Min
xð�Þ2M

E½Fðxð!Þ,!Þ�: ð2:13Þ

4 We write here x ( � ), instead of x, in order to emphasize that x( � ) is not a vector, but rather a vector

valued function of !.
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Denote

#ð!Þ :¼ inf
x2X

Fðx,!Þ

the optimal value function of problem (2.12).
Note that optimization in (2.13) is performed over all mappings x(!) in the

functional spaceM. In particular, if � :¼ {!1, . . . ,!K} is finite, with respective
probabilities p1, . . . , pk, then x(!) can be identified with (x1, . . . , xK), where
xk:¼ xð!kÞ. In that case problem (2.13) can be written in the form

Min
x1,..., xK

XK
k¼1

pkFðxk,!kÞ: ð2:14Þ

Proposition 5. Suppose that: (i) the function F(x,!) is random lower
semicontinuous,5 (ii) either E½#ð!Þþ � < þ1 or E½ð�#ð!ÞÞþ � < þ1. Then

inf
xð�Þ2M

E½Fðxð!Þ,!Þ� ¼ E inf
x2X

Fðx,!Þ

� �
: ð2:15Þ

Proof. Since F(x,!) is random lsc we have by Theorem 19 that #(!) is
measurable. Together with the assumption (ii) this implies that the expectation
in the right hand side of (2.15) is well defined. For any x( � )2M(�,F,X ) we
have that F(x(!),!)�#(!) for all !2�, and hence the left hand side of (2.15)
is always greater than or equal to the right hand side of (2.15). Conversely, if
#(!)>�1 for a.e. !2�, then for any given ">0 and a.e. !2� there exists
an "-optimal solution ~xxð!Þ. Moreover, since F(x,!) is random lsc, ~xxð!Þ can be
chosen to be measurable, i.e., ~xx 2Mð�,F ,X Þ. It follows that

E½Fð ~xxð!Þ,!Þ� � E½#ð!Þ� þ ":

Since " is an arbitrary positive number, this implies that the left hand side of
(2.15) is less than or equal to the right hand side of (2.15). Finally, if the event
‘‘#(!)¼ �1’’ happens with positive probability, then both sides of (2.15) are
equal to �1. u

5 See Section 5.3 of the Appendix for the definition and discussion of random lower semicontinuous

functions.

Ch. 1. Stochastic Programming Models 17



We also have that problem (2.12) is equivalent to

Min
xð�Þ2M

E½Fðxð!Þ,!Þ� ð2:16Þ

s:t: xð!Þ ¼ E½xð!Þ�, 8! 2 �: ð2:17Þ

Constraints (2.17) give an extension of constraints (2.11), and represent the
nonanticipativity condition.6 Since problem (2.13) is a relaxation of (2.16)–
(2.17), and because of (2.15), we obtain that

inf
x2X

E½Fðx,!Þ� � E inf
x2X

Fðx,!Þ

� �
: ð2:18Þ

The above inequality also follows directly from the obvious inequality
Fðx,!Þ � #ð!Þ for all x 2 X and ! 2 �.

Let us give now a formulation where the second stage decision variables
appear explicitly:

Min
x2X

E Vðx, �ð!ÞÞ½ �, ð2:19Þ

where Vðx, �Þ is the optimal value of the second stage problem

Min
y2Y

Fðx, y, �Þ

s:t: Giðx, y, �Þ � 0, i ¼ 1, . . . ,m: ð2:20Þ

Here X is a subset of Rn1 , Y is a subset of Rn2 , and

F : Rn1 �R
n2 �R

d
�! R,

Gi : R
n1 �R

n2 �R
d �! R, i ¼ 1, . . . ,m,

are the objective and the constraint functionals, respectively.
Alternatively, in an abstract form the above two stage stochastic

programming problem can be formulated as follows

Min
x2X , yð�Þ2Y

E Fðx, yð!Þ, �ð!ÞÞ½ � ð2:21Þ

s:t: Giðx, yð!Þ, �ð!ÞÞ � 0, i ¼ 1, . . . ,m, ð2:22Þ

x 2 X , ð2:23Þ

6 Since the expected value of two random variables which may differ on a set of measure zero is the

same, it actually suffices to verify the constraints (2.17) for P-almost every ! 2 �.
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yð!Þ 2 Y , ð2:24Þ

where X :¼ R
n1 and Y is a space of measurable functions from � to R

n2 . In
that formulation yð!Þ is viewed as a random vector in R

n2 . Note, however, an
important difference between random vectors �ð!Þ and yð!Þ. Vector �ð!Þ
represents the random data of the problem with a given (known) distribution,
while yð!Þ denotes the second stage decision variables. We have explicitly
marked the dependence of y on the elementary event ! to stress the recourse
nature of these variables. The inequalities (2.22) and the inclusion (2.24) are
understood in the almost sure sense, i.e., they have to hold for P-almost every7

! 2 �. Recall that the probability measure P on ð�,F Þ generates the
corresponding probability distribution of ð�ð!Þ, yð!ÞÞ viewed as a random
vector. Therefore, ‘‘for P-almost every ! 2 �’’ means that the event happens
for almost every realization of the random vector ð�, yÞ.

The difficulty in the formulation (2.21)–(2.24) is the fact that the second
stage decisions y are allowed to be functions of the elementary event !. We
need to specify from which classes of functions these decisions have to be
chosen, i.e., to define the functional space Y. The mappings y : �! R

n2 , have
to be measurable with respect to the sigma algebra F and such that the
expectation in (2.21) makes sense. Otherwise we shall not be able to talk in a
meaningful way about the expectation of the objective functional and the
‘almost sure’ satisfaction of the constraints. Moreover, in fact y is a function
of �. Therefore, we can identify the probability space ð�,F ,PÞ with the
probability space ðRd ,B,PÞ of the random vector �, and view yð�Þ as an
element of a space of measurable mappings from R

d into R
n2 . In particular, in

the case of finitely many realizations �1, . . . , �K , we can identify the sample
space with the set �:¼ f1, . . . ,Kg equipped with the sigma algebra of all its
subsets. In that case it suffices to consider mappings y : f1, . . . ,Kg ! R

n2 ,
which could be identified with vectors y1, . . . , yK 2 R

n2 . As a result, the
decision space in the case of finitely many realizations is just
R

n1 �R
n2 � � � � �R

n2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
K times

:

The constraints (2.22)–(2.24) can be absorbed into the objective function by
defining

Fðx, y, �Þ :¼
Fðx, y, �Þ, if x 2 X , y 2 Y ,Giðx, y, �Þ � 0, i ¼ 1, . . . ,m,

þ 1, otherwise:

(

7 Written: ‘‘a.e. ! 2 �’’.
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Then problem (2.21)–(2.24) can be written in the form

Min
x2�, yð�Þ2Y

E Fðx, yð!Þ, �ð!ÞÞ

 �

: ð2:25Þ

In a way similar to the proof of Proposition 5 it is possible to show that the
two formulations (2.19)–(2.20) and (2.21)–(2.24) are equivalent if for every
x 2 X , the function Fðx, � , �Þ is random lsc and the expectation of the optimal
value function infy2Rn2Fðx, y, �ð!ÞÞ is well defined.

Let us now consider both parts of the decision vector, x and y as random
elements. We obtain the problem

Min
xð�Þ, yð�Þ

E½Fðxð!Þ, yð!Þ, �ð!ÞÞ�

s:t: Giðxð!Þ, yð!Þ, �ð!ÞÞ � 0, i ¼ 1, . . . , m,

xð!Þ 2 X , yð!Þ 2 Y :

All constraints here are assumed to hold P-almost surely, i.e., for a.e.
! 2 �. The above problem is an analogue of (2.13) with optimization
performed over mappings ðxð�Þ, yð�ÞÞ in an appropriate functional space, and as
in the finite scenario case, is a relaxation of the problem (2.21)–(2.24). To
make it equivalent to the original formulation we must add the nonanti-
cipativity constraint which can be written, for example, in the form (2.17).

For example, consider the two-stage linear program (2.2)–(2.3). We can
write it in the form

Min
x, yð�Þ

E cTx þ qð!ÞTyð!Þ

 �

s:t: Tð!Þx þ Wð!Þyð!Þ ¼ hð!Þ, a:e: ! 2 �,

Ax ¼ b, x � 0,

yð!Þ � 0, a:e: ! 2 �,

with yð�Þ being a mapping from � into R
n2 . In order for the above problem to

make sense the mapping yð!Þ should be measurable and the corresponding
expected value should be well defined. Suppose for a moment that vector q is
not random, i.e., it does not depend on !. Then we can assume that yð!Þ is an
element of the space Ln2

1 ð�,F ,PÞ of F -measurable mappings8 y : �! R
n2

8 In fact an element of Ln2
1 ð�,F ,PÞ is a class of mappings which may differ from each other on sets of

P-measure zero.
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such that
R
� jjyð!Þjj dPð!Þ < þ1. If qð!Þ is random we can consider a space

of measurable mappings yð�Þ such that
R
�
jqð!ÞTyð!Þj dPð!Þ < þ1.

2.5 Value of perfect information

Consider a two stage stochastic programming problem in the form (2.19)
with Vðx, �Þ being the optimal value of the second stage problem (2.20). If we
have a perfect information about the data �, i.e., the value of � is known at the
time when the first stage decision should be made, then the optimization
problem becomes the deterministic problem

Min
x2X

Vðx, �Þ, ð2:26Þ

and can be written in the following equivalent form

Minx2X, y2Y Fðx, y, �Þ

s:t: Giðx, y, �Þ � 0, 1, . . . , m: ð2:27Þ

Of course, the optimal solution xð�Þ (if it exists) and the optimal value �ð�Þ of
problem (2.26) depend on the realization � of the data. The average of �ð�Þ
over all possible realizations of the random data � ¼ �ð!Þ, i.e., the expected
value

E½�ð�Þ� ¼ E inf
x2X

Vðx, �ð!ÞÞ

� �
, ð2:28Þ

is called the wait-and-see solution.
We have that for any x 2 X and any � the inequality Vðx, �Þ � �ð�Þ holds,

and hence

E Vðx, �ð!Þ½ � � E inf
x2X

Vðx, �ð!ÞÞ

� �
: ð2:29Þ

Therefore, as it was mentioned earlier (see (2.18)), it follows that

inf
x2X

E Vðx, �ð!Þ½ � � E inf
x2X

Vðx, �ð!ÞÞ

� �
: ð2:30Þ

That is, the optimal value of the stochastic programming problem (2.19) is
always greater than or equal to E½�ð�Þ�. Suppose further that problem (2.19)
has an optimal solution x̂. We have that Vðx̂, �Þ � �ð�Þ is nonnegative for all �,
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and hence its expected value is zero iff Vðx̂, �Þ � �ð�Þ ¼ 0 w.p.1. That is, the
equality in (2.30) holds, iff

Vðx̂, �ð!ÞÞ ¼ inf
x2X

Vðx, �ð!ÞÞ for a:e: ! 2 �: ð2:31Þ

In particular, the equality in (2.30) holds, if there exists an optimal solution
of (2.26) which does not depend on � w.p.1.

The difference Vðx̂, �Þ � �ð�Þ is the value of perfect information of knowing
the realization �. Consequently,

EVPI :¼ inf
x2X

E Vðx, �ð!ÞÞ½ � � E inf
x2X

Vðx, �ð!ÞÞ

� �
ð2:32Þ

represents the expected value of perfect information. It follows from (2.30) that
EVPI is always nonnegative, and EVPI ¼ 0 iff condition (2.31) holds.

3 Multistage models

3.1 The linear case

The two-stage model is a special case of a more general structure, called the
multi-stage stochastic programming model, in which the decision variables
and constraints are divided into groups corresponding to stages t ¼ 1, . . . ,T :
The fundamental issue in such a model is the information structure: what is
known at stage t when decisions associated with this period are made? We first
give a general description of such multistage models and then discuss
examples in Section 3.4.

Let x1, . . . , xT be decision vectors corresponding to time periods (stages)
1, . . . ,T . Consider the following linear programming problem

Min cT1 x1 þ cT2 x2 þ cT3 x3 þ ... þ cTTxT

s:t: A11x1 ¼ b1,

A21x1 þ A22x2 ¼ b2,

A32x2 þ A33x3 ¼ b3,

........................................................................

AT ,T�1xT�1 þ ATTxT ¼ bT ,

x1�0, x2�0, x3�0, ... xT �0:

ð3:1Þ

We view it as a multiperiod stochastic program where c1, A11 and b1 are
known, but some (all) of the entries of the cost vectors c2, . . . , cT , matrices
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At, t�1 and Att, t ¼ 2, . . . ,T , and right hand side vectors b2, . . . , bT are random.
At each stage some of these quantities become known, and we have the
following sequence of actions:

decision ðx1Þ

observation �2 :¼ ðc2,A21,A22, b2Þ

decision ðx2Þ

..

.

observation �T :¼ ðcT ,AT ,T�1,ATT , bT Þ

decision ðxT Þ:

Our objective is to design the decision process in such a way that the
expected value of the total cost is minimized while optimal decisions are
allowed to be made at every time period t ¼ 1, . . . ,T :

Let us denote by �t the data which become known at time period t. In the
setting of the multiperiod problem (3.1), �t is assembled from the components
of ct, At, t�1, Att, bt, some (all) of which can be random, and the data
�1 ¼ ðc1,A11, b1Þ at the first stage of problem (3.1) which is assumed to be
known. For 1 � t1 � t2 � T , denote by

�½t1, t2� :¼ ð�t1 , . . . , �t2Þ

the history of the process from time t1 to time t2. In particular, �½1, t� represents
the information available up to time t. The important condition in the above
multistage process is that every decision vector xt may depend on the
information available at time t (that is, �½1, t�), but not on the results of
observations to be made at later stages. This differs multistage stochastic
programs from deterministic multiperiod problems, in which all the inform-
ation is assumed to be available at the beginning.

There are several possible ways how multistage stochastic programs can be
formulated in a precise mathematical form. In one such formulation
xt ¼ xtð�½1, t�Þ, t ¼ 2, . . . ,T , is viewed as a function of �½1, t� ¼ ð�1, . . . , �tÞ, and
the minimization in (3.1) is performed over appropriate functional spaces (as
it was discussed in Section 2.4 in the case of two-stage programming). If the
number of scenarios is finite, this leads to a formulation of the linear
multistage stochastic program as one large (deterministic) linear programming
problem. We discuss that further in the following Section 3.2. It is also useful
to connect dynamics of the multistage process starting from the end as
follows.

Let us look at our problem from the perspective of the last stage T . At that
time the values of all problem data, �½1,T �, are already known, and the values
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of the earlier decision vectors, x1, . . . ,xT�1, have been chosen. Our problem is,
therefore, a simple linear programming problem

Min
xT

cTTxT

s:t: AT ,T�1xT�1 þ ATTxT ¼ bT ,

xT � 0: ð3:2Þ

The optimal value of this problem depends on the earlier decision vector
xT�1 and data �T ¼ ðcT ,AT ,T�1,AT ,T , bT Þ, and is denoted by QT ðxT�1, �T Þ.

At stage T � 1 we know xT�2 and �½1,T�1�. We face, therefore, the following
two-stage stochastic programming problem

Min
xT�1

cTT�1xT�1 þ E QT ðxT�1, �T Þ j �½1,T�1�

 �

s:t: AT�1,T�2xT�2 þ AT�1,T�1xT�1 ¼ bT�1,

xT�1 � 0: ð3:3Þ

The optimal value of the above problem depends on xT�2 and data �½1,T�1�,
and is denoted QT�1ðxT�2, �½1,T�1�Þ.

Generally, at stage t ¼ 2, . . . ,T � 1, we have the problem

Min
xt

cTt xt þ E Qtþ1ðxt, �½1, tþ1�Þ j �½1, t�

 �

s:t: At, t�1xt�1 þ At, txt ¼ bt,

xt � 0: ð3:4Þ

Its optimal value is denoted Qtðxt�1, �½1, t�Þ and is called the cost-to-go
function.

Note that, since �1 is not random, the conditional distribution of �tþ 1 given
�½1, t� is the same as the conditional distribution of �tþ 1 given �½2, t�,
t ¼ 2, . . . ,T � 1. Therefore, it suffices to take the conditional expectation in
(3.4) (in (3.3)) with respect to �½2, t� (with respect to �½2,T�1�), only.

On top of all these problems is the problem to find the first decisions, x1,

Min
x1

cT1 x1 þ E Q2ðx1, �2Þ½ �

s:t: A11x1 ¼ b1,

x1 � 0: ð3:5Þ

Note that all subsequent stages t ¼ 2, . . . ,T are absorbed in the above
problem (3.5) into the function Q2ðx1, �2Þ through the corresponding
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expected values. Note also that since �1 is not random, the optimal value
Q2ðx1, �2Þ does not depend on �1. In particular, if T ¼ 2, then (3.5) coincides
with the formulation (2.2) of a two-stage linear problem.

We arrived in this way at the following nested formulation:

Min
A11x1¼b1
x1�0

cT1 x1þE min
A21x1þA22x2¼b2

x2�0

cT2 x2þE ���þE min
AT ,T�1xT�1þATTxT¼bT

xT�0

cTTxT

2
4

3
5

2
64

3
75

2
64

3
75:

Recall that the random process �1, . . . , �T is said to beMarkovian, if for each
t ¼ 2, . . . ,T � 1 the conditional distribution of �tþ 1 given �½1, t� ¼ ð�1, . . . , �tÞ
is the same as the conditional distribution of �tþ 1 given �t. If the process
�1, . . . , �T is Markovian, the model is simplified considerably. In the
Markovian case, for given �T�1, the conditional expectation in problem
(3.3) does not depend on �1, . . . , �T�2, and hence the optimal value of (3.3)
depends only on xT�2 and �T�1. Similarly, at stage t ¼ 2, . . . ,T � 1, the
optimal value of problem (3.4) is then a function of xt�1 and �t, and can be
denoted by Qtðxt�1, �tÞ. We shall call then �t the information state of the model.
In particular, the process �1, . . . , �T is Markovian if the random vectors �t,
t ¼ 2, . . . ,T , are mutually independent. In that case the conditional
expectation in problem (3.3) does not depend on �½1,T�1�, and hence the
optimal value QT�1ðxT�2, �T�1Þ of (3.3) depends on �T�1 only through the
linear constraint of that problem, and similarly, at stages t ¼ T � 2, . . .,
the optimal value Qtðxt�1, �tÞ depends on �t only through the linear constraint
of (3.4).

The assumption that the blocks At1, . . . ,At, t�2 in the constraint matrix are
zeros, allowed us to express the optimal value Qt of (3.4) as the function of the
immediately preceding decision, xt�1, rather than all earlier decisions
x1, . . . ,xt�1. Suppose now that we deal with an underlying model with a full
lower block triangular constraint matrix:

Min cT1 x1 þ cT2 x2 þ cT3 x3 þ ... þ cTTxT

s:t: A11x1 ¼ b1,

A21x1 þ A22x2 ¼ b2,

A31x1 þ A32x2 þ A33x3 ¼ b3,

........................................................................

AT1x1 þ AT2x2 þ ... þ AT ,T�1xT�1 þ ATTxT ¼ bT ,

x1�0, x2�0, x3�0, ... xT �0:

ð3:6Þ
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Then, of course, each subproblem (3.4) depends on the entire history of our
decisions, x½1, t�1� :¼ ðx1, . . . , xt�1Þ. It takes on the form

Min
xt

cTt xt þ E Qt þ 1ðx½1, t�, �½1, t þ 1�Þ j �½1, t�

 �

s:t: At1x1 þ � � � þ At, t�1xt�1 þ At, txt ¼ bt,

xt � 0: ð3:7Þ

Its optimal value is denoted Qtðx½1, t�1�, �½1, t�Þ.
Sometimes it is convenient to convert such a lower triangular formulation

into the staircase formulation from which we started our presentation. This
can be accomplished by introducing additional variables rt which summarize
the relevant history of our decisions. We shall call these variables the model
state variables (to distinguish from information states discussed before). The
relations that describe the next values of the state variables as a function of the
current values of these variables, current decisions and current random
parameters are called model state equations.

For the general problem (3.6) the vectors x½1, t� ¼ ðx1, . . . , xtÞ are sufficient
model state variables. They are updated at each stage according to the state
equation x½1, t� ¼ ðx½1, t�1�,xtÞ (which is linear), and the constraint in (3.7) can
be formally written as

½At1At2 . . .At, t�1�x½1, t�1� þ At, txt ¼ bt:

Although, it looks a little awkward in this general case, in many problems it
is possible to define model state variables of reasonable size. As an example let
us consider the structure

Min cT1 x1 þ cT2 x2 þ cT3 x3 þ ��� þ cTTxT

s:t: A11x1 ¼ b1,

B1x1 þ A22x2 ¼ b2,

B1x1 þ B2x2 þ A33x3 ¼ b3,

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B1x1 þ B2x2 þ . . . þ BT�1xT�1 þ ATTxT ¼ bT ,

x1�0, x2�0, x3�0, . . . xT �0,

in which all blocks Ait, i ¼ 2, . . . ,T are identical and observed at time t. Then
we can define the state variables rt, t ¼ 1, . . . ,T recursively by the state
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equation rt ¼ rt�1 þ Btxt, t ¼ 1, . . . ,T � 1, where r0 ¼ 0. Subproblem (3.7)
simplifies substantially:

Min
xt, rt

cTt xt þ E Qtþ1ðrt, �½1, tþ1�Þ j �½1, t�

 �

s:t: rt�1 þ Attxt ¼ bt,

rt ¼ rt�1 þ Btxt,

xt � 0:

Its optimal value depends on rt�1 and is denoted Qtðrt�1, �½1, t�Þ.
Trucking Example 9 (discussed in Section 3.4) uses such model state

variables: the capacities rt available at all locations at the end of day t. We do
not need to remember all decisions made in the past, we only need to know the
numbers of trucks at each location today.

It should be clear, too, that the simple sign constraints xt � 0 can be
replaced in our model by a general constraint xt 2 Xt, where Xt is a convex
polyhedron defined by some linear equations and inequalities (local for
stage t). The set Xt may be random, too, but has to become known at stage t.

3.2 The case of finitely many scenarios

Suppose that in our basic problem (3.1) there are only finitely many, say K ,
different values the problem data can take. We shall call them scenarios.

With each scenario k is associated probability pk and the corresponding
sequence of decisions9 xk ¼ ðxk1, x

k
2, . . . , x

k
T Þ: Of course, it would not be

appropriate to try to find the optimal values of these decisions by solving the
relaxed version of (3.1):

Min
PK

k¼1pk½ ðc1Þ
Txk1þðc

k
2Þ

Txk2þðc
k
3Þ

Txk3þ ��� þðckT Þ
TxkT �

s:t: A11x
k
1 ¼ b1,

Ak
21x

k
1 þ Ak

22x
k
2 ¼ bk2,

Ak
32x

k
2 þ Ak

33x
k
3 ¼ bk3,

.....................................................................................

Ak
T ,T�1x

k
T�1þ Ak

TTx
k
T ¼b

k
T ,

xk1�0, xk2�0, xk3�0, ... xkT�0,

k¼1,...,K : ð3:8Þ

9 To avoid ugly collisions of subscripts we change our notation a little and we put the index of the

scenario, k, as a superscript.
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The reason is the same as in the two-stage case: in the problem above all
parts of the decision vector are allowed to depend on all parts of the random
data, while in reality each part xt is allowed to depend only on the data known
up to stage t. In particular, problem (3.8) may suggest different values of x1 for
each scenario k, but we need only one value.

It is clear that we need the nonanticipativity constraints

xk1 ¼ x j
1 for all 1 � k < j � K , ð3:9Þ

similarly to (2.10). But this is not sufficient, in general. Consider the second
part of the decision vector, x2. It is allowed to depend only on �½1, 2� ¼ ð�1, �2Þ,
so it has to have the same value for all scenarios k for which �k½1, 2� is identical.
We must therefore, satisfy the equations

xk2 ¼ x j
2 for all k, j for which �k½1, 2� ¼ �

j
½1, 2�: ð3:10Þ

Generally, at stage t ¼ 1, . . . ,T , the scenarios that have the same history
�½1, t� cannot be distinguished, so we need to enforce the nonanticipativity
constraints

xkt ¼ x j
t for all k, j for which �k½1, t� ¼ �

j
½1, t�, t ¼ 1, . . . ,T : ð3:11Þ

Problem (3.8) together with the nonanticipativity constraints (3.11)
becomes equivalent to our original formulation (3.1).

Let us observe that if in the problem (3.8) only the constraints (3.9) are
enforced, then from the mathematical point of view the obtained problem
becomes a two-stage stochastic linear program with K scenarios. In that two-
stage program the first stage decision vector is x1, the second stage decision
vector is ðx2, . . . , xK Þ, the technology matrix is A21 and the recourse matrix is
the block matrix

A22 0 :::::: 0 0

A32 A33 :::::: 0 0

::::::::::::::::::

0 0 :::::: AT ,T�1 ATT

2
6666664

3
7777775:

Since the obtained two-stage problem is a relaxation of the multistage
problem (3.1), its optimal value gives a lower bound for the optimal value of
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problem (3.1) and in that sense can be useful. Note, however, that this model
does not make much sense, since it assumes that at the end of the process
when all realizations of the random data become known, one can go back in
time and make all decisions x2, . . . , xK .

It is useful to depict the possible sequences of data �½1, t� in a form of
a scenario tree. It has nodes organized in levels which correspond to
stages 1, 2, . . . ,T . At level 1 we have only one root node, and we associate
with it the value of �1 (which is known at stage 1). At level 2 we have at
least as many nodes as many different realizations of �2 may occur. Each
of them is connected with the root node by an arc. For each node i of
level 2 (which corresponds to a particular realization �i2 of �2) we create
at least as many nodes at level 3 as different values of �3 may follow �i2,
and we connect them with the node i, etc. Generally, nodes at level
t correspond to possible values of �t that may occur. Each of them is
connected to a unique node at level t� 1, called the ancestor node, which
corresponds to the identical first t� 1 parts of the process �½1, t�, and is also
connected to nodes at level t þ 1, which correspond to possible continuations
of history �½1, t�.

Note that, in general, realizations �it are vectors and it may happen that
some of the values �it, associated with nodes at a given level t, are equal to each
other. Nevertheless, such equal values may be represented by different nodes
since they may correspond to different histories of the process. Note also that
if for every t¼ 1, . . . ,T all realizations �it are different from each other, then the
random process �1, . . . , �T is Markovian because of the tree structure of the
process. Indeed, in that case the conditional probability of �t to be at state
�it depends on the previous history of the process only through the ancestor
node at level t� 1.

In order to illustrate the above ideas let us discuss the following simple
example.

Example 6 (Scenario Tree). An example of the scenario tree is depicted
in Fig. 2. Numbers along the arcs represent conditional probabilities of moving
from one node to the next. The associated process �t ¼ ðct,At, t�1,Att, btÞ,
t¼ 1, . . . ,T, with T¼ 4, is defined as follows. All involved variables are
assumed to be one dimensional, with ct,At, t�1,Att, t ¼ 2, 3, 4, being fixed and
only right hand side variables bt being random. The numerical values
(realizations) of the random process b1, . . . , bT are indicated by the bold
numbers at the nodes of the tree. Numerical values of ct,At, t�1,Att will be
specified later. That is, at level t¼ 1, b1 has unique value 36. At level t ¼ 2, b2
has two values 15 and 50 with respective probabilities 0:4 and 0:6. At level
t ¼ 3 we have 5 nodes with which are associated the following numerical
values (from left to right) 10, 20, 12, 20, 70. That is, b3 can take 4 different
values with respective probabilities Pfb3 ¼ 10g ¼ 0:4 � 0:1, Pfb3 ¼ 20g ¼
0:4 � 0:4 þ 0:6 � 0:4, Pfb3 ¼ 12g ¼ 0:4 � 0:5 and Pfb3 ¼ 70g ¼ 0:6 � 0:6. At
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level t ¼ 4, the numerical values associated with eight nodes are defined, from
left to right, as 10, 10, 30, 12, 10, 20, 40, 70. The respective probabilities can
be calculated by using the corresponding conditional probabilities. For
example,

Pfb4 ¼ 10g ¼ 0:4 � 0:1 � 1:0 þ 0:4 � 0:4 � 0:5 þ 0:6 � 0:4 � 0:4:

Note that although some of the realizations of b3, and hence
of �3, are equal to each other, they are represented by different nodes.
This is necessary in order to identify different histories of the process
corresponding to different scenarios. The same remark applies to b4
and �4. Altogether, there are eight scenarios in this tree. Figure 3 illustrates
the way in which sequences of decisions are associated with scenarios from
Fig. 2.

The process bt (and hence the process �t) in the above example is not
Markovian. For instance,

P b4 ¼ 10 j b3 ¼ 20, b2 ¼ 15, b1 ¼ 36f g ¼ 0:5,

while

P b4 ¼ 10 j b3 ¼ 20f g ¼
Pfb4 ¼ 10, b3 ¼ 20g

Pfb3 ¼ 20g

¼
0:5 � 0:4 � 0:4 þ 0:4 � 0:4 � 0:6

0:4 � 0:4 þ 0:4 � 0:6
¼ 0:44 6¼ 0:5:

Fig. 2. Scenario tree. Nodes represent information states. Paths from the root to leaves

represent scenarios. Numbers along the arcs represent conditional probabilities of moving

to the next node. Bold numbers represent numerical values of the process.
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On the other hand, the process bt in this example is a martingale.10 For
instance,

E b2 j b1 ¼ 36½ � ¼ E b2½ � ¼ 15 � 0:4 þ 50 � 0:6 ¼ 36,

E b3 j b2 ¼ 15, b1 ¼ 36½ � ¼ 10 � 0:1 þ 20 � 0:4 þ 12 � 0:5 ¼ 15, etc:

Suppose now that cT ¼ 1 and AT ,T�1 ¼ ATT ¼ 1. Then the cost-to-go
function QT ðxT�1, �T Þ is given by the optimal value of the problem

Min
xT

xT subject to xT�1 þ xT ¼ bT , xT � 0,

and hence

QT ðxT�1, �T Þ ¼
bT � xT�1, if xT�1 � bT ,
þ 1, otherwise:

�

Note again that bT has six possible realizations.
Suppose further that cT�1 ¼ 1 and AT�1,T�2 ¼ AT�1,T�1 ¼ 1. Then the

cost-to-go function QT�1ðxT�2, �½1,T�1�Þ is the optimal value of the problem

Min
xT�1

xT�1 þ E½QT ðxT�1, �T Þ j �½1,T�1��

subject to xT�2 þ xT�1 ¼ bT�1, xT�1 � 0:

Fig. 3. Sequences of decisions for scenarios from Fig. 2. Horizontal dotted lines represent

the equations of nonanticipativity.

10 Recall that a random process Zt, t ¼ 1, . . . , is called a martingale if the equalities E Ztþ 1jZ½1, t�

 �

¼

Zt, t ¼ 1, . . . , hold with probability one.
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The history b½1, 3� of the process bt, and hence the history �½1, 3� of the process
�t, is in one-to-one correspondence with the nodes of the tree at level t ¼ 3. It
has 5 possible realizations �i½1, 3�, i ¼ 1, . . . , 5, numbered from left to right, i.e.,
for i ¼ 1 it corresponds to the realization b1 ¼ 36, b2 ¼ 15, b3 ¼ 10 of b½1, 3�.
We have that

E


QT ðxT�1,�4Þj�½1,3�¼�

1
½1,3�

�
¼QT ðxT�1,�

1
4Þ¼

10�xT�1, if xT�1�10,
þ1, otherwise,

�

where �14 ¼
�
1, 1, 1, b14


and b14 ¼ 10. Consequently,

QT�1

�
xT�2, �

1
½1, 3�


¼

10, if 0 � xT�2 � 10,
þ 1, otherwise:

�

Similarly,

E


QT

�
xT�1, �4


j�½1, 3� ¼ �

2
½1, 3�

�
¼

1

2
QT ðxT�1, �

2
4Þ þ

1

2
QT ðxT�1, �

3
4Þ,

and hence

QT�1

�
xT�2, �

2
½1, 3�


¼

20, if 10 � xT�2 � 20,
þ 1, otherwise,

�

etc. By continuing the above backward calculations (which, of course, depend
on numerical values of c2,A21,A22 and c1,A11) one can either show that the
problem is infeasible or find the optimal value and an optimal solution of the
first stage problem.

It is also possible to solve this multistage problem by formulating it as a
linear programming problem of the form (3.8) subject to the corresponding
nonanticipativity constraints. Such linear program will have 4� 8¼ 32
decision variables, 16 nonanticipativity constraints and four linear equality
constraints.

Consider now a scenario tree and corresponding process �1, . . . , �T . With
each scenario of the tree is associated a probability pk, k ¼ 1, . . . ,K . These
probabilities are related to the time structure of the multistage process and can
be constructed as follows. In order to deal with the nested structure of
problems (3.4) we need to specify the conditional distribution of �t given

11

11 Since �1 is not random, for t ¼ 2 the distribution of �2 is independent of �1.
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�½1, t�1�, t ¼ 2, . . . ,T . Consider a node i 2 N and its ancestor a ¼ aðiÞ in the
scenario tree. Denote by �ai the probability of moving from the node a to
the node i. For instance, in the tree of Fig. 2 it is possible to move from the
root node to two nodes at stage t ¼ 2, say i1 and i2, with the corresponding
probabilities �1i1 ¼ 0:4 and �1i2 ¼ 0:6. Clearly the numbers �ai should be
nonnegative and for a given a 2 N the sum of �ai over all continuations i 2 N
of the node a should be equal to one. Each probability �ai can be viewed as the
conditional probability of the process being in the node i given its history up
to the ancestor node a ¼ aðiÞ. Note also that probabilities �ai are in one-to-one
correspondence with the arcs of the scenario tree. Every scenario can be
defined by its nodes i1, i2, . . . , iT , arranged in the chronological order, i.e.,
node i2 (at level t ¼ 2) is connected to the root i1 ¼ 1, node i3 is connected to
the node i2, etc. The probability of that scenario is then given by the product
�i1i2 , �i2i3 , . . . , �iT�1iT . The conditional probabilities �ai describe the probabil-
istic structure of the considered problem and could be specified together with
the corresponding scenario tree.

It is possible to derive these conditional probabilities from scenario
probabilities pk as follows. Let us denote by BðiÞ the set of scenarios passing
through node i (at level t) of the scenario tree, and let pðiÞ :¼ P½BðiÞ�. If
i1, i2, . . . , it, with i1 ¼ 1 and it ¼ i, is the history of the process up to node i,
then the probability pðiÞ is given by the product

pðiÞ ¼ �i1i2 , �i2i3 , . . . , �it�1it

of the corresponding conditional probabilities. In another way we can write
this in the recursive form pðiÞ ¼ �aip

ðaÞ, where a ¼ aðiÞ is the ancestor of the
node i. This equation defines the conditional probability �ai from the
probabilities pðiÞ and pðaÞ. Note that if a ¼ aðiÞ is the ancestor of the node i,
then BðiÞ � BðaÞ and hence pðiÞ � pðaÞ. Consequently if pðaÞ > 0, then
�ai ¼ pðiÞ=pðaÞ. Otherwise BðaÞ is empty, i.e., no scenario is passing through
the node a, and hence no scenario is passing through the node i.

Recall that a stochastic process Zt, t ¼ 1, 2, . . ., that can take a finite
number fz1, . . . , zmg of different values, is said to be a Markov chain if

P Zt þ 1 ¼ zjjZt ¼ zi, Zt�1 ¼ zit�1 , . . . ,Z1 ¼ zi1
� �

¼ pij, ð3:12Þ

for all states zit�1 , . . . , zi1 ,zi, zj and all t ¼ 1, . . . : In some instances it is natural
to model the data process as a Markov chain with the corresponding state
space12 f1, . . . , mg and probabilities pij of moving from state i to state j,
i, j ¼ 1, . . . ,m. We can model such process by a scenario tree. At stage t ¼ 1
there is one root node to which is assigned one of the values from the state
space, say i. At stage t ¼ 2 there are m nodes to which are assigned values

12 In our modeling, values 1, . . . , m can be numbers or vectors.
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1, . . . , m with the corresponding probabilities pi1, . . . , pim. At stage t ¼ 3
there are m2 nodes, such that each node at stage t ¼ 2, associated with a state
a, a ¼ 1, . . . ,m, is the ancestor of m nodes at stage t ¼ 3 to which are assigned
values 1, . . . , m with the corresponding conditional probabilities pa1, . . . , pam.
At stage t ¼ 4 there are m3 nodes, etc. At each stage t of such T-stage Markov
chain process there are mt�1 nodes, the corresponding random vector
(variable) �t can take values 1, . . . , m with respective probabilities which
can be calculated from the history of the process up to time t, and the total
number of scenarios is mT�1. We have here that the random vectors
(variables) �1, . . . , �T are independently distributed iff pij ¼ pi0j for any
i, i0, j ¼ 1, . . . ,m, i.e., the conditional probability pij of moving from state i

to state j does not depend on i.
In the above formulation of the Markov chain the corresponding scenario

tree represents the total history of the process with the number of scenarios
growing exponentially with the number of stages. Now if we approach the
problem by writing the cost-to-go functions Qtðxt�1, �tÞ, going backwards,
then we do not need to keep the track of the history of the process. That is, at
every stage t the cost-to-go function Qtð�, �tÞ only depends on the current state
(realization) �t ¼ 

i, i ¼ 1, . . . ,m, of the process. On the other hand, if we want
to write the corresponding optimization problem (in the case of a finite
number of scenarios) as one large linear programming problem, we still need
the scenario tree formulation. This is the basic difference between the
stochastic and dynamic programming approaches to the problem. That is, the
stochastic programming approach does not necessarily rely on the Markovian
structure of the considered process. This makes it more general at the price of
considering a possibly very large number of scenarios.

There are many ways to express the nonanticipativity constraints (3.11)
which may be convenient for different solution methods. One way is
particularly elegant from the theoretical point of view:

xkt ¼

P
j2AtðkÞ

pjx
j
tP

j2AtðkÞ
pj

, k ¼ 1, . . . ,K , t ¼ 1, . . . ,T , ð3:13Þ

where AtðkÞ :¼ f j : �
j
½1, t� ¼ �

k
½1, t�g is the set of scenarios that share with scenario

k the history up to stage t. The expression at the right hand side of the above
relation is the conditional expectation of xt under the condition that
�½1, t� ¼ �

k
½1, t�, where xt is viewed as a random variable which can take values

x j
t with probabilities pj, j ¼ 1, . . . ,K . We can therefore rewrite (3.13) as

xt ¼ E xt j �½1, t�

 �

, t ¼ 1, . . . ,T : ð3:14Þ

This formulation of the nonanticipativity constraints can be conveniently
extended to the case of a general distribution of the data �½1,T �.
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The nonanticipativity conditions (3.14) can be analytically eliminated from
the multistage model. As before, denote by N the set of nodes of the scenario
tree (with root 1), and let i 2 N be a node at level t. Recall that BðiÞ denotes the
set of scenarios passing through node i and aðiÞ denotes the ancestor of node i.
We have that xt has to be constant for scenarios k 2 BðiÞ. Let us denote the
value of xt associated with node i by xðiÞ. Similarly, let cðiÞ, D

ðiÞ
i , W ðiÞ and hðiÞ be

the values ct, A
k
t, t�1, A

k
tt and bkt , respectively, corresponding to node i. We can

rewrite then the corresponding linear programming problem as follows

Min
X
i2N

pðiÞðcðiÞÞTxðiÞ

s:t: DðiÞxaðiÞ þ W ðiÞxðiÞ ¼ hðiÞ, i 2 N nf1g,
W ð1Þxð1Þ ¼ hð1Þ,

xðiÞ � 0, i 2 N :

3.3 The general model

In the general multistage model, similarly to the linear case, we have a
sequence of data vectors �1 2 R

d1 , �2 2 R
d2 , . . . , �T 2 R

dT , and a sequence of
decisions: x1 2 R

n1 , x2 2 R
n2 , . . . ,xT 2 R

nT . We assume that �1 is already
known and random vectors �2, . . . , �T are observed at the corresponding time
periods. The decision process has then the form:

decision ðx1Þ4 observation ð�2Þ4 decision ðx2Þ4

� � � � � � 4 observation ð�T Þ4 decision ðxT Þ:

The values of the decision vector xt, chosen at stage t, may depend on the
information �½1, t� available up to time t, but not on the results of future
observations. We can formulate this requirement using nonanticipativity
constraints. That is, we view each xt ¼ xtð�Þ as an element of the space of
measurable mappings from � to R

nt , and hence consider xtð!Þ as a random
(vector valued) process of time t. It has to satisfy the following additional
condition, called the nonanticipativity constraint,

xt ¼ E½xt j �½1, t��, t ¼ 1, . . . ,T : ð3:15Þ

If F t is the sigma algebra generated by13 �½1, t�, then F 1 � F 2 � . . . �
FT � F , and condition (3.15) ensures that xtð!Þ is measurable with respect F t.

13 F t is the minimal subalgebra of the sigma algebra F such that �1ð!Þ, . . . , �tð!Þ are F t-measurable.

Since �1 is not random, F 1 contains only two sets ; and �. We can assume that FT ¼ F .
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One can use this measurability requirement as a definition of the
nonanticipativity constraint.

To describe the objective and other constraints, let us denote the decisions
associated with stages 1, . . . ,T , as before, by x½1, t� :¼ ðx1, . . . ,xtÞ:We have the
objective functional

F : Rn1 þ ��� þ nT �R
d1 þ ��� þ dT �! R,

and constraint functionals

Gti : R
n1 þ ��� þ nt �R

d1 þ ��� þ dt �! R, t ¼ 2, . . . ,T , i ¼ 1, . . . ,mt:

The multistage stochastic programming problem is abstractly formulated as
follows

Min E Fðx½1,T �ð!Þ, �½1,T �ð!ÞÞ

 �

s:t: Gtiðx½1, t�ð!Þ, �½1, t�ð!ÞÞ � 0, i ¼ 1, . . . ,mt, t ¼ 1, . . . ,T ,

xtð!Þ 2 Xt, t ¼ 1, . . . ,T ,

xt ¼ E xt j �½1, t�

 �

, t ¼ 1, . . . ,T : ð3:16Þ

In the above formulation Xt is a convex closed subset of R
nt , and all

constraints are assumed to hold almost surely.
The nested formulation can be developed similarly to the linear case. At

stage T we know �½1,T � and x½1,T�1� and we have the problem

Min
xT

F x½1,T�1�, xT , �½1,T �
� 

s:t: GTiðx½1,T�1�, xT , �½1,T �Þ � 0, i ¼ 1, . . . ,mT ,

xT 2 XT : ð3:17Þ

Its optimal value is denoted QT x½1,T�1�, �½1,T �
� 

. Generally, at stage
t ¼ T � 1, . . . , 1 we have the problem

Min
xt

E Qtþ1ðx½1, t�1�,xt, �½1, tþ1�Þ
�� �½1, t�
 �

s:t: Gti x½1, t�1�,xt, �½1, t�
� 

� 0, i ¼ 1, . . . ,mt,

xt 2 Xt: ð3:18Þ

Its optimal value is denoted Qt x½1, t�1�, �½1, t�
� 

.
If F and Gti are random lsc functions and the sets Xt are closed and

bounded, then all Qt are random lsc functions, too. This can be proved by
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recursively applying Theorem 20 (from the Appendix) to problems (3.18) at
stages T ,T � 1, . . . , 1. By the forward induction, for t ¼ 1, . . . ,T , we can also
prove that each problem (3.18) has its data measurable with respect to F t and
has, by the measurable selection theorem (Theorem 16 in the Appendix), a
solution which is F t-measurable (if a solution exists at all). Therefore, under
natural assumptions, the multistage stochastic program (3.16) is a well defined
model.

3.4 Examples of multistage models

Example 7 (Financial Planning). Suppose that there are n investment
opportunities, with random returns Rt ¼ ðR1t, . . . ,RntÞ in time periods
t ¼ 1, . . . ,T . One of possible investments is just cash. Our objective is to
invest the given amount W0 at time t ¼ 0 so as to maximize the expected
utility of our wealth at the last period T . The utility of wealthW is represented
by a concave nondecreasing function UðWÞ. In our investment strategy we are
allowed to rebalance our portfolio after each period, but without injecting
additional cash into it.

Let x10, . . . , xn0 denote the initial amounts invested in assets 1, . . . , n at
time t ¼ 0. Clearly, they have to be nonnegative and to satisfy the condition

Xn
i¼1

xi0 ¼W0: ð3:19Þ

We can put an equation sign here, because one of our assets is cash.
After the first period, our wealth may change, due to random returns from

the investments, and at time t ¼ 1 it will be equal to

W1 ¼
Xn
i¼1

ð1 þ Ri1Þxi0: ð3:20Þ

If we stop at that time, our problem becomes the stochastic programming
problem

Max
x02R

n
E U

Xn
i¼1

ð1 þ Ri1Þxi0

 !" #

s:t:
Xn
i¼1

xi0 ¼W0,

xi0 � 0, i ¼ 1, . . . , n: ð3:21Þ

In particular, if UðWÞ:W , i.e., we want to maximize the expected wealth,
then the objective function in the above problem (3.21) becomes
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Pn
i¼1 ð1 þ E½Ri1�Þxi0, and hence problem (3.21) becomes a deterministic

optimization program. It has the trivial optimal solution of investing
everything into the asset with the maximum expected return.

Suppose, on the other hand, that UðWÞ is defined as

UðWÞ :¼
ð1 þ qÞðW � aÞ, if W � a,
ð1 þ rÞðW � aÞ, if W � a,

�
ð3:22Þ

with r > q > 0 and a > 0. We can view the involved parameters as follows: a is
the amount that we have to pay at time t ¼ 1, q is the interest at which we can
invest the additional wealth W � a, provided that W > a, and r is the interest
at which we will have to borrow if W is less than a. For the above utility
function, problem (3.21) can be formulated as the following two-stage
stochastic linear program

Max
x02R

n
E½Qðx0,R1Þ�,

s:t:
Xn
i¼1

xi0 ¼W0,

xi0 � 0, i ¼ 1, . . . , n, ð3:23Þ

where Qðx0,R1Þ is the optimal value of the second stage program

Max
y, z2R

ð1 þ qÞy� ð1 þ rÞz

s:t:
Xn
i¼1

ð1 þ Ri1Þxi0 ¼ a þ y � z,

y � 0, z � 0: ð3:24Þ

Suppose now that T > 1. In that case we can rebalance the portfolio at time
t ¼ 1, by specifying the amounts x11, . . . , xn1 invested in the assets in the
second period. Note that we already know the actual returns in the first
period, so it is reasonable to use this information in the rebalancing decisions.
Thus, our second stage decisions are actually functions of R1 ¼ ðR11, . . . ,Rn1Þ,
and they can be written as x11ðR1Þ, . . . , xn1ðR1Þ. We also must remember about
our balance of wealth:

Xn
i¼1

xi1ðR1Þ ¼W1 ð3:25Þ
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and the condition of nonnegativity. In general, the wealth after period t is
equal to

Wt ¼
Xn
i¼1

ð1 þ RitÞxi, t�1ðR½1, t�1�Þ, ð3:26Þ

where R½1, t� :¼ ðR1, . . . ,RtÞ:
Our next decisions, x1t, . . . , xnt may depend on R1, . . . ,Rt. They have to be

nonnegative and satisfy the balance constraint,

Xn
i¼1

xitðR½1, t�Þ ¼Wt: ð3:27Þ

At the end, the wealth after period T is

WT ¼
Xn
i¼1

ð1 þ RiT Þxi,T�1ðR½1,T�1�Þ: ð3:28Þ

Our objective is to maximize the expected utility of this wealth,

Max E½UðWT Þ�: ð3:29Þ

It is a multistage stochastic programming problem, where stages are
numbered from t ¼ 0 to t ¼ T � 1, and decisions xt at each stage are allowed
to depend on the history R1, . . . ,Rt of returns prior to this stage.

Of course, in order to complete the description of the above multistage
stochastic programming problem, we need to define the probability structure
of the random process R1, . . . ,RT . This can be done in many different ways.
For example, one can construct a particular scenario tree defining time
evolving of the process. If at every stage the random return of each asset is
allowed to have just two continuations independently of other assets, then the
total number of scenarios is 2nT . It also should be ensured that 1 þ Rit > 0,
i ¼ 1, . . . , n, t ¼ 1, . . . ,T , for all possible realizations of the random data.

Let us consider the above multistage problem backwards, as it was
discussed in Section 3.1. At the last stage t ¼ T � 1 all realizations of the
random process R1, . . . ,RT�1 are known and xT�2 has been chosen.
Therefore, we have to solve the problem

Max E U
Xn
i¼1

ð1 þ RiT Þxi,T�1

" #����R½1,T�1�
( )

s:t:
Xn
i¼1

xi,T�1 ¼
Xn
i¼1

ð1 þ Ri,T�1Þxi,T�2,

xi,T�1 � 0, i ¼ 1, . . . , n: ð3:30Þ
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Its optimal value is denoted QT�1ðxT�2,R½1,T�1�Þ. At stage t ¼ T � 2 reali-
zations of the random process R1, . . . ,RT�2 are known and xT�3 has been
chosen. We have then to solve the following two-stage stochastic program

Max E QT�1ðxT�2,R½1,T�1�ÞjR½1,T�2�

 �

s:t:
Xn
i¼1

xi,T�2 ¼
Xn
i¼1

ð1 þ Ri,T�2Þxi,T�3,

xi,T�2 � 0, i ¼ 1, . . . , n: ð3:31Þ

Its optimal value is denoted QT�2ðxT�3,R½1,T�2�Þ, etc. At stage t ¼ 0 we
have to solve the following program

Max E Q1ðx0,R1Þ½ �

s:t:
Xn
i¼1

xi0 ¼W0,

xi0 � 0, i ¼ 1, . . . , n: ð3:32Þ

Note that in the present case the cost-to-go function QT�1ðxT�2,R½1,T�1�Þ
depends on xT�2 ¼ ðx1,T�2, . . . ,xn,T�2Þ only through WT�1 ¼

Pn
i¼1 ð1þ

Ri,T�1Þxi,T�2. That is, if ~QQT�1ðWT�1,R½1,T�1�Þ is defined as the optimal
value of the problem

Max E U
Xn
i¼1

ð1þ RiT Þxi,T�1

" #����R½1,T�1�
( )

s:t:
Xn
i¼1

xi,T�1 ¼WT�1, xi,T�1 � 0, i ¼ 1, . . . , n, ð3:33Þ

then

QT�1ðxT�2,R½1,T�1�Þ ¼ ~QQT�1

Xn
i¼1

ð1þ Ri,T�1Þxi,T�2,R½1,T�1�

 !
:

Similarly, QT�2ðxT�3,R½1,T�2�Þ depends on xT�3 only through WT�2, and
so on.

We may also note that the need for multistage modeling occurs here mainly
because of the nonlinearity of the utility function Uð�Þ. Indeed, if UðWÞ:W ,
and the returns in different stages are independent random vectors, it is
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sufficient to maximize the expected wealth after each period, in a completely
myopic fashion, by solving for t ¼ 0, . . . ,T � 1 the single stage models

Max
xt

E

Xn
i¼1

ð1þ Ri, tþ1Þxi, tjR½1, t�

" #

s:t:
Xn
i¼1

xit ¼Wt, xt � 0, ð3:34Þ

where Wt and R1, . . . ,Rt are already known. This, in turn, becomes a
deterministic model with the objective coefficients

�itðR½1, t�Þ :¼ 1þ E½Ri, tþ1jR½1, t��:

Such a model has a trivial optimal solution of investing everything in the
asset with the maximum expected return in the next period.

A more realistic situation occurs in the presence of transaction costs. These
are losses associated with the changes in the numbers of units (stocks, bonds)
held. In such a situation multistage modeling is necessary, too, even if we use
the expected wealth objective.

Let us observe now that the above problem can be also modeled
as a T-period two-stage problem. To that end suppose that one makes a
decision at the beginning of the process without thinking of rebalancing
the portfolio. That is, our decision variables are initial amounts x1, . . . ,xn
invested in assets 1, . . . , n at time t ¼ 0. After T periods of time each
asset i will be worth


QT
t¼1 ð1þ RitÞ

�
xi, and hence the total wealth will bePn

i¼1


QT
t¼1 ð1þ RitÞ

�
xi: The corresponding stochastic program can be then

written as follows

Max
x2Rn

E U
Xn
i¼1

YT
t¼1

ð1þ RitÞ

" #
xi

 !" #

s:t:
Xn
i¼1

xi ¼W0,

xi � 0, i ¼ 1, . . . , n: ð3:35Þ

Problem (3.35) is a two-stage stochastic program. It gives an extension of
the two-stage problem (3.21) for T periods of time. If the utility function is
given in the form (3.22), then problem (3.35) can be formulated as a linear
two-stage stochastic program in a way similar to (3.23)–(3.24).

The difference between the two-stage (3.35) and multistage (3.29)
programs is that in the two-stage model the value xit of asset i at time t is
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defined by the recursive equation14 xit ¼ ð1þ RitÞxi, t�1, which implies that
xit ¼

Qt
s¼1 ð1þ RisÞ


 �
xi0. Consequently, xit is completely determined by the

initial value xi0 ¼ xi and a realization of the random process Ri1, . . . ,Rit. On
the other hand in the multistage model values xit are rebalanced at every
period of time subject to the constraints (3.26)–(3.27). Therefore the
multistage problem (3.29) can be viewed as a relaxation of the two-stage
problem (3.35), and hence has a larger optimal value.

We discuss further the above example in section ‘‘An Example of Financial
Planning’’ of chapter ‘‘Monte Carlo Sampling Methods’’.

The following example also demonstrates that in some cases the same
practical problem can be modeled as a multistage or two-stage multiperiod
program.

Example 8 (Queueing Process). Consider stochastic process It, t ¼ 1, 2, . . . ,
governed by the recursive equation

It ¼ ½It�1 þ xt �Dt�þ, ð3:36Þ

with initial value I0. Here Dt are random numbers and xt represent
decision variables. The above process It can describe the waiting time of
t-th customer in a G=G=1 queue, where Dt is the interarrival time between
the ðt� 1Þ-th and t-th customers and xt is the service time of ðt� 1Þ-th
customer. Alternatively, we may view It as an inventory of a certain product
at time t, with Dt and xt representing the demand and production
(or reordering), respectively, of the product at time t. Equation (3.36)
assumes that the excess demand (over It�1 þ xt) is not backordered, but
simply lost.

Suppose that the process is considered over a finite horizon at periods
t ¼ 1, . . . ,T . Our goal then is to minimize (or maximize) the expected value of
an objective function involving I1, . . . , IT . For instance, one may be interested
in maximizing a profit which at time t is given by ct min It�1 þ xt,Dt½ � � htIt,
where ct and ht are positive parameters representing the marginal profit and
the holding cost, respectively, of the product at period t. The negative of the
total profit is then given by

Fðx,DÞ :¼
XT
t¼1

�
htIt � ct min ½It�1 þ xt,Dt�

�
:

Here x ¼ ðx1, . . . ,xT Þ is a vector of decision variables, D ¼ ðD1, . . . ,DT Þ is a
random vector of the demands at periods t ¼ 1, . . . ,T . By using the recursive

14 This defines an implementable and feasible policy for the multistage problem (3.29), see section

‘‘Multistage Models’’ of Chapter ‘‘Optimality and Quality in Stochastic Programming’’ for the

definition of implementable and feasible policies.
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equation (3.36) it is straightforward to show that Fðx,DÞ can be also written in
the form

Fðx,DÞ ¼
XT
t¼1

qtIt �
XT
t¼1

ctxt � c1I0,

where qt :¼ ht � ctþ1 þ ct, t ¼ 1, . . . ,T � 1, and qT :¼ cT þ hT . We assume
that all numbers qt are positive, this certainly holds if c1 ¼ � � � ¼ cT . By
(3.36) we have that It is a convex function of x1, . . . , xt. Since qt are positive, it
follows that the function Fð�,DÞ is convex for any realization of D.

We can formulate a corresponding stochastic programming problem
in several ways. First, suppose that the production cannot be changed
during the process as some realizations of the demands become known. That
is, a decision about production quantities x1, . . . , xT should be made before
any realization of the demands D1, . . . ,DT is available, and is not changed
at times t ¼ 1, . . . ,T . This leads to the problem of minimization of the
expectation E½Fðx,DÞ�, which is taken with respect to the probability
distribution of the random vector D. Although, we have here a multiperiod
process, the above formulation can be viewed as a two-stage problem.
In fact it can be formulated as a linear two-stage stochastic program as
follows:15

Min
x�0

�cTxþ E½Qðx,DÞ�
� �

, ð3:37Þ

where c ¼ ðc1, . . . , cT Þ and Qðx,DÞ is the optimal value of the problem

Min
y�0

XT
t¼1

qtyt

s:t: yt�1 þ xt �Dt � yt, t ¼ 1, . . . ,T ,

y0 ¼ I0: ð3:38Þ

Note that It ¼ Itðx,DÞ is equal to y*t , t ¼ 1, . . . ,T , where y* is the optimal
solution of (3.38).

Suppose now that the random vector D can take a finite number or
realizations (scenarios) D1, . . . ,DK with the corresponding probabilities
p1, . . . , pK . For example, if components Dt of the demand vector form a
Markov chain with m possible realizations at each period, then the total

15 Since I0 does not depend on x, the term c1I0 is omitted.
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number of scenarios K ¼ mT . We can write then the two stage problem (3.37)–
(3.38) as the linear problem (compare with (2.7)):

Min�
XT
t¼1

ctxt þ
XK
k¼1

pk
XT
t¼1

qty
k
t

 !

s:t: ykt�1 þ xt �Dk
t � ykt , t ¼ 1, . . . ,T ,

xt � 0, yk0 ¼ I0, y
k
t � 0, t ¼ 1, . . . ,T , k ¼ 1, . . . ,K : ð3:39Þ

Note that the optimal values of ykt in (3.39) represent Itðx,D
kÞ. Since

Itðx,D
kÞ depend only on the realization Dk up to time t, the nonanticipativity

constraints with respect to ykt hold in (3.39) automatically.
On the other hand, depending on the flexibility of the production process,

one can update production quantities at every time period t ¼ 1, . . . ,T using
known realizations of the demand up to time t. This can be formulated as a
multistage stochastic program where an optimal decision is made at every
period of time based on available realizations of the random data. Consider
the following relaxation of (3.39):

Min
XK
k¼1

pk
XT
t¼1

qty
k
t � ctx

k
t

� " #

s:t: yk
t�1 þ xk

t �Dk
t � yk

t , t ¼ 1, . . . ,T ,

xk
t � 0, yk

0 ¼ I0, y
k
t � 0, t ¼ 1, . . . ,T , k ¼ 1, . . . ,K : ð3:40Þ

By adding to the above problem (3.40) the nonanticipativity constraints
associated with the scenario tree of the considered T-period process, we obtain
the linear programming formulation of the corresponding multistage
stochastic program.

Example 9 (Trucking). A trucking company serves n locations. For simplicity
we assume that it takes exactly one day for a truck to go from one location to
another, independently whether it is loaded or not. At the beginning of each
day t, the company observes for each pair of locations, i and j, a random
demand Dijt for cargo to be shipped from i to j on day t. If they have a
sufficient number of trucks at location i at this moment, they may take an
order and ship the cargo. The revenue for shipping a unit of cargo from i to j
is qij. The part of the demand that is not served is simply lost, and it does not
result in any revenue or cost. It is important to stress that the numbers of
trucks at different locations result from earlier decisions of moving the trucks
and are therefore parts of the policy. The company may also move empty
trucks between different locations (in anticipation of strong demand some-
where else). The cost of moving one unit of capacity from i to j is cij,
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independently whether it is loaded or empty (this is not a simplification,
because we can always adjust the qij’s). Currently, the company has the
capacity ri0 at each location i. Their objective is to maximize the expected
profit in the next T days.

We recognize this problem as a multistage stochastic programming
problem. With each day (stage) t ¼ 1, . . . ,T we associate the following
decision variables:

yijt - the total capacity moved from i to j, where i, j ¼ 1, . . . , n,
zijt - the amount of cargo moved from i to j, where i, j ¼ 1, . . . , n,
rit - the capacity available at i at the end of day t, where i ¼ 1, . . . , n.

Note that Diit ¼ 0 and ziit ¼ 0 by definition, and yiit is the capacity waiting
at i for the next day.

The problem takes on the form

Max
y, z, r

E

XT
t¼1

Xn
i, j¼1

ðqijzijt � cijyijtÞ

" #

s:t: zijt � Dijt, i, j ¼ 1, . . . , n, t ¼ 1, . . . ,T ,

zijt � yijt, i, j ¼ 1, . . . , n, t ¼ 1, . . . ,T ,

ri, t�1 þ
Xn
k¼1

ykit �
Xn
j¼1

yijt ¼ rit, i ¼ 1, . . . , n, t ¼ 1, . . . ,T ,

r � 0, y � 0, z � 0: ð3:41Þ

In a more refined version we may want to put some additional constraints
on the capacity riT available at each location i at the end of the planning
period.

In the above problem the demand DðtÞ ¼ ½DijðtÞ�i, j¼1,..., n is a random vector
valued process. The decisions yijt and zijt and the resulting numbers of trucks
rit at different locations may depend on all past and current demand values
Dð�Þ, � � t, but not on the future values of the demand vector. Therefore, at
stage t, we cannot exactly predict how many trucks we shall need at each
location at stage tþ 1; we can only use past data and our knowledge of the
joint distribution of all demands to re-position our truck fleet. For a specified
scenario tree of the demand process DðtÞ, the corresponding multistage
problem can be written as a large linear program.

3.5 Relations to dynamic programming

There exist close relations between multistage stochastic programming
models and classical models of dynamic programming and optimal control.
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To illustrate these relations, consider the linear dynamical system described by
the state equation

stþ1 ¼ Atst þ Btut þ Ctet, t ¼ 1, . . . ,T ,

in which st denotes the state of the system at time t, ut is the control vector,
and et is a random ‘disturbance’ at time t. The matrices At, Bt and Ct are
known. The random vectors et, t ¼ 1, . . . ,T , are assumed to be independent.
At time t we observe the current state value, st, but not the disturbances et.
Our objective is to find a control law, ûutð�Þ, t ¼ 1, . . . ,T , so that the actual
values of the control variables can be determined through the feedback rule:

ut ¼ ûutðstÞ, t ¼ 1, . . . ,T � 1:

We want to do it in such a way that the expected value of the performance
index,

E

XT�1
t¼1

Ftðst, utÞ þ FT ðsT Þ

" #

is minimized. In a more involved formulation, there may be additional
constraints on the control variables, or mixed state–control constraints:

gtiðst, utÞ � 0, i ¼ 1, . . . ,mt, t ¼ 1, . . . ,T � 1:

For the sake of simplicity we assume that they are all incorporated into the
definition of the partial objectives, that is, Ftðst, utÞ ¼ þ1 if these constraints
are not satisfied.

The crucial characteristics of the optimal control model is that we look for
a solution in the form of a function of the state vector. We are allowed to
focus on such a special form of the control rule due to the independence of the
disturbances at different stages. If the disturbances are dependent in certain
ways, augmentation of the state space may reduce the model to the case of
independent et’s.

The key role in the optimal control theory is played by the cost-to-go
function

VtðstÞ :¼ infE
XT�1
�¼t

F�ðs�, u�Þ þ FT ðsT Þ

" #
,
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where the minimization is carried out among all possible feedback laws
applied at stages t, . . . ,T � 1. The functions Vtð�Þ give the dynamic program-
ming equation:

VtðstÞ ¼ inf
ut
ðFtðst, utÞ þ E½Vtþ1ðAtst þ Btut þ CtetÞ�Þ, t ¼ T � 1, . . . , 1:

The optimal feedback rule is the minimizer of the above expression.
Except for very special cases, such as linear–quadratic or time optimal

control, the form of the optimal feedback rule may be very involved. Usually,
some functional form of the rule is assumed and parametric optimization
employed to find the best rule within a chosen class. Discretization of the state
space is a common approach here.

To transform the above model into a stochastic programming model we
just need to make the substitutions:

xt ¼ ðut, stÞ, t ¼ 1, . . . ,T � 1,

xT ¼ sT ,

�t ¼ Ct�1et�1, t ¼ 2, . . . ,T :

The function Vtð�Þ can be formally expressed as the optimal value of

Min
st, ut

�
Ftðst, utÞ þ E½Vtþ1ðAtst þ Btut þ CtetÞ�


s:t: st ¼ At�1st�1 þ Bt�1ut�1 þ �t:

Thus, we can define

Qtðst�1, ut�1, �tÞ ¼ VtðAt�1st�1 þ Bt�1ut�1 þ �tÞ

to perfectly match both models.
The opposite of that is also true. A multistage stochastic programming

model with model state variables and independent random parameters �t can
be transformed into a control problem, as in the following example.

Example 10 (Trucking (continued)). Let us consider Example 9 in which the
demand vectors Dijt, i, j ¼ 1, . . . , n are independent for t ¼ 1, . . . ,T . We can
formally define:

st :¼ ½rt�1,Dt�, ut :¼ ½yt, zt�, et :¼ Dtþ1:
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Then the next state stþ1 is a function of st, ut and et:

rit ¼ ri, t�1 þ
Xn
k¼1

ykit �
Xn
j¼1

yijt,

Dtþ1 ¼ et:

At each time t ¼ 1, . . . ,T we have mixed state–control constraints:

zijt � Dijt, i, j ¼ 1, . . . , n,

zijt � yijt, i, j ¼ 1, . . . , n:

The objective functional has the form:

Ftðst, utÞ ¼
Xn
i, j¼1

ðqijzijt � cijyijtÞ,

and depends on controls alone. So, if the demands in different days are
independent, the optimal solution has the form of a feedback rule:

yt ¼ ŷytðrt�1,DtÞ,

zt ¼ ẑztðrt�1,DtÞ:

The form of these functions is rather involved, though.
As we shall see it later, the stochastic programming formulation tries to

exploit as much as possible some advantageous properties of the functions
Vtð�Þ or Qtð�Þ, such as convexity, or polyhedral structure, which are hard to
exploit in the dynamic programming setting. Also, the stochastic program-
ming model does not assume the independence of the random disturbances.
It does require, though, in the scenario tree formulation the discretization of
the disturbances distributions.

4 Robust and min–max approaches to stochastic optimization

4.1 Robust models

Consider the two-stage stochastic linear program (2.2)–(2.3). In that
problem the optimal value Qðx, �ð!ÞÞ of the second stage problem is optimized
on average. Of course, for a particular realization � of the random data �ð!Þ
the corresponding value Qðx, �Þ can be quite different from the expected
value E½Qðx, �ð!Þ�. An ‘‘unlucky’’ realization of �ð!Þ may have disastrous
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consequences for the user of stochastic programming. For instance, in
Example 1 the newsvendor may loose all his savings on an unlucky day, so
that he will have to borrow from the mob on murderous interest to continue
his business next day. In order to avoid such disastrous consequences one may
try to be more conservative and to reach a compromise between the average
(i.e, the mean) and a risk associated with variability of Qðx, �Þ. It appears then
natural to add the term �Var½Qðx, �Þ� to the objective of the optimization
problem, where coefficient � � 0 represents a compromise between the
expectation and variability of the objective. Unfortunately, this destroys two
important properties of the two-stage linear program (2.2)–(2.3), namely its
convexity and second stage optimality.

In order to see that let us suppose for the sake of simplicity that there is a
finite number of scenarios and hence the problem can be formulated in the
form (2.7). By adding the term �Var½Qðx, �Þ� to the objective function in (2.2)
we obtain the problem

Min
x

cTxþ  ðQðx, �1Þ, . . . ,Qðx, �K ÞÞ

s:t: Ax ¼ b, x � 0, ð4:1Þ

where

 ðzÞ :¼
XK
k¼1

pkzk þ �
XK
k¼1

pkz
2
k �

XK
k¼1

pkzk

 !2
2
4

3
5:

Now for � > 0 the objective function of the above problem is not necessarily
convex even though the functions Qð�, �iÞ, i ¼ 1, . . . ,K, are all convex, and the
second stage optimality does not hold in the sense that problem (4.1) is not
equivalent to the problem

Min
x, y1,..., yk

cTxþ  
�
qT1 y1, . . . , q

T
KyK


s:t: Ax ¼ b,

TkxþWkyk ¼ hk,

x � 0, yk � 0, k ¼ 1, . . . ,K : ð4:2Þ

In order to preserve the property of second stage optimality we may change
the function  ðzÞ to a componentwise nondecreasing function. Recall that a
function  : RK

! R is said to be componentwise nondecreasing if  ðzÞ �  ðz0Þ
for any z, z0 2 R

K such that z � z0.
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Proposition 11. Suppose that problem (4.2) is feasible and function  ðzÞ is
componentwise nondecreasing. Then problems (4.1) and (4.2) have the same
optimal value, and if, moreover, problem (4.2) has an optimal solution, then
problems (4.1) and (4.2) have the same set of first stage optimal solutions.

Proof. Since (4.2) is feasible it follows that there exists a feasible x such that
all Qðx, �kÞ, k ¼ 1, . . . ,K , are less than þ1, and hence the optimal value of
problem (4.1) is also less than þ1. By (2.6) we have that Qðx, �kÞ is given by
the optimal value of a linear programming problem. Therefore, if Qðx, �kÞ is
finite, then the corresponding linear programming problem has an optimal
solution. It follows that if all Qðx, �kÞ are finite, then  ðQðx, �1Þ, . . . ,Qðx, �K ÞÞ
is equal to  ðqT1 y1, . . . , q

T
KyK Þ for some yk, k ¼ 1, . . . ,K , satisfying the

constraints of problem (4.2) and hence the optimal value of (4.1) is greater
than or equal to the optimal value of (4.2). Conversely, for a given x, Qðx, �kÞ
is less than or equal to qTk yk, k ¼ 1, . . . ,K , for any y1, . . . , yk feasible for (4.2).
Since  ðzÞ is componentwise nondecreasing, it follows that the optimal value
of (4.2) is greater than or equal to the optimal value of (4.1), and hence these
two optimal values are equal to each other. Moreover, it follows that if
x*, y*1 , . . . , y*K is an optimal solution of problem (4.2), then x* is an optimal
solution of problem (4.1), and vice versa. u

We also have that if  ðzÞ is componentwise nondecreasing and convex,
then since functions Qð�, �kÞ, k ¼ 1, . . . ,K are convex, the corresponding
composite function and hence the objective function of problem (4.1) are
convex.

Of course, for  ðzÞ :¼
PK

k¼1 pkzk problem (4.2) coincides with the
two-stage linear problem (2.7). Another possibility is to use a separable
function  ðzÞ ¼

PK
k¼1  kðzkÞ with one of the following two choices of

functions  k:

 kðzkÞ :¼ pkzk þ �pkðzk � �Þþ, ð4:3Þ

 kðzkÞ :¼ pkzk þ �pk½ðzk � �Þþ�
2, ð4:4Þ

for some � � 0 and � 2 R. Note that for both above choices of  k, the
corresponding function  ðzÞ is componentwise nondecreasing and convex.

If the parameter � in (4.4) is equal to E½Qðx, �Þ� and the distribution of
Qðx, �Þ is symmetrical around its mean, then

 ðQðx, �1Þ, . . . ,Qðx, �K ÞÞ ¼ E½Qðx, �Þ� þ ð�=2ÞVar½Qðx, �Þ�:

Of course, the mean (expected value) of Qðx, �Þ depends on x; in practical
applications it would have to be iteratively adjusted during an optimization
procedure. An advantage of using  k given in (4.3) is that then the function
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 ðzÞ is piecewise linear, and hence (4.2) can be formulated as a linear
programming problem. The above approach to stochastic programming is
called robust by some authors.

The model (4.2) with (4.3) or (4.4) is an example of a mean–risk model. For
a random outcome Fðx, �Þ, these models use an objective which is composed of
two parts: the expected outcome (the mean) E½Fðx, �Þ�, and a scalar composite
measure of the size and frequency of undesirable outcome values, the risk
�ðFðx, �ÞÞ. The risk measure �ðZÞ is understood here as a function of the entire
distribution of the random variable Z. For example, our formulas (4.3) and
(4.4) correspond to risk measures

�1ðZ;�Þ :¼ E½ðZ � �Þþ� and �2ðZ;�Þ :¼ E

�
ðZ � �Þþ

2�
,

respectively, which represent the expected excess (or square excess) over the
target level �. More sophisticated are semideviation measures, which
use, instead of the fixed target level �, the expected value of the random
outcome. The simplest and most convenient in applications is the absolute
semideviation:

�1ðZÞ :¼ E½ðZ � EZÞþ�: ð4:5Þ

The presence of the expected value of the outcome in the definition of the
measure makes the resulting risk term

�1ðFðx, �ÞÞ ¼ E ðFðx, �Þ � E½Fðx, �Þ�Þþ

 �

,

a nonconvex function of x, even if Fð�, �Þ is convex. Nevertheless, the
corresponding mean–risk model

Min E½Fðx, �Þ� þ �E ðFðx, �Þ � E½Fðx, �Þ�Þþ

 �� �

remains a convex problem, provided that the coefficient � in front of the risk
term is confined to ½0, 1�. This can be seen from the representation:

E½Fðx, �Þ� þ �E ðFðx, �Þ � E½Fðx, �Þ�Þþ

 �

¼ ð1� �ÞE½Fðx, �Þ� þ �E½maxfE½Fðx, �Þ�,Fðx, �Þg�,

in which the convexity of all terms is evident.
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Example 12. Let us consider Example 3 again, but instead of bounding our
risk of loss by the probabilistic constraint P

Pn
i¼1 Rixi � �b

� �
� 1� �, let us

modify the objective by subtracting a risk measure

�
Xn
i¼1

Rixi

 !
: ð4:6Þ

For example, similarly to (4.3), we may use

�ðZÞ :¼ E½ð�� ZÞþ�, ð4:7Þ

in which case (4.6) represents the expected shortfall below some target profit
level �. If � ¼ �b < 0, our measure represents the expected loss in excess of b.

Supposing that our initial capital (wealth) is W , we may formulate the
following mean–risk optimization problem

Max
x�0

Xn
i¼1

�ixi � ��
Xn
i¼1

Rixi

 !( )

s:t:
Xn
i¼1

xi �W : ð4:8Þ

Problems of this type are usually solved as a family parametrized by � � 0.
Their solutions can be graphically depicted in the form of the efficient frontier:
the collection of mean–risk pairs corresponding to the optimal solutions of
(4.8) for all � � 0.

If the risk measure (4.7) is used, the term �E


��

Pn
i¼1 Rixi

� 
þ

�
can be

interpreted as the expected cost of a loan to cover the shortfall below �, where
� is the interest rate. In this case problem (4.8) has a convenient linear
programming formulation, provided that the distribution of the returns is
discrete. It is very similar to the model for the semideviation risk measure
discussed below.

As we deal with a maximization problem, the semideviation risk measure
(4.5) should be modified to represent the shortfall below the mean:

�1ðZÞ :¼ E½ðEZ � ZÞþ�:

Then the mean–risk model (4.7) takes on the form

Max
x�0

ð1� �Þ
Xn
i¼1

�ixi þ �E min
Xn
i¼1

�ixi,
Xn
i¼1

Rixi

 !" #( )

s:t:
Xn
i¼1

xi �W :
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For a discrete distribution of R we can convert the above mean–risk model
into a linear programming problem. Indeed, let k ¼ 1, . . . ,K denote scenarios,
and let Rik be the realization of the return of security i in scenario k. The
probabilities of scenarios are p1, . . . , pK ,

PK
k¼1 pk ¼ 1. Introducing new

variables � (representing the mean), and rk, k ¼ 1, . . . ,K (representing the
worst case of return and its expected value) we obtain the problem

Max
x�0,�, r

ð1� �Þ�þ �
XK
k¼1

pkrk

( )

s:t:
Xn
i¼1

�ixi ¼ �,

rk � �, k ¼ 1, . . . ,K ,

rk �
Xn
i¼1

Rikxi, k ¼ 1, . . . ,K ,

Xn
i¼1

xi �W :

It can be solved by standard linear programming techniques.

4.2 Min–max stochastic programming

In practical applications probability distributions of the involved uncertain
parameters are never known exactly and can be estimated at best. Even worse,
quite often the probabilities are assigned on an ad hoc basis by a subjective
judgment. Suppose now that there is a set S of probability distributions,
defined on a sample space ð�,F Þ, which in some reasonable sense give a
choice of the underlying probability distributions. For instance, in Example 3
one may foresee that the random investment returns will generally increase,
stay flat or even decrease over the next T years. By specifying means,
representing a possible trend, and variability of the investment returns one
may assign a finite number of possible probability distributions for the
random data. Alternatively, certain properties, like first- and maybe second-
order moments, unimodality or specified marginal distributions of the random
data can be postulated. Typically, this leads to an infinite set S of considered
probability distributions.

There are two basic ways of dealing with such cases of several distributions.
One can assign a priori probability distribution over S, and hence reduce
the problem to a unique distribution. Suppose, for example, that S is
finite, say S :¼ fP1, . . . ,Plg. Then by assigning probability �i to Pi,
i ¼ 1, . . . , l, one obtains the unique (posteriori) distribution P :¼

Pl
i¼1 �iPi.
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The distribution P represents an averaging over possible distributions Pi.
Again a choice of the a priori distribution f�1, . . . , �lg is often subjective.

An alternative approach is to hedge against the worst distribution by
formulating the following min–max analogue of stochastic programs (1.14),
(2.12):

Min
x2X

Max
P2S

EP½Fðx,!Þ�: ð4:9Þ

For the above problem to make sense it is assumed, of course, that for every
P 2 S the expectation EP½Fðx,!Þ� is well defined for all x 2 X .

In order to see a relation between these two approaches let us assume for
the sake of simplicity that the set S ¼ fP1, . . . ,Plg is finite. Then problem (4.9)
can be written in the following equivalent way

Min
ðx, zÞ2X�R

z

s:t: fiðxÞ � z, i ¼ 1, . . . , l, ð4:10Þ

where fiðxÞ :¼ EPi
½Fðx,!Þ�. Suppose further that problem (4.10), and hence

problem (4.9), is feasible and for every ! 2 � the function Fð�,!Þ is convex. It
follows from convexity of Fð�,!Þ that the functions fið�Þ are also convex, and
hence problem (4.10) is a convex programming problem. Then, by the duality
theory of convex programming, there exist Lagrange multipliers �i � 0,
i ¼ 1, . . . , l, such that

Pl
i¼1 �i ¼ 1 and problem (4.10) has the same optimal

value as the problem

Min
x2X

f ðxÞ :¼
Xl
i¼1

�i fiðxÞ

( )

and the set of optimal solutions of (4.10) is included in the set of optimal
solutions of the above problem. Since f ðxÞ ¼ EP* ½Fðx,!Þ�, where P* :¼Pl

i¼1 �iPi, we obtain that problem (4.9) is equivalent to the stochastic
programming problem

Min
x2X

EP* ½Fðx,!Þ�:

This shows that, under the assumption of convexity, the min–max
approach automatically generates an a priori distribution given by the
corresponding Lagrange multipliers. Of course, in order to calculate these
Lagrange multipliers one still has to solve the min–max problem. Existence of
such Lagrange multipliers, and hence of the a priori distribution, can be also
shown for an infinite set S under the assumption of convexity and mild
regularity conditions.

54 A. Ruszczyński and A. Shapiro



5 Appendix

In this section we briefly discuss some basic concepts and definitions from
probability and optimization theories, needed for the development of
stochastic programming models. Of course, a careful derivation of the
required results goes far beyond the scope of this book. The interested reader
may look into standard textbooks for a thorough development of these topics.

5.1 Random variables

Let � be an abstract set. It is said that a set F of subsets of � is a sigma
algebra (also called sigma field) if it is closed under standard set theoretic
operations, the set � belongs to F , and if Ai 2 F , i 2 N, then [i2NAi 2 F . The
set � equipped with a sigma algebra F is called a sample or measurable space
and denoted ð�,F Þ. A set A � � is said to be F -measurable if A 2 F . It is said
that the sigma algebra F is generated by its subset A if any F -measurable set
can be obtained from sets belonging to A by set theoretic operations and by
taking the union of a countable family of sets from A. That is, F is generated
by A if F is the smallest sigma algebra containing A.

If � coincides with a finite dimensional space R
m, unless stated otherwise,

we always equip it with its Borel sigma algebra B. Recall that B is generated by
the set of open (or closed) subsets of Rm. A function P : F ! ½0, 1� is called a
probability measure on ð�,F Þ if Pð�Þ ¼ 1, and for every collection Ai 2 F ,
i 2 N, such that Ai \ Aj ¼ ; for all i 6¼ j, we have Pð[i2NAiÞ ¼

P
i2N PðAiÞ. A

sample space ð�,F Þ equipped with a probability measfure P is called a
probability space and denoted ð�,F ,PÞ. Recall that F is said to be P-complete
if A � B, B 2 F and PðBÞ ¼ 0, implies that A 2 F , and hence PðAÞ ¼ 0. Since
it is always possible to enlarge the sigma algebra and extend the measure in
such a way as to get complete space, we can assume without loss of generality
that considered probability measures are complete. It is said that an event
A 2 F happens P-almost surely (a.s.) or almost everywhere (a.e.) if PðAÞ ¼ 1,
or equivalently Pð�nAÞ ¼ 0.

A mapping V : �! R
m is said to be measurable if for any Borel set A 2 B,

its inverse image V�1ðAÞ :¼ f! 2 �: Vð!Þ 2 Ag is F -measurable.16 A
measurable mapping Vð!Þ from probability space ð�,F ,PÞ into R

m is called
a random vector. Note that the mapping V generates the probability measure
(also called the probability distribution) PðAÞ :¼ PðV�1ðAÞÞ on ðRm,BÞ, which
provides all relevant probabilistic information about the considered random
vector. Clearly an event A 2 B happens P-almost surely iff the corresponding
event V�1ðAÞ 2 F happens P-almost surely. In particular, a measurable
mapping (function) Z : �! R is called a random variable. Its probability

16 In fact it suffices to verify F -measurability of V�1ðAÞ for any family of sets generating the Borel

sigma algebra of Rm.
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distribution is completely defined by the cumulative distribution function (cdf )
FZðzÞ :¼ PfZ � zg. Note that since the Borel sigma algebra of R is generated
by the family of half line intervals ð�1, a�, in order to verify measurability of
Zð!Þ it suffices to verify measurability of sets f! 2 �: Zð!Þ � zg for all z 2 R.
We denote random vectors (variables) by capital letters, like V,Z etc., or �ð!Þ,
and often suppress their explicit dependence on the elementary event !. Also
quite often we denote by the same symbol � a particular realization of the
random vector � ¼ �ð!Þ. Usually, the meaning of such notation will be clear
from the context and will not cause any confusion. The coordinate functions
V1ð!Þ, . . . ,Vmð!Þ of the m-dimensional random vector Vð!Þ are called its
components. While considering a random vector V we often talk about its
probability distribution as the joint distribution of its components (random
variables) V1, . . . ,Vm.

Since we often deal with random variables which are given as optimal
values of optimization problems we need to consider random variables Zð!Þ
which can also take values þ1 or �1, i.e., functions Z : �! R, where
R :¼ R [ f�1g [ fþ1g denotes the set of extended real numbers. Such
functions Z : �! R are referred to as extended real valued functions.
Operations between real numbers and symbols �1 are clear except for such
operations as adding þ1 and �1 which should be avoided. Measurability of
an extended real valued function Zð!Þ is defined in the standard way, i.e., Zð!Þ
is measurable if the set f! 2 �: Zð!Þ � zg is F -measurable for any z 2 R. A
measurable extended real valued function is called an (extended) random
variable. Note that here limz!þ1FZðzÞ is equal to the probability of the
event f! 2 �: Zð!Þ < þ1g and can be less than one if the event
f! 2 �: Zð!Þ ¼ þ1g has a positive probability.

The expected value or expectation of an (extended) random variable
Z : �! R is defined by the integral

EP½Z� :¼

Z
�

Zð!Þ dPð!Þ: ð5:1Þ

When there is no ambiguity as to what probability measure is considered,
we omit the subscript P and simply write E½Z�. For a nonnegative valued
measurable function Zð!Þ such that the event �:¼ f! 2 �: Zð!Þ ¼ þ1g has
zero probability the above integral is defined in the usual way and can take
value þ1. If probability of the event � is positive, then, by definition,
E½Z� ¼ þ1. For a general (not necessarily nonnegative valued) random
variable we would like to define17 E½Z� :¼ E½Zþ� � E½ð�ZÞþ�. In order to do
that we have to ensure that we do not add þ1 and �1. We say that the
expected value E½Z� of an (extended real valued) random variable Zð!Þ is well
defined if it does not happen that both E½Zþ� and E½ð�ZÞþ� are þ1, in which
case E½Z� ¼ E½Zþ� � E½ð�ZÞþ�. That is, in order to verify that the expected

17 Recall that Zþ :¼ maxf0,Zg.

56 A. Ruszczyński and A. Shapiro



value of Zð!Þ is well defined one has to check that Zð!Þ is measurable and
either E½Zþ� < þ1 or E½ð�ZÞþ� < þ1. Note that if Zð!Þ and Z0ð!Þ are two
(extended) random variables such that their expectations are well defined and
Zð!Þ ¼ Z0ð!Þ for all ! 2 � except possibly on a set of measure zero, then
E½Z� ¼ E½Z0�. It is said that Zð!Þ is P-integrable if the expected value E½Z� is
well defined and finite. The expected value of a random vector is defined
componentwise.

If the random variable Zð!Þ can take only a countable (finite) number of
different values, say z1, z2, . . . , then it is said that Zð!Þ has a discrete
distribution (discrete distribution with a finite support). In such cases all
relevant probabilistic information is contained in the probabilities
pi :¼ PfZ ¼ zig. In that case E½Z� ¼

P
i pizi.

5.2 Expectation functions

Consider now the expectation optimization problem (1.14) with X :¼ R
n.

For a given x we can view FðxÞ ¼ Fðx,!Þ as a random variable. We assume
that the expectation function

f ðxÞ ¼ E½Fðx,!Þ�

is well defined, i.e., for every18 x 2 R
n the function Fðx, �Þ is measurable, and

either E½FðxÞþ� < þ1 or E½ð�FðxÞÞþ� < þ1. The (effective) feasible set of
the problem (1.4) is given by X \ ðdom f Þ, where

dom f :¼ fx 2 R
n : f ðxÞ < þ1g

denotes the domain of f. It is said that f is proper if f ðxÞ > �1 for all x 2 R
n

and dom f 6¼ ;.
From the theoretical point of view it is convenient to incorporate the

constraints ‘‘x 2 X ’’ into the objective function. That is, for any ! 2 � define

Fðx,!Þ :¼
Fðx,!Þ, if x 2 X ,
þ1, if x 62 X :

�

Then problem (1.4) can be written in the form

Min
x2X

E½Fðx,!Þ�: ð5:2Þ

18 Since we are interested here in x belonging to the feasible set X, we can assume that f ðxÞ is well

defined for x 2 X .
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Clearly, the domain of the expectation function E½Fð�,!Þ� is X \ ðdom f Þ,
i.e., it coincides with the feasible set of problem (1.14). In the remainder of this
section we assume that the objective function Fðx,!Þ is extended real valued
and that the corresponding constraints are already absorbed into the objective
function.

For " � 0 we say that x* 2 X is an "-optimal solution of the problem of
minimization of f ðxÞ over X if

f ðx*Þ � inf
x2X

f ðxÞ þ ":

If the problem is infeasible (that is, f ðxÞ ¼ þ1 for every x 2 X ), then any
x* 2 X is "-optimal. If the problem is feasible, and hence infx2X f ðxÞ < þ1,
then "-optimality of x* implies that f ðx*Þ < þ1, i.e., that x* 2 dom f . Note
that by the nature of the minimization process, if infx2X f ðxÞ > �1, then for
any " > 0 there always exists an "-optimal solution.

An extended real valued function f : Rn
! R is called lower semicontinuous

(lsc) at a point x0 if

lim inf
x �! x0

f ðxÞ � f ðx0Þ:

It is said that f is lower semicontinuous if it is lsc at every point x 2 R
n. It is not

difficult to show that f is lsc iff its epigraph

epi f :¼ fðx, �Þ : f ðxÞ � �g

is a closed subset of Rn
�R.

Theorem 13. Let f : Rn
! R be a proper extended real valued function. Suppose

that f is lsc and its domain dom f is bounded. Then the set arg min x2Rn f ðxÞ of its
optimal solutions is nonempty.

Since f is proper, its domain is nonempty, and hence infx2Rn f ðxÞ < þ1.
Let us take a number c > infx2Rn f ðxÞ, and consider the level set
S :¼ fx : f ðxÞ � cg. We have that the set S is nonempty, is contained in
dom f and hence is bounded, and is closed since f is lsc. Consequently, the set
S is compact, and clearly argminx2Rn f ðxÞ coincides with argminx2S f ðxÞ.
Therefore, the above theorem states the well known result that a lsc real
valued function attains its minimum over a nonempty compact subset of Rn.

The expected value function f ðxÞ :¼ E½Fðx,!Þ� inherits various properties of
the functions Fð�,!Þ. If for P-almost ! 2 � the function Fð�,!Þ is convex, then
the expected value function f ð�Þ is also convex. Indeed, if � is finite, then f ð�Þ is
a weighted sum of convex functions with nonnegative weights, and hence is
convex. The case of a general distribution can be then proved by passing to
a limit.
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As it is shown in the next proposition the lower semicontinuity of the
expected value function follows from the lower semicontinuity of Fð�,!Þ.

Proposition 14. Suppose that: (i) for P-almost every ! 2 � the function Fð�,!Þ
is lsc at x0, (ii) Fðx, �Þ is measurable for every x in a neighborhood of x0, (iii)
there exists P-integrable function Zð!Þ such that Fðx,!Þ � Zð!Þ for P-almost
all ! 2 � and all x in a neighborhood of x0. Then for all x in a neighborhood of
x0 the expected value function f ðxÞ :¼ E½Fðx,!Þ� is well defined and lsc at x0.

Proof. It follows from assumptions (ii) and (iii) that f ð�Þ is well defined in a
neighborhood of x0. Under assumption (iii), it follows by Fatou’s lemma that

lim inf
x �! x0

Z
�

Fðx,!Þ dPð!Þ �

Z
�

lim inf
x �! x0

Fðx,!Þ dPð!Þ: ð5:3Þ

Together with (i) this implies lower semicontinuity of f at x0. u

In particular, let us consider the probabilistic constraints (1.20). We can
write these constraints in the form

E 1ð0,þ1ÞðGiðx,!ÞÞ

 �

� �, i ¼ 1, . . . ,m: ð5:4Þ

Suppose further that for P-almost every ! 2 � the functions Gið�,!Þ are lsc,
and for all x, Giðx, �Þ are measurable. Then functions 1ð0,þ1ÞðGið�,!ÞÞ are also
lsc for P-almost every ! 2 �, and clearly are bounded. Consequently we
obtain by Proposition 14 that the corresponding expected value functions in
the left hand side of (5.4) are lsc. It follows that constraints (5.4), and hence
the probabilistic constraints (1.20), define a closed subset of Rn.

5.3 Optimal values and optimal solutions

We often have to deal with optimal value functions of min or max types.
That is, consider an extended real valued function h : Rn

�R
m
! R and the

associated functions

fðxÞ :¼ inf
y2 R

m
hðx, yÞ and  ðxÞ :¼ sup

y2 R
m
hðx, yÞ: ð5:5Þ

Proposition 15. The following holds. (i) Suppose that for every y 2 R
m

the function hð�, yÞ is lsc. Then the max-function  ðxÞ is lsc. (ii) Suppose that
the function hð�, �Þ is lsc and there exists a bounded set S � R

m such that
dom hðx, �Þ � S for all x 2 R

n. Then the min-function fðxÞ is lsc.
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Proof. (i) The epigraph of the max-function  ð�Þ is given by the intersection of
the epigraphs of hð�, yÞ, y 2 R

m. By lower semicontinuity of hð�, yÞ, these
epigraphs are closed, and hence their intersection is closed. It follows that  ð�Þ
is lsc.

(ii) Consider a point x0 2 R
n and let fxkg be a sequence converging to x0

along which the lim infx!x0 fðxÞ is attained. If limk!1fðxkÞ ¼ þ1, then
clearly limk!1fðxkÞ � fðx0Þ, and hence f is lsc at x0. Therefore, we can
assume that fðxkÞ < þ1 for all k. Let " be a given positive number and
yk 2 Rm be such that hðxk, ykÞ � fðxkÞ þ ". Since yk 2 dom hðxk, �Þ � S and S
is bounded, by passing to a subsequence if necessary we can assume that yk
converges to a point y0. By lower semicontinuity of hð�, �Þ we have then that
limk!1fðxkÞ � hðx0, y0Þ � " � fðx0Þ � ". Since " was arbitrary, it follows that
limk!1fðxkÞ � fðx0Þ, and hence fð�Þ is lsc at x0. This completes the
proof. u

Let F : Rn
��! R and let us now consider the optimal value

#ð!Þ :¼ inf
x2X

Fðx,!Þ ð5:6Þ

and the corresponding set

X*ð!Þ :¼ arg min
x2X

Fðx,!Þ ð5:7Þ

of optimal solutions. In order to deal with measurability of these objects we
need the following concepts.

Let G be a mapping from � into the set of subsets of Rn, i.e., G assigns to
each ! 2 � a subset (possibly empty) Gð!Þ of R

n. We refer to G as a
multifunction and write G : �!!R

n. It is said that G is closed valued if Gð!Þ is a
closed subset of Rn for every ! 2 �. A closed valued multifunction G is said to
be measurable, if for every closed set A � R

n one has that the inverse image
G�1ðAÞ :¼ f! 2 �: Gð!Þ \ A 6¼ fg is F -measurable. Note that measurability of
G implies that the domain

dom G :¼ f! 2 �: Gð!Þ 6¼ ;g ¼ G�1ðRn
Þ

of G is an F -measurable subset of �.
It is said that a mapping G : domG! R

n is a selection of G if Gð!Þ 2 Gð!Þ
for all ! 2 domG. If, in addition, the mapping G is measurable, it is said that
G is a measurable selection of G.

Theorem 16 (Castaing Representation theorem). A closed valued multifunction
G : �!!R

n is measurable iff its domain is an F -measurable subset of � and there
exists a countable family fGigi2N, of measurable selections of G such that for
every ! 2 �, the set Gið!Þ : i 2 N

� �
is dense in Gð!Þ.
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It follows from the above theorem that if G : �!!R
n is a closed valued

measurable multifunction, then there exists at least one measurable selection
of G.

Definition 17. It is said that the function ðx,!Þ�Fðx,!Þ is random lower
semicontinuous if the associated epigraphical multifunction !� epiFð�,!Þ is
closed valued and measurable.

Note that close valuedness of the epigraphical multifunction means that for
every ! 2 �, the epigraph epiFð�,!Þ is a closed subset of Rn

�R, i.e., that
Fð�,!Þ is lsc.

Theorem 18. Suppose that the sigma algebra F is P-complete. Then an extended
real valued function F : Rn

��! R is random lsc iff the following two
properties hold: (i) for every ! 2 �, the function Fð�,!Þ is lsc, (ii) the function
Fð�, �Þ is measurable with respect to the sigma algebra of Rn

�� given by the
product of the sigma algebras B and F .

A large class of random lower semicontinuous functions is given by the
so-called Carathéodory functions, i.e., real valued functions F : Rn

��! R

such that Fðx, �Þ is F -measurable for every x 2 R
n and Fð�,!Þ continuous for

a.e. ! 2 �.

Theorem 19. Let F : Rn
��! R be a random lsc function. Then the optimal

value function #ð!Þ and the optimal solution multifunction X*ð!Þ are both
measurable.

Note that it follows from lower semicontinuity of Fð�,!Þ that the optimal
solution multifunction X*ð!Þ is closed valued. Note also that if Fðx,!Þ is
random lsc and G : �!!R

n is a closed valued measurable multifunction, then
the function

Fðx,!Þ :¼
Fðx,!Þ, if x 2 Gð!Þ,
þ1, if x 62 Gð!Þ,

�
is also random lsc. Consequently the corresponding optimal value
!� infx2Gð!ÞFðx,!Þ and the optimal solution multifunction !�
argminx2Gð!ÞFðx,!Þ are bothmeasurable, and hence by themeasurable selection
theorem, there exists a measurable selection xð!Þ 2 argminx2Gð!ÞFðx,!Þ.

Theorem 20. Let F : Rnþm
��! R be a random lsc function and

#ðx,!Þ :¼ inf
y2Rm

Fðx, y,!Þ ð5:8Þ

be the associated optimal value function. Suppose that there exists a bounded set
S � R

m such that domFðx, � ,!Þ � S for all ðx,!Þ 2 R
n
��. Then the optimal

value function #ðx,!Þ is random lsc.
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Let us finally observe that the above framework of random lsc functions
is aimed at minimization problems. Of course, the problem of maximization
of E½Fðx,!Þ� is equivalent to minimization of E½�Fðx,!Þ�. Therefore, for
maximization problems one would need the comparable concept of random
upper semicontinuous functions.

6 Bibliographic notes

Stochastic programming with recourse originated in the works of Beale
(1955) and Dantzig (1955). Basic properties of two-stage problems were
investigated by Wets (1966), Walkup and Wets (1967, 1969) and Kall (1976).
A comprehensive treatment of the theory and numerical methods for
expectation models can be found in Birge and Louveaux (1997). Simulation-
based approaches to stochastic optimization were discussed by various
authors, see Chapter ‘‘Monte Carlo Sampling Methods’’.

Models involving constraints on probability were introduced by Charnes
et al. (1958), Miller and Wagner (1965), and Prékopa (1970). Prékopa (1995)
discusses in detail the theory and numerical methods for linear chance-
constrained models. Applications to finance are discussed by Dowd (1997).
Klein Haneveld (1986) introduced the concept of integrated chance constraints,
which are the predecessors of conditional value at risk constraints of Uryasev
and Rockafellar (2001).

A general discussion of interchangeability of minimization and integration
operations can be found in Rockafellar and Wets (1998). Proposition 5 is a
particular case of Theorem 14.60 in Rockafellar and Wets (1998).

Expected value of perfect information is a classical concept in decision
theory (see, e.g., Raiffa (1968)). In stochastic programming this and related
concepts were analyzed first by Madansky (1960). Other advances are due to
Dempster (1981) and Birge (1982).

Early contributions to multistage stochastic programming models appeared
in Marti (1975), Beale et al. (1980), Louveaux (1980), Birge (1985), Noël and
Smeers (1986) and Dempster (1981). Varaiya and Wets (1989) discuss
relations of multistage stochastic programming and stochastic control. For
other examples and approaches to multistage modeling see Birge and
Louveaux (1997).

Robust approaches to stochastic programming were initiated by Mulvey
et al. (1995). Proposition 11 is based on the work of Takriti and Ahmed
(2002). Mean–risk models in portfolio optimization were introduced by
Markowitz (1952). For a general perspective, see Markowitz (1987) and
Luenberger (1998). Mean–absolute deviation models for portfolio problems
were introduced by Konno and Yamazaki (1991). Semideviations and other
risk measures were analyzed by Ogryczak and Ruszczyński (1999, 2001, 2002).
Min–max approach to stochastic programming was initiated in Z̆áčková
(1966), Dupačová (1980), Dupačová (1987).
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There are many good textbooks on probability and measure theory, e.g.,
Billingsley (1995), to which we refer for a thorough discussion of such basic
concepts as random variables, probability space, etc. Also a proof of Fatou’s
lemma, used in the proof of Proposition 14, can be found there. For an
additional discussion of the expected value function see section ‘‘Expectation
Functions’’ of Chapter 2. Continuity and differentiability properties of the
optimal value functions, of the form defined in equation (5.5), were studied
extensively in the optimization literature (see, e.g., Bonnans and Shapiro
(2000) and the references therein).

Measurable selection theorem (Theorem 16) is due to Castaing. A thorough
discussion of measurable mappings and selections can be found in Castaing
and Valadier (1977), Ioffe and Tihomirov (1979) and Rockafellar and Wets
(1998). Random lower semicontinuous functions are called normal integrands
(see Definition 14.27 in Rockafellar and Wets (1998)) by some authors. Proofs
of theorems 18, 19 and 20 can be found in the section on normal integrands of
Rockafellar and Wets (1998).
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Chapter 2

Optimality and Duality in Stochastic Programming
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Abstract

In this chapter we discuss basic mathematical properties of convex stochastic
programming models. We develop expressions for the subdifferentials of the
objective function in two- and multi-stage models. Then we present necessary
and sufficient conditions of optimality, and duality relations for these problems.

Key words: Expected value function, two stage stochastic programming,
multistage stochastic programming, optimality conditions, duality.

1 Expectation functions

In this section we discuss general properties of the expectation (also called
expected value) functions of the form

f ðxÞ :¼ EP½Fðx,!Þ�: ð1:1Þ

Here P is a probability measure defined on a measurable space ð�, FÞ and
F : Rn

��! R is an extended real valued function, called an integrand. The
function f(x) is well defined on a set X � R

n if for every x 2 X the function
Fðx, �Þ is measurable, and either E½Fðx, !Þþ� < þ1 or E½ð�Fðx, !ÞÞþ� < þ1
(see Chapter 1, Appendix).

The expected value function f(x) inherits various properties of the integrand
Fðx,!Þ. We already gave a preliminary discussion of that in Section 5.2 of

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
� 2003 Elsevier Science B.V. All rights reserved.
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Chapter 1. In particular, it was shown in Proposition 14 that as a consequence
of Fatou’s lemma, f ð�Þ inherits lower semicontinuity of Fð�, !Þ under the
condition that, locally in x, Fðx, �Þ is bounded from below by a P-integrable
function. The following proposition gives similar conditions for the continuity
of f(x) at a point x0 2 R

n.

Proposition 1. Suppose that: (i) for P-almost every ! 2 � the function Fð�,!Þ is
continuous at x0, (ii) Fðx, �Þ is measurable for every x in a neighborhood of x0,
(iii) there exists P-integrable function Z(!) such that jFðx,!Þj � Zð!Þ for
P-almost every ! 2 � and all x in a neighborhood of x0. Then for all x in a
neighborhood of x0 the expected value function f (x) is well defined and
continuous at x0.

Proof. It follows from assumptions (ii) and (iii) that f (x) is well defined for all
x in a neighborhood of x0. Moreover, by the Lebesgue Dominated
Convergence Theorem we can take the limit inside the integral, which
together with (i) implies

lim
x�!x0

Z
�

Fðx,!Þ dPð!Þ ¼

Z
�

lim
x�!x0

Fðx,!Þ dPð!Þ ¼

Z
�

Fðx0,!Þ dPð!Þ:

ð1:2Þ

This shows the continuity of f ðxÞ at x0. u

Consider, for example, the characteristic function Fðx,!Þ :¼ 1ð�1,x�ð�ð!ÞÞ,
with x 2 R and � ¼ �ð!Þ being a real valued random variable. We
have then that f ðxÞ ¼ Pð� � xÞ, i.e., that f ð�Þ is the cumulative distribution
function of �. It follows that in this example the expected value function is
continuous at a point x0 iff the the probability of the event f� ¼ x0g is zero.
Note that x ¼ �ð!Þ is the only point at which the function Fð�,!Þ is
discontinuous.

We discuss now the differentiability properties of the expected value
function f(x) defined in (1.1). We sometimes write F!ð�Þ for the function Fð�,!Þ
and denote by F 0!ðx0, hÞ the directional derivative of F!ð�Þ at the point x0 in the
direction h. Definitions and basic properties of directional derivatives are
given in Section 9.1 of the Appendix.

Proposition 2. Suppose that: (i) Fðx, �Þ is measurable for all x in a neighborhood
of x0, (ii) EjFðx0, !Þj < þ1, (iii) there exists a positive valued random variable
Cð!Þ such that E½Cð!Þ� < þ1, and for all x1, x2 in a neighborhood of x0 and
almost every ! 2 � the following inequality holds

jFðx1,!Þ � Fðx2,!Þj � Cð!Þkx1 � x2k, ð1:3Þ
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(iv) for almost every ! the function F!ð�Þ is directionally differentiable at x0.
Then the expected value function f (x) is Lipschitz continuous in a neighborhood
of x0, directionally differentiable at x0, and

f 0ðx0, hÞ ¼ E F 0!ðx0, hÞ
� �

, for all h: ð1:4Þ

If, in addition, the function Fð�,!Þ is differentiable at x0 w.p.1, then f (x) is
differentiable at f (x) and

rf ðx0Þ ¼ E rxFðx0,!Þ½ �: ð1:5Þ

Proof. It follows from (1.3) that for any x1, x2 in a neighborhood of x0,

j f ðx1Þ � f ðx2Þj �

Z
�

jFðx1,!Þ � Fðx2,!Þj dPð!Þ � Ckx1 � x2k,

where C :¼ E½Cð!Þ�. Since f(x0) is finite by assumption (ii), it follows that f(x)
is well defined, finite valued and Lipschitz continuous in a neighborhood of x0.
For t 6¼ 0 consider the ratio

Rtð!Þ :¼ t�1½Fðx0 þ th,!Þ � Fðx0,!Þ�:

By assumption (iii) we have that jRtð!Þj � Cð!Þkhk, and by assumption (iv)
that

lim
t#0

Rtð!Þ ¼ F 0!ðx0, hÞ w:p:1:

Therefore, it follows from the Lebesgue Dominated Convergence Theorem
that

lim
t#0

Z
�

Rtð!Þ dPð!Þ ¼

Z
�

lim
t#0

Rtð!Þ dPð!Þ:

Together with assumption (iv) this implies formula (1.4).
Finally, if F 0!ðx0, hÞ is linear in h for almost every !, i.e., the function F!ð�Þ is

differentiable at x0 w.p.1, then (1.4) implies that f 0ðx0, hÞ is linear in h, and
hence (1.5) follows. Note that since f (x) is locally Lipschitz continuous, we
only need to verify linearity of f 0ðx0, �Þ in order to establish (Fréchet)
differentiability of f(x) at x0. u

The above analysis shows that two basic conditions for interchangeability
of the expectation and differentiation operators, i.e., for the validity of
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formula (1.5), are: (a) the local Lipschitz continuity of the random function
Fð�,!Þ; and (b) the differentiability of Fð�,!Þ at the given point x0 w.p.1. The
following lemma shows that if, in addition to the assumptions of the above
proposition, the directional derivative F 0!ðx0, hÞ is convex in h w.p.1 (i.e., for
almost every !), then f(x) is differentiable at x0 if and only if Fð�,!Þ is
differentiable at x0 w.p.1.

Lemma 3. Let  : Rn
��! R be a function such that for almost every ! 2 �

the function  ð�,!Þ is convex and positively homogeneous, and the expected
value function �ðhÞ :¼ E½ ðh,!Þ� is well defined and finite valued. Then the
expected value function �ð�Þ is linear if and only if the function  ð�,!Þ is linear
w.p.1.

Proof. We have here that the expected value function �ð�Þ is convex and
positively homogeneous. Moreover, it immediately follows from the linearity
properties of the expectation operator that if the function  ð�,!Þ is linear
w.p.1, then �ð�Þ is also linear.

Conversely, let e1, . . . , en be a basis of the space R
n. Since �ð�Þ is convex

and positively homogeneous, it follows that �ðeiÞ þ �ð�eiÞ � �ð0Þ ¼
0, i ¼ 1, . . . , n: Furthermore, since �ð�Þ is finite valued, it is the support
function of a convex compact set. This convex set is a singleton iff

�ðeiÞ þ �ð�eiÞ ¼ 0, i ¼ 1, . . . , n: ð1:6Þ

Therefore, �ð�Þ is linear iff condition (1.6) holds. Consider the sets

Ai :¼ f! 2 �:  ðei,!Þ þ  ð�ei,!Þ > 0g:

Thus the set of ! 2 � such that  ð�,!Þ is not linear coincides with the set
[ni¼1Ai. If P [ni¼1Ai

� �
> 0, then at least one of the sets Ai has a positive

measure. Let, for example, PðA1Þ be positive. Then �ðe1Þ þ �ð�e1Þ > 0, and
hence �ð�Þ is not linear. This completes the proof. u

Regularity conditions which are required for formula (1.4) to hold are
simplified further if the integrand Fðx,!Þ is convex, i.e., the function Fð�,!Þ is
convex for almost every ! 2 �. In that case, by using the Monotone
Convergence Theorem instead of the Lebesgue Dominated Convergence
Theorem, it is possible to prove the following result.

Proposition 4. Suppose that: (i) the expected value function f ðxÞ is well defined
and finite valued in a neighborhood of a point x0, (ii) for almost every ! 2 � the
function F!ð�Þ :¼ Fð�,!Þ is convex. Then f (x) is convex, directionally dif-
ferentiable at x0 and formula (1.4) holds. Moreover, f (x) is differentiable at x0 if
and only if F!ðxÞ is differentiable at x0 w.p.1, in which case formula (1.5) holds.
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Proof. The convexity of f (x) follows immediately from the convexity of F!ð�Þ
(we already discussed that in Chapter 1). Consider a direction h 2 R

n. By
assumption (i) we have that f(x0) and, for some t0 > 0, f ðx0 þ t0hÞ are finite. It
follows from the convexity of F!ð�Þ that the ratio

Rtð!Þ :¼ t�1½Fðx0 þ th,!Þ � Fðx0,!Þ�

is monotonically decreasing to F 0!ðx0, hÞ as t # 0. Also we have that

EjRt0ð!Þj � t�10 ðEjFðx0 þ t0h,!Þj þ EjFðx0,!ÞjÞ < þ1:

Then it follows by the Monotone Convergence Theorem that

lim
t#0

E½Rtð!Þ� ¼ E lim
t#0

Rtð!Þ

� �
¼ E F 0!ðx0, hÞ

� �
:

This proves formula (1.4). The last assertion follows then from Lemma 3. u

Remark 5. It is possible to give a version of the above result for a particular
direction h 2 R

n. That is, suppose that: (i) the expected value function f(x)
is well defined in a neighborhood of a point x0, (ii) f(x0) is finite, (iii) for almost
every ! 2 � the function F!ð�Þ :¼ Fð�,!Þ is convex, (iv) E½Fðx0 þ t0h,!Þ� < þ1
for some t0 > 0. Then f 0ðx0, hÞ < þ1 and formula (1.4) holds. Note also that
if the above assumptions (i)–(iii) are satisfied and E½Fðx0 þ th,!Þ� ¼ þ1 for
any t > 0, then clearly f 0ðx0, hÞ ¼ þ1.

Often the expectation operator smoothes the integrand Fðx,!Þ. Consider,
for example, Fðx,!Þ :¼ jx� �ð!Þj with x 2 R and �ð!Þ being a real valued
random variable. Suppose that f ðxÞ ¼ E½Fðx,!Þ� is finite valued. We have here
that Fð�,!Þ is convex and Fð�,!Þ is differentiable everywhere except x ¼ �ð!Þ.
The corresponding derivative is given by @Fðx,!Þ=@x ¼ 1 if x > �ð!Þ and
@Fðx,!Þ=@x ¼ �1 if x < �ð!Þ. Therefore, f(x) is differentiable at x0 iff the event
�ð!Þ ¼ x0
� �

has zero probability, in which case df ðx0Þ=dx ¼ E @Fðx0,!Þ=@x½ �. If
the event �ð!Þ ¼ x0

� �
has positive probability, then the directional derivatives

f 0ðx0, hÞ exist but are not linear in h, that is,

f 0ðx0, � 1Þ þ f 0ðx0, 1Þ ¼ 2Pð�ð!Þ ¼ x0Þ > 0:

We can also investigate differentiability properties of the expectation
function by studying the subdifferentiability of the integrand. Suppose for the
moment that the set � is finite, say � :¼ !1, . . .!Kf g with Pf! ¼ !kg ¼ pk > 0,
and that the functions Fð�,!Þ, ! 2 �, are proper. Then f ðxÞ ¼

PK
k¼1 pkFðx,!kÞ

and dom f ¼ \�k¼1domFk, where Fkð�Þ :¼ Fð�,!kÞ. The Moreau–Rockafellar
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Theorem (Theorem 50) allows us to express the subdifferential of f ðxÞ as the
sum of subdifferentials of pkFðx,!kÞ.

Theorem 6. Suppose that: (i) the set � ¼ !1, . . .!Kf g is finite, (ii) for every
!k 2 � the function Fkð�Þ :¼ Fð�,!kÞ is proper and convex, (iii) the sets
riðdomFkÞ, k ¼ 1, . . . ,K , have a common point. Then for any x0 2 dom f ,

@f ðx0Þ ¼
XK
k¼1

pk@Fðx0,!kÞ: ð1:7Þ

Note that the regularity assumption (iii) holds, in particular, if the interior
of dom f is nonempty.

The subdifferentials at the right hand side of (1.7) are taken with respect to
x, and the sum of these subdifferentials is understood to be the set of all points
of the form

PK
k¼1 pkGk with Gk being a selection (i.e., an element) of

@Fðx0,!kÞ. Note that @Fðx0,!kÞ, and hence @f ðx0Þ, in (1.7) can be unbounded
or empty. Suppose that all probabilities pk are positive. It follows then from
(1.7) that @f ðx0Þ is a singleton iff all subdifferentials @Fðx0,!kÞ, k¼ 1,. . . ,K, are
singletons. That is, f ð�Þ is differentiable at a point x0 2 dom f iff all Fð�,!kÞ

are differentiable at x0.
In the case of a finite set � we did not have to worry about the

measurability of the multifunction !� @Fðx,!Þ. Consider now a general case
where the measurable space does not need to be finite. Recall that the function
Fðx,!Þ is said to be random lower semicontinuous if the multifunction
!� epiFð�,!Þ is closed valued and measurable (see the Appendix of Chapter 1
for a discussion of that concept).

Proposition 7. Suppose that the function Fðx,!Þ is random lower semicontin-
uous and for a.e. ! 2 � the function Fð�,!Þ is convex and proper. Then for any
x 2 R

n, the multifunction !� @Fðx,!Þ is measurable.

Proof. Consider the conjugate

F*ðz,!Þ :¼ sup
x2Rn

zTx� Fðx,!Þ
� �

of the function Fð�,!Þ. It is possible to show that the function F*ðz,!Þ is also
random lower semicontinuous. Moreover, by the Fenchel–Moreau Theorem,
F** ¼ F and by convex analysis (see (9.15))

@Fðx,!Þ ¼ arg max
z2Rn

zTx� F*ðz,!Þ
� �

:
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It follows then by Theorem 19 from the Appendix of Chapter 1 that the
multifunction !� @Fðx,!Þ is measurable. u

Definition 8. For a given x 2 R
n, the integral

R
� @Fðx,!ÞdPð!Þ is defined as

the set of all points of the form
R
� Gð!ÞdPð!Þ, where Gð!Þ is P-integrable

selection of @Fðx,!Þ, i.e., Gð!Þ 2 @Fðx,!Þ for a.e. ! 2 �, Gð!Þ is measurable
and

R
� kGð!ÞkdPð!Þ is finite.

Of course, if � ¼ f!1, . . . ,!K g is finite, then we do not have to worry about
the integrability of a selection Gð!Þ 2 @Fðx,!Þ and

Z
�

@Fðx,!Þ dPð!Þ ¼
XK
k¼1

pk@Fðx,!kÞ:

In general we have the following extension of formula (1.7).

Theorem 9. Suppose that: (i) the function Fðx,!Þ is random lower semiconti-
nuous, (ii) for a.e. ! 2 � the function Fð�,!Þ is convex, (iii) the expectation
function f is proper, (iv) the domain of f has a nonempty interior. Then for any
x0 2 dom f ,

@f ðx0Þ ¼

Z
�

@Fðx0,!Þ dPð!Þ þNdom f ðx0Þ: ð1:8Þ

Proof. Consider a point z 2
R
� @Fðx0,!ÞdPð!Þ. By the definition of that

integral we have then that there exists a P-ntegrable selection Gð!Þ 2 @Fðx0,!Þ
such that z ¼

R
�
Gð!ÞdPð!Þ. Consequently, for a.e. ! 2 � the following holds

Fðx,!Þ � Fðx0,!Þ � Gð!ÞT ðx� x0Þ, 8 x 2 R
n:

By taking the integral of the both sides of the above inequality we obtain
that z is a subgradient of f at x0. This shows thatZ

�

@Fðx0,!Þ dPð!Þ � @f ðx0Þ: ð1:9Þ

In particular, it follows from (1.9) that if @f ðx0Þ is empty, then the set at the
right hand side of (1.8) is also empty. If @f ðx0Þ is nonempty, i.e., f is
subdifferentiable at x0, then Ndom f ðx0Þ forms the recession cone of @f ðx0Þ. In
any case it follows from (1.9) thatZ

�

@Fðx0,!Þ dPð!Þ þNdom f ðx0Þ � @f ðx0Þ: ð1:10Þ
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Note that inclusion (1.10) holds irrespective of assumption (iv).
Proving the converse of inclusion (1.10) is a more delicate problem. Let us

outline main steps of such a proof based on the interchangeability property
of the directional derivative and integral operators. We can assume that both
sets at the left and right hand sides of (1.9) are nonempty. Since the
subdifferentials @Fðx0,!Þ are convex, it is quite easy to show that the setR
� @Fðx0,!ÞdPð!Þ is convex. With some additional effort it is possible to show
that this set is closed. Let us denote by s1ð�Þ and s2ð�Þ the support functions of
the sets at the left and right hand sides of (1.10), respectively. By virtue of
inclusion (1.9), Ndom f ðx0Þ forms the recession cone of the set at the left hand
side of (1.10) as well. Since the tangent cone Tdom f ðx0Þ is the polar of
Ndom f ðx0Þ, it follows that s1ðhÞ ¼ s2ðhÞ ¼ þ1 for any h 62 Tdom f ðx0Þ. Suppose
now that (1.8) does not hold, i.e., inclusion (1.10) is strict. Then s1ðhÞ < s2ðhÞ
for some h 2 Tdom f ðx0Þ. Moreover, by assumption (iv), the tangent cone
Tdom f ðx0Þ has a nonempty interior and there exists h in the interior of
Tdom f ðx0Þ such that s1ðhÞ < s2ðhÞ. For such h the directional derivative f 0ðx0, hÞ
is finite for all h in a neighborhood of h, f 0ðx0, hÞ ¼ s2ðhÞ and (see Remark 5)

f 0ðx0, hÞ ¼

Z
�

F 0!ðx0, hÞ dPð!Þ:

Also, F 0!ðx0, hÞ is finite for a.e. ! and for all h in a neighborhood of
h, and hence F 0!ðx0, hÞ ¼ h

T
Gð!Þ for some Gð!Þ 2 @Fðx0,!Þ. Moreover, since

the multifunction !� @Fðx0,!Þ is measurable, we can choose a measurable
Gð!Þ here. Consequently,

Z
�

F 0!ðx0, hÞ dPð!Þ ¼ h
T
Z
�

Gð!Þ dPð!Þ:

Since
R
� Gð!ÞdPð!Þ is a point of the set at the left hand side of (1.9), we

obtain that s1ðhÞ � f 0ðx0, hÞ ¼ s2ðhÞ, a contradiction. u

2 Two-stage stochastic programming problems

2.1 Linear two-stage problems. Discrete distributions

In this section we discuss two-stage stochastic linear programs of the form

Minx c
Txþ E½Qðx, �Þ�

s:t: Ax ¼ b, x � 0, ð2:1Þ
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where Qðx, �Þ is the optimal value of the second stage problem

Min
y

qTy subject to TxþWy ¼ h, y � 0: ð2:2Þ

Here � ¼ ðq, h,T ,WÞ is the data of the problem with some (all) elements of
which can be random. The above two-stage problem is the same as problem
(2.2)–(2.3) discussed in Section 2 of Chapter 1.

The second stage problem (2.2) is a particular case of the convex problem
(2.51) discussed in the following Section 2.4. Therefore, in principle, one can
apply results of Section 2.4 to problem (2.2). Note, however, that problem
(2.2) has a specific linear structure which allows us to give a more detailed
description of its properties. In particular, some regularity conditions can be
relaxed.

The second stage problem (2.2) is a linear programming problem. Its dual
can be written in the form

Max
�
�T ðh� TxÞ subject to WT� � q: ð2:3Þ

By the theory of linear programming, the optimal values of problems (2.2)
and (2.3) are equal unless both problems are infeasible. Moreover, if their
common optimal value is finite, then each problem has a nonempty set of
optimal solutions.

Consider the function

sqð�Þ :¼ inf qTy : Wy ¼ �, y � 0
� �

: ð2:4Þ

Clearly Qðx, �Þ ¼ sqðh� TxÞ. By the duality theory of linear programming
we have that if the set

�ðqÞ :¼ � : WT� � q
� �

ð2:5Þ

is nonempty, then

sqð�Þ ¼ sup
�2�ðqÞ

�T�, ð2:6Þ

i.e., sqð�Þ is the support function of the set �ðqÞ. The set �ðqÞ is convex closed
and polyhedral, and hence has a finite number of extreme points. It follows
that if �ðqÞ is nonempty, then sqð�Þ is a positively homogeneous polyhedral
function (see the following definition of polyhedral functions). If the set �ðqÞ
is empty, then the infimum at the right hand side of (2.4) may take only two
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values: þ1 or �1. In any case it is not difficult to verify directly that the
function sqð�Þ is convex.

Definition 10. An extended real valued function g : Rm
! R is called

polyhedral if its epigraph is a convex closed polyhedron, and gðxÞ is finite
for at least one x (which implies that the function g is proper). In other words,
gð�Þ is polyhedral if it is proper convex and lower semicontinuous, its domain
is a convex closed polyhedron and gð�Þ is piecewise linear on its domain.

Proposition 11. For any given �, the function Qð�, �Þ is convex. Moreover, if the
set f� : WT� � qg is nonempty and problem (2.2) is feasible for at least one x,
then Qð�, �Þ is polyhedral.

Proof. Since Qðx, �Þ ¼ sqðh� TxÞ, the above properties of Qð�, �Þ follow from
the corresponding properties of sqð�Þ. u

Proposition 12. Suppose that for a given x ¼ x0, the value Qðx0, �Þ is finite.
Then Qð�, �Þ is subdifferentiable at x0 and

@Qðx0, �Þ ¼ �T
TDðx0, �Þ, ð2:7Þ

where Dðx, �Þ :¼ argmax�2�ðqÞ�
T ðh� TxÞ is the set of optimal solutions of the

dual problem (2.3).

Proof. Since Qðx0, �Þ is finite, the set �ðqÞ (defined in (2.5)) is nonempty, and
hence the function sqð�Þ is the support function of the set �ðqÞ. It is
straightforward to see from the definitions that the support function sqð�Þ is the
conjugate function of the indicator function1

iqð�Þ :¼
0, if � 2 �ðqÞ;
þ1 otherwise:

	

Since the set �(q) is closed and convex, the function iqð�Þ is convex and lower
semicontinuous. It follows then by the Fenchel–Moreau Theorem that the
conjugate of sqð�Þ is iqð�Þ. Therefore, for �0 :¼ h� Tx0, we have (see (9.15))

@sqð�0Þ ¼ arg max
�

�T�0 � iqð�Þ
� �

¼ arg max
�2�ðqÞ

�T�0: ð2:8Þ

Since the set �ðqÞ is polyhedral and sqð�0Þ is finite, it follows that @sqð�0Þ is
nonempty. Moreover, the function s0ð�Þ is piecewise linear, and hence formula
(2.7) follows from (2.8) by the chain rule of subdifferentiation. u

1 For a set A its indicator function iAð�Þ takes zero value on A and þ1 otherwise.
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Problem (2.2) is a particular case of problems of form (9.26). Therefore
formula (2.7) is a particular case of the class of such formulas discussed in
Section 8.2 (and also in the following Section 1.4, like formula (2.56)). In the
present case there is no need for an additional regularity condition (constraint
qualification) because the function Qð�, �Þ is polyhedral.

It follows from the above that if the function Qð�, �Þ has a finite value in at
least one point, then it is subdifferentiable at that point, and hence it is proper.
Its domain can be described in a more explicit way.

The positive hull of a matrix W is defined as

pos W :¼ � : � ¼Wy, y � 0
� �

: ð2:9Þ

It is a convex polyhedral cone generated by the columns of W. Directly
from the definition (2.4) we see that dom sq ¼ posW : Therefore,

dom Qð�, �Þ ¼ fx : h� Tx 2 pos Wg: ð2:10Þ

Suppose that x is such that � ¼ h� Tx 2 posW and let us analyze formula
(2.7). The recession cone of �ðqÞ is equal to

�0 :¼ �ð0Þ ¼ � : WT� � 0
� �

: ð2:11Þ

Then it follows from (2.6) that sqð�Þ is finite iff �T� � 0 for every � 2 �0,
that is, iff � is an element of the polar cone to �0. This polar cone is nothing
else but posW .

If �0 2 intðposWÞ, then the set of maximizers in (2.6) must be bounded.
Indeed, if it was unbounded, there would exist an element �0 2 �0 such that
�T0 � ¼ 0. By perturbing �0 a little to some �, we would be able to keep �
within posW and get �T0 � > 0, which is a contradiction, because posW is the
polar of �0. Therefore, the set of maximizers in (2.6) is the convex hull of the
vertices v of �ðqÞ for which vT� ¼ sqð�Þ. Note that �ðqÞ must have vertices in
this case, because otherwise the polar to �0 would have no interior.

If �0 is a boundary point of posW , then the set of maximizers in (2.6) is
unbounded. Its recession cone is the intersection of the recession cone �0 of
�ðqÞ and the set f� : �T�0 ¼ 0g. This intersection is nonempty for boundary
points �0 and is equal to the normal cone to posW at �0. Indeed, let �0
be normal to posW at �0. Since both �0 and ��0 are feasible directions
at �0, we must have �T0 �0 ¼ 0. Next, for every � 2 posW we have
�T0 � ¼ �

T
0 ð�� �0Þ � 0, so �0 2 �0. The converse argument is similar.

Let us consider now the expected value function

�ðxÞ :¼ E½Qðx, �Þ�: ð2:12Þ
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The expectation here is taken with respect to random components of
the data �. Suppose that the distribution of � has a finite support, i.e., � has a
finite number of realizations (scenarios) �k ¼ ðqk, hk,Tk,WkÞ with respective
(positive) probabilities pk, k ¼ 1, . . . ,K. Then

E½Qðx, �Þ� ¼
XK
k¼1

pkQðx, �kÞ: ð2:13Þ

For a given x, the expectation E½Qðx, �Þ� is equal to the optimal value of the
linear program

Min
y1,..., yk

XK
k¼1

pkq
T
k yk

s:t: TkxþWkyk ¼ hk,

yk � 0, k ¼ 1, . . . ,K : ð2:14Þ

Now if for at least one k 2 f1, . . . ,Kg the system TkxþWkyk ¼ hk, yk � 0,
has no solution, i.e., the corresponding second stage problem is infeasible,
then the above problem (2.14) is infeasible, and hence its optimal value is þ1.
From that point of view the sum in the right hand side of (2.13) equalsþ1 if at
least one of Qðx, �kÞ ¼ þ1. That is, we assume here that þ1þ ð�1Þ ¼ þ1.

Proposition 13. Suppose that the distribution of � has a finite support and that
the expectation function �ð�Þ :¼ E½Qð�, �Þ� has a finite value in at least one point
x 2 R

n. Then the function �ð�Þ is polyhedral, and for any x0 2 dom�,

@�ðx0Þ ¼
XK
k¼1

pk@Qðx0, �kÞ: ð2:15Þ

Proof. Since �ðxÞ is finite, it follows that all values Qðx, �kÞ, k ¼ 1, . . . ,K , are
finite. Consequently, by Proposition 12, every function Qð�, �kÞ is polyhedral.
It is not difficult to see that a positive linear combination of polyhedral
functions is also polyhedral. Therefore, it follows that �ð�Þ is polyhedral. We
also have that dom� ¼ \Kk¼1 domQk, where Qkð�Þ :¼ Qð�, �kÞ, and for any
h 2 R

n, the directional derivatives Q0kðx0, hÞ > �1 and

�0ðx0, hÞ ¼
XK
k¼1

pkQ
0
kðx0, hÞ: ð2:16Þ
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Formula (2.15) then follows from (2.16) by duality arguments. Note that
equation (2.15) is a particular case of the Moreau–Rockafellar Theorem
(Theorem 50). Since the functions Qk are polyhedral, there is no need here for
an additional regularity condition for (2.15) to hold. u

The subdifferential @Qðx0, �kÞ of the second stage optimal value function is
described in Proposition 12. That is, if Qðx0, �kÞ is finite, then

@Qðx0, �kÞ ¼ �T
T
k arg max �T ðhk � Tkx0Þ : W

T
k � � qk

� �
: ð2:17Þ

It follows that the expectation function � is differentiable at x0 iff for every
� ¼ �k, k ¼ 1, . . . ,K , the maximum in the right hand side of (2.17) is attained
at a unique point, i.e., the corresponding second stage dual problem has a
unique optimal solution.

Example 14 (Capacity Expansion). Let us consider a simplified, single-
commodity version of the capacity expansion example discussed in Chapter 1
(Example 4). We have a directed graph with node set N and arc set A. With
each arc a 2 A we associate a decision variable xa and call it the capacity of a.
There is a cost ca for each unit of capacity of arc a. The vector x constitutes
the vector of first stage variables. They are restricted to satisfy the inequalities
x� xmin, where xmin are the existing capacities.

At each node n of the graph we have a random demand �n for shipments to
n (if �n is negative, its absolute value represents shipments from n and we haveP

n2N �n ¼ 0). These shipments have to be sent through the network and they
can be arbitrarily split into pieces taking different paths. We denote by ya the
amount of the shipment sent through arc a. There is a unit cost qa for
shipments on each arc a.

Our objective is to assign the arc capacities and to organize the shipments in
such a way that the expected total cost, comprising the capacity cost and the
shipping cost, is minimized. The condition is that the capacities have to be
assigned before the actual demands �n become known, while the shipments can
be arranged after that.

Let us define the second stage problem. For each node n denote by AþðnÞ
and A�ðnÞ the sets of arcs entering and leaving node i. The second stage
problem is the network flow problem

Min
X
a2A

qaya ð2:18Þ

s:t:
X

a2AþðnÞ

ya �
X

a2A�ðnÞ

ya ¼ �n, n 2 N , ð2:19Þ
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0 � ya � xa, a 2 A: ð2:20Þ

This problem depends on the random demand vector � and on the arc
capacities, x. Its optimal value will be denoted Qðx, �Þ.

Suppose that for a given x¼x0 the second stage problem (2.18)–(2.20) is
feasible. Let �n, n 2 N , be the optimal Lagrange multipliers (node potentials)
associated with the node balance equations (2.19). With no loss of generality
we can assume that �n0 ¼ 0 for some fixed node n0. Let us denote by �ðx0, �Þ
the set of optimal multiplier vectors (satisfying the additional condition
�n0 ¼ 0) for a given demand vector �.

For each arc a ¼ ði, j Þ the multiplier �ij associated with the constraint (2.20)
has the form

�ij ¼ maxf0, �i � �j � qijg:

Roughly, if the difference of node potentials �i � �j is greater than qij, the
arc is saturated and the capacity constraint yij � xij is relevant. Since T ¼ �I
in this case, formula (2.17) provides the description of the subdifferential of
Qð�,DÞ at x0:

@Qðx0, �Þ ¼ maxf0, �i � �j � qijg
� �

ði, jÞ2A
: � 2 �ðx0, �Þ

n o
:

The first stage problem has the form

Min
x�xmin

X
a2A

caxa þ E½Qðx, �Þ�:

If � has finitely many realizations �k attained with probabilities pk,
k ¼ 1, . . . ,K , the subdifferential of the overall objective can be calculated
by (2.15):

@f ðxÞ ¼ cþ
XK
k¼1

pk@Qðx0, �kÞ:

2.2 Linear two-stage problems, general distributions

Let us discuss now the case of a general distribution of the random vector
� 2 R

d . We have here that Qð�, �Þ is the minimum value of the integrand which
is a random lower semicontinuous function. Therefore, it follows by Theorem
19 from the Appendix of Chapter 1 that Qð�, �Þ is measurable with respect to
the Borel sigma algebra of R

n
�R

d . Also for every � the function Qð�, �Þ
is lower semicontinuous. It follows that Qðx, �Þ is a random lower
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semicontinuous function. Recall that in order to ensure that the expectation
� (x) is well defined we have to verify two types of conditions, namely that:
(i) Qðx, �Þ is measurable (with respect to the Borel sigma algebra of R

d),
(ii) either E½Qðx, �Þþ� or E½ð�Qðx, �ÞÞþ� is finite. Since Qðx, �Þ is measurable, we
only have to verify condition (ii). We describe below some important parti-
cular situations where this condition holds.

Two-stage linear program (2.1)–(2.2) is said to have fixed recourse if the
matrix W is fixed (not random). Moreover, we say that the recourse is
complete if the system Wy¼� and y� 0 has a solution for any �, or in other
words the positive hull of W is equal to the corresponding vector space. By
duality arguments the fixed recourse is complete iff the feasible set �ðqÞ of the
dual problem (2.3) is bounded (in particular it may be empty) for every q.
Then its recession cone, �0 ¼ �ð0Þ, must contain only the point f0g, provided
that �ðqÞ is nonempty. Therefore, another equivalent condition for complete
recourse is that �¼ 0 is the only solution of the system WT� � 0.

It is said that the recourse is relatively complete if for every x in the set
fx : Ax ¼ b, x � 0g, the feasible set of the second stage problem (2.2) is
nonempty for a.e. ! 2 �. That is, the recourse is relatively complete if for
every feasible first stage point x the inequality Qðx, �ð!ÞÞ < þ1 holds w.p.1.
This definition is in accordance with the general principle that an event which
happens with zero probability is irrelevant for the calculation of the
corresponding expected value.

Let � be the support of the random vector � 2 R
d , i.e., � is the small-

est closed subset of Rd such that the probability of the event f� 62 �g is zero.
A sufficient condition for relatively complete recourse is the following.

� For every x� 0 such that Ax¼ b, the inequality Qðx, �Þ < þ1 holds for
all � 2 �.

Unfortunately, in general, this condition is not necessary. This condition is
necessary and sufficient in the following two cases: (i) the random vector �(!)
has a finite support, (ii) the recourse is fixed. Indeed, sufficiency is clear. If �(!)
has a finite support, i.e., the set � is finite, then the necessity is also clear.
In order to show the necessity in the case of fixed recourse, we argue as
follows. Suppose that the recourse is relatively complete. This means that if x
is a feasible point of the first stage problem, then Qðx, �Þ < þ1 for all � in �
accept possibly for a subset of � of measure zero. We have that Qðx, �Þ < þ1
iff h� Tx 2 posW . Note that this condition does not depend on q and that
W is fixed here. Therefore, the condition h� Tx 2 posW should hold for
almost every (h,T). This implies that the set fðh,TÞ : h� Tx 2 posWg
should form a dense subset of the support of the probability distribution of
ðhð!Þ,Tð!ÞÞ. Now if (hn,Tn) is a sequence converging to a point (h,T) and
hn � Tnx 2 posW , then hn � Tnx! h� Tx and hence h� Tx 2 posW since
the set posW is closed. This completes the argument. Let us also note that, of
course, if a two-stage linear program with fixed recourse is complete, then it is
relatively complete.
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Example 15. Consider

Qðx, �Þ :¼ inffy : �y ¼ x, y � 0g,

with x 2 ½0, 1� and � being a random variable whose probability density
function is pðzÞ :¼ 2z, 0 � z � 1. We have that for any �>0 and x 2 ½0, 1�,
Qðx, �Þ ¼ x=�, and hence

E½Qðx, �Þ� ¼

Z 1

0

x

z


 �
2z dz ¼ 2x:

That is, the recourse here is relatively complete and the expectation of
Qðx, �Þ is finite. On the other hand, the support of �(!) is the interval ½0, 1�, and
for �¼ 0 and x>0 the value of Qðx, �Þ is þ1 since the corresponding problem
is infeasible. Of course, probability of the event ‘‘�¼ 0’’ is zero, and from the
mathematical point of view the expected value function E½Qðx, �Þ� is well
defined and finite for all x 2 ½0, 1�. Note, however, that arbitrary small
perturbation of the probability distribution of � may change that. Take, for
example, a discretization of the distribution of � with the first discretization
point t¼ 0. Then, does not matter how small is the assigned (positive)
probability at t¼ 0, we obtain that Qðx, �Þ ¼ þ1 with positive probability,
and hence, E½Qðx, �Þ� ¼ þ1, for any x>0. That is, from a numerical point of
view the above problem is extremely unstable and is not well posed. As it was
discussed above, such behavior cannot happen if the recourse is fixed.

Let us consider the support function sqð�Þ of the set �ðqÞ. We want to find
sufficient conditions for the existence of the expectation E½sqðh� TxÞ�. By
Hoffman’s lemma (Theorem 53) there exists a constant �, depending on W,
such that if for some q0 the set �ðq0Þ is nonempty, then for any q the following
inclusion holds

�ðqÞ � �ðq0Þ þ �kq� q0kB, ð2:21Þ

where B :¼ � : k�k � 1f g and k � k denotes the Euclidean norm. Consider the
support function sqð�Þ of the set �ðqÞ. Since the support function of the unit
ball B is k � k, it follows from (2.21) that if the set �ðq0Þ is nonempty, then

sqð�Þ � sq0ð�Þ þ �kq� q0k k � k: ð2:22Þ

In particular, for the support function s0ð�Þ of the cone �0 we have that
s0ð�Þ ¼ 0 if � 2 posW and s0ð�Þ ¼ þ1 otherwise. Therefore, by taking q0¼ 0
in (2.22) we obtain that if �ðqÞ is nonempty, then sqð�Þ � �kqk k�k for
� 2 posW , and sqð�Þ ¼ þ1 for � 62 posW . Since�ðqÞ is polyhedral, if�ðqÞ is
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nonempty then sqð�Þ is piecewise linear on its domain, which coincides with
posW , and

jsqð�1Þ � sqð�2Þj � �kqk k�1 � �2k, 8 �1,�2 2 pos W : ð2:23Þ

We say that a random variable Z(!) has a finite r-th moment if
EjZð!Þjr < þ1. It is said that �(!) has finite r-th moments if each component
of �(!) has a finite r-th moment.

Proposition 16. Suppose that the recourse is fixed and

E kqk khk½ � < þ1 and E kqk kTk½ � < þ1: ð2:24Þ

Consider a point x 2 R
n. Then E½Qðx, �Þþ� is finite if and only if the following

condition holds w.p.1:

h� Tx 2 pos W : ð2:25Þ

Proof. We have that Qðx, �Þ < þ1 iff condition (2.25) holds. Therefore, if
condition (2.25) does not hold w.p.1, then Qðx, �Þ ¼ þ1 with positive
probability, and hence E½Qðx, �Þþ� ¼ þ1.

Conversely, suppose that condition (2.25) holds w.p.1. Then Qðx, �Þ ¼
sqðh� TxÞ with sqð�Þ being the support function of the set �ðqÞ. By (2.22) there
exists a constant � such that for any �,

sqð�Þ � s0ð�Þ þ �kqk k�k: ð2:26Þ

Also for any � 2 posW we have that s0ð�Þ ¼ 0, and hence w.p.1,

sqðh� TxÞ � �kqk kh� Txk � �kqkðkhk þ kTk kxkÞ: ð2:27Þ

It follows then by (2.24) that E sqðh� TxÞþ
� �

< þ1. u

Remark 17. If q and (h,T ) are independent and have finite first moments, then

Ekqk khk� ¼ E kqk½ � E khk½ � and E kqk kTk½ � ¼ E kqk½ � E kTk½ �,

and hence condition (2.24) follows. Also condition (2.24) holds if (h,T, q) has
finite second moments.

We obtain that, under the assumptions of Proposition 16, the expectation
� (x) is well defined and �ðxÞ < þ1 iff condition (2.25) holds w.p.1. If,
moreover, the recourse is complete, then (2.25) holds for any x and �, and
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hence �ð�Þ is well defined and is less than þ1. Since the function �ð�Þ is
convex, we have that if �ð�Þ is less than þ1 on R

n and is finite valued in at
least one point, then �ð�Þ is finite valued on the entire space R

n.

Proposition 18. Suppose that: (i) the recourse is fixed, (ii) for a.e. q the set �ðqÞ
is nonempty, (iii) condition (2.24) holds. Then the expectation function � (x) is
well defined and �ðxÞ > �1 for all x 2 R

n. Moreover, � is convex, lower
semicontinuous and Lipschitz continuous on dom�, its domain dom� is a
convex closed subset of Rn and

dom � ¼ x 2 R
n : h� Tx 2 pos W w:p:1

� �
: ð2:28Þ

Proof. Since by assumption (ii) the feasible set �ðqÞ of the dual problem is
nonempty w.p.1, we have that Qðx, �Þ is equal to sqðh� TxÞ w.p.1 for any x,
where sqð�Þ is the support function of the set �ðqÞ. Let �ðqÞ be the element of
the set �ðqÞ that is closest to 0. Since �ðqÞ is closed, such an element exists. By
Hoffman’s lemma (see (2.21)) there is a constant � such that k�ðqÞk � �kqk.
Then for any x the following holds w.p.1:

sqðh� TxÞ � �ðqÞT ðh� TxÞ � ��kqk khk þ kTk kxkð Þ: ð2:29Þ

By condition (2.24) it follows from (2.29) that �ð�Þ is well defined and
�ðxÞ > �1 for all x 2 R

n. Moreover, since sqð�Þ is lower semicontinuous, the
lower semicontinuity of �ð�Þ follows by Fatou’s lemma. The convexity and the
closedness of dom� follow from the convexity and the lower semicontinuity
of � . We have by Proposition 16 that �ðxÞ < þ1 iff condition (2.25) holds
w.p.1. This implies (2.28).

Consider two points x, x0 2 dom�. Then by (2.28) the following holds
w.p.1:

h� Tx 2 pos W and h� Tx0 2 pos W : ð2:30Þ

By (2.23) we have that if the set �ðqÞ is nonempty and (2.30) holds, then

jsqðh� TxÞ � sqðh� Tx0Þj � �kqk kTk kx� x0k: ð2:31Þ

It follows that

j�ðxÞ � �ðx0Þj � � E kqk kTk½ � kx� x0k:

Together with condition (2.24) this implies the Lipschitz continuity of � on
its domain.
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Denote by� the support2 of the probability distribution (measure) of ðh,TÞ.
Formula (2.28) means that a point x belongs to dom� iff the probability of the
event fh� Tx 2 posWg is one. Note that the set fðh,TÞ : h� Tx 2 posWg is
convex and polyhedral, and hence is closed. Consequently x belongs to dom�
iff for every ðh,TÞ 2 � it follows that h� Tx 2 posW . Therefore, we can write
formula (2.28) in the form

dom � ¼
\
ðh,TÞ2�

x : h� Tx 2 pos W
� �

: ð2:32Þ

It should be noted that the above holds since we assume here that the
recourse is fixed.

Let us observe that for any set H of vectors h, the set \h2Hð�hþ posWÞ is
convex and polyhedral. Indeed, we have that posW is a convex polyhedral
cone, and hence can be represented as the intersection of a finite number of
half spaces Ai ¼ f� : a

T
i � � 0g, i ¼ 1, . . . , l. Since the intersection of any

number of half spaces of the form bþ Ai, with b 2 B, is still a half space of the
same form (provided that this intersection is nonempty), we have the set
\h2Hð�hþ posWÞ can be represented as the intersection of half spaces of the
form bi þ Ai, i ¼ 1, . . . , l, and hence is polyhedral. It follows that if T and W
are fixed, then the set at the right hand side of (2.32) is convex and polyhedral.

Let us discuss now the differentiability properties of the expectation
function �ðxÞ. By Theorem 9 and formula (2.7) of Proposition 12 we have the
following result.

Proposition 19. Suppose that the expectation function �ð�Þ is proper and its
domain has a nonempty interior. Then for any x0 2 dom�,

@�ðx0Þ ¼ �T
T
E Dðx0, �Þ½ � þNdom �ðx0Þ, ð2:33Þ

where Dðx, �Þ :¼ argmax�2�ðqÞ�
T ðh� TxÞ. Moreover, � is differentiable at x0

if and only if x0 belongs to the interior of dom� and the set Dðx0, �Þ is a
singleton w.p.1.

As we discussed earlier, when the distribution of � has a finite support (i.e.,
there is a finite number of scenarios) the expectation function � is piecewise
linear on its domain and is differentiable everywhere only in the trivial case if
it is linear.3 In the case of a continuous distribution of � the expectation
operator smoothes the piecewise linear function Qð�, �Þ out. For example, the
following result holds.

2 Recall that the support of a probability distribution (measure) is the smallest closed set such that the

probability (measure) of its complement is zero.
3 By linear we mean here that it is of the form aTxþ b. It is more accurate to call such a function

affine.
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Proposition 20. Suppose that the assumptions of Proposition 18 hold, and the
conditional distribution of h, given ðT , qÞ, is absolutely continuous for almost all
ðT , qÞ. Then � is continuously differentiable on the interior of its domain.

Proof. By Proposition 18 we have here that the expectation function �ð�Þ is
well defined and is greater than �1. Let x be a point in the interior of dom�.
For fixed T and q, consider the multifunction

ZðhÞ :¼ arg max
�2�ðqÞ

�T ðh� TxÞ:

Clearly, conditional on ðT , qÞ, the set Dðx, �Þ coincides with ZðhÞ. Since
x 2 dom�, we have by (2.28) that h� Tx 2 posW w.p.1. Also we have that if
h� Tx 2 posW , then ZðhÞ is nonempty and forms a face of the polyhedral set
�ðqÞ. Moreover, there is a set A given by the union of a finite number of linear
subspaces of Rm (where m is the dimension of h) perpendicular to the faces of
sets �ðqÞ, such that if h� Tx 2 ðposWÞnA, then ZðhÞ is a singleton. Since an
affine subspace of Rm has Lebesgue measure zero, it follows that the Lebesgue
measure of A is zero. Therefore, since the conditional distribution of h given
ðT , qÞ is absolutely continuous, the probability of the event that ZðhÞ is not a
singleton is zero. By integrating this probability over the distribution of ðT , qÞ,
we obtain that the probability of the event that Dðx, �Þ is not a singleton is
zero. By Proposition 19 this implies the differentiability of �ð�Þ. Since �ð�Þ is
convex, it follows that for any x 2 intðdom�Þ the gradient r�ðxÞ coincides
with the (unique) subgradient of � at x, and that r�ðxÞ is continuous at x. u

Of course, if h and ðT , qÞ are independent, then the conditional distribution
of h given ðT , qÞ is the same as the unconditional (marginal) distribution of h.
Therefore, if h and ðT , qÞ are independent, then it suffices to assume in
the above proposition that the (marginal) distribution of h is absolutely
continuous.

2.3 Polyhedral two-stage problems

Let us consider a slightly more general formulation of a two-stage
stochastic programming problem:

Min
x

f1ðxÞ þ E½Qðx,!Þ�, ð2:34Þ

where Qðx,!Þ is the optimal value of the second stage problem

Min
y

f2ðy,!Þ subject to Tð!ÞxþWð!Þy ¼ hð!Þ: ð2:35Þ
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We assume in this section that the above two-stage problem is polyhedral.
That is, the following holds.

� The function f1ð�Þ is polyhedral (see Definition 10). This means that there
exist vectors cj and scalars �j, j ¼ 1, . . . , J1, vectors ak and scalars bk,
k ¼ 1, . . . ,K1, such that f1(x) can be represented as follows:

f1ðxÞ ¼
max1� j� J1 �j þ cTj x, if aTk x � bk, k ¼ 1, . . . ,K1,
þ1; otherwise,

	
ð2:36Þ

and its domain dom f1 ¼ x : aTk x � bk, k ¼ 1, . . . ,K1

� �
is nonempty.

� The function f2 is random polyhedral. That is, there exist random vectors
qj ¼ qjð!Þ and random scalars �j ¼ �jð!Þ, j ¼ 1, . . . , J2, random vectors
dk ¼ dkð!Þ and random scalars rk ¼ rkð!Þ, k ¼ 1, . . . ,K2, such that
f2ð y,!Þ can be represented as follows:

f2ðy,!Þ¼
max1�j�J2 �jð!Þ þ qjð!Þ

Ty, if dkð!Þ
Ty�rkð!Þ, k¼1, . . . ,K2,

þ1; otherwise,

	
ð2:37Þ

and for a.e. ! the domain of f2ð�,!Þ is nonempty.

Clearly, the linear two-stage model (2.1)–(2.2) is a special case of a
polyhedral two-stage problem. The converse is also true, i.e., every polyhedral
two-stage model can be reformulated as a linear two-stage model. For
example, the second stage problem (2.35) can be written as follows:

Min
y, v

v

s:t: Tð!ÞxþWð!Þy ¼ hð!Þ,

�jð!Þ þ qjð!Þ
Ty � v, j ¼ 1, . . . , J2,

dkð!Þ
Ty � rkð!Þ, k ¼ 1, . . . ,K2:

Here both v and y play the role of the second stage variables, and the data
ðq,T ,W , hÞ in (2.2) have to be re-defined in an appropriate way. In order to
avoid all these manipulations and the unnecessary notational complications
that come together with such a conversion, we shall address polyhedral
problems in a more abstract way. This will also help us to deal with the
general convex case.

Consider the Lagrangian

Lð y,�; x,!Þ :¼ f2ð y,!Þ þ �
T ðhð!Þ � Tð!Þx�Wð!ÞyÞ
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of the second stage problem (2.35). We have

inf
y

Lðy,�; x,!Þ ¼ �T ðhð!Þ � Tð!ÞxÞ þ inf
y

f2ðy,!Þ � �
TWð!Þy

� �
¼ �T ðhð!Þ � Tð!ÞxÞ � f *2 ðWð!Þ

T�,!Þ,

where f *2 ð�,!Þ is the conjugate
4 of f2ð�,!Þ. We obtain that the dual of problem

(2.35) can be written as follows

Max
�

�T ðhð!Þ � Tð!ÞxÞ � f *2 ðWð!Þ
T�,!Þ

� �
: ð2:38Þ

By the duality theory of linear programming we have that if, for some
ðx,!Þ, the optimal value Qðx,!Þ of problem (2.35) is less than þ1 (i.e.,
problem (2.35) is feasible), then it is equal to the optimal value of the dual
problem (2.38).

Let us denote, as before, by Dðx,!Þ the set of optimal solutions of the dual
problem (2.38). We then have an analogue of Proposition 12.

Proposition 21. Let ! 2 � be given and suppose that Qð�,!Þ is finite in at least
one point x. Then the function Qð�,!Þ is convex polyhedral. Moreover, Qð�,!Þ is
subdifferentiable at every x ¼ x0, at which the value Qðx0,!Þ is finite, and

@Qðx0,!Þ ¼ �Tð!Þ
T
Dðx0,!Þ: ð2:39Þ

Proof. Let us define the function  ð�Þ :¼ f *2 ðW
T�Þ (for simplicity we suppress

the argument !). We have that if Qðx,!Þ is finite, then it is equal to the
optimal value of problem (2.38), and hence Qðx,!Þ ¼  *ðh� TxÞ: Therefore,
Qð�,!Þ is a polyhedral function. Moreover, it follows by the Fenchel–Moreau
Theorem that

@ *ðh� Tx0Þ ¼ Dðx0,!Þ,

and the chain rule for subdifferentiation yields formula (2.39). Note that we do
not need here additional regularity conditions because of the polyhedricity of
the considered case. u

If Qðx,!Þ is finite, then the set Dðx,!Þ of optimal solutions of problem
(2.38) is a nonempty convex closed polyhedron. If, moreover, Dðx,!Þ is
bounded, then it is the convex hull of its finitely many vertices (extreme
points), and Qð�,!Þ is finite in a neighborhood of x. If Dðx,!Þ is unbounded,

4 Note that since f2ð�,!Þ is polyhedral, so is f *2 ð�,!Þ.
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then its recession cone (which is polyhedral) is the normal cone to the domain
of Qð�,!Þ at the point x.

Let us consider now the expected value function �ðxÞ :¼ E½Qðx,!Þ�.
Suppose that the probability measure P has a finite support, i.e., there exists a
finite number of scenarios !k with respective (positive) probabilities pk,
k ¼ 1, . . . ,K . Then

E½Qðx,!Þ� ¼
XK
k¼1

pkQðx,!kÞ: ð2:40Þ

For a given x, the expectation E½Qðx,!Þ� is equal to the optimal value of the
program

Min
y1,..., yk

XK
k¼1

pk f2ð yk,!kÞ

s:t: TkxþWkyk ¼ hk, k ¼ 1, . . . ,K , ð2:41Þ

where ðhk,Tk,WkÞ :¼ ðhð!kÞ,Tð!kÞ,Wð!kÞÞ. Similarly to the linear case, if for
at least one k 2 f1, . . . ,Kg the set

dom f2ð�,!kÞ \ y : TkxþWky ¼ hk
� �

is empty, i.e., the corresponding second stage problem is infeasible, then
problem (2.41) is infeasible, and hence its optimal value is þ1.

Proposition 22. Suppose that the probability measure P has a finite support and
that the expectation function �ð�Þ :¼ E½Qð�,!Þ� has a finite value in at least one
point x 2 R

n. Then the function �ð�Þ is polyhedral, and for any x0 2 dom�,

@�ðx0Þ ¼
XK
k¼1

pk@Qðx0,!kÞ: ð2:42Þ

The proof is identical to the proof of Proposition 13. Since the functions
Qð�,!kÞ are polyhedral, formula (2.42) follows by the Moreau–Rockafellar
Theorem.

The subdifferential @Qðx0,!kÞ of the second stage optimal value function is
described in Proposition 21. That is, if Qðx0,!kÞ is finite, then

@Qðx0,!kÞ ¼ �T
T
k arg max �T ðhk � Tkx0Þ � f *2 ðW

T
k �,!kÞ

� �
: ð2:43Þ
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It follows that the expectation function � is differentiable at x0 iff for every
!k, k ¼ 1, . . . ,K , the maximum at the right hand side of (2.43) is attained at a
unique point, i.e., the corresponding second stage dual problem has a unique
optimal solution.

Let us now consider the case of a general probability distribution P. We
need to ensure that the expectation function �ðxÞ :¼ E½Qðx,!Þ� is well defined.
General conditions are messy, so we resort again to the case of fixed recourse.

We say that the two-stage polyhedral problem has fixed recourse if the
matrix W and the set5 Y :¼ dom f2ð�,!Þ are fixed, i.e., do not depend on !. In
that case,

f2ð y,!Þ ¼
max1� j� J2 �jð!Þ þ qjð!Þ

Ty, if y 2 Y ,
þ1; otherwise:

	

Denote WðYÞ :¼ fWy : y 2 Yg. Let x be such that

hð!Þ � Tð!Þx 2WðYÞ w:p:1: ð2:44Þ

This means that for a.e. ! the system

y 2 Y , y ¼ hð!Þ � Tð!Þx ð2:45Þ

has a solution. Let for some !0 2 �, y0 be a solution of the above system, i.e.,
y0 2 Y and hð!0Þ � Tð!0Þx ¼Wy0. Since system (2.45) is defined by linear
constraints, we have by Hoffman’s lemma that there exists a constant � such
that for almost all ! we can find a solution yð!Þ of the system (2.45) with

kyð!Þ � y0k � �kðhð!Þ � Tð!ÞxÞ � ðhð!0Þ � Tð!0ÞxÞk:

Therefore the optimal value of the second stage problem can be bounded
from above as follows:

Qðx,!Þ � max
1� j� J2

�jð!Þ þ qjð!Þ
Tyð!Þ

� �
� Qðx,!0Þ þ

XJ2
j¼1

j�jð!Þ � �jð!0Þj

þ �
XJ2
j¼1

kqjð!Þk khð!Þ�hð!0Þk þ kxkkTð!Þ�Tð!0Þkð Þ: ð2:46Þ

5 Note that since it is assumed that f2ð�,!Þ is polyhedral, it follows that the set Y is nonempty and

polyhedral.
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Proposition 23. Suppose that the recourse is fixed and

Ej�jj<þ1, E kqjk khk
� �

<þ1 and E kqjk kTk
� �

<þ1, j ¼ 1, . . . , J2:

ð2:47Þ

Consider a point x 2 R
n. Then E½Qðx,!Þþ� is finite if and only if condition

(2.44) holds.

The proof uses (2.46), similarly to the proof of Proposition 16.
Let us now formulate conditions under which the expected recourse cost is

bounded from below. Let C be the recession cone of Y, and C* be its polar.
Consider the conjugate function f *2 ð�,!Þ. It can be verified that

dom f *2 ð�,!Þ ¼ convfqjð!Þ, j ¼ 1, . . . , J2g þ C*: ð2:48Þ

Indeed, by the definition of the function f2ð�,!Þ and its conjugate, we have
that f *2 ðz,!Þ is equal to the optimal value of the problem

Maxy, v v

s:t: zTy� �jð!Þ � qjð!Þ
Ty � v, j ¼ 1, . . . , J2, y 2 Y :

Since it is assumed that the set Y is nonempty, the above problem is
feasible, and since Y is polyhedral, it is linear. Therefore its optimal value is
equal to the optimal value of its dual. In particular, its optimal value is less
than þ1 iff the dual problem is feasible. Now the dual problem is feasible iff
there exist �j � 0, j ¼ 1, . . . , J2, such that

PJ2
j¼1 �j ¼ 1 and

supy2Y yT z�
PJ2

j¼1 �jqjð!Þ

 �

< þ1:

The last condition holds iff z�
PJ2

j¼1 �jqjð!Þ 2 C*, which completes the
argument.

Let us define the set

�ð!Þ :¼ f� : WT� 2 conv qjð!Þ, j ¼ 1, . . . , J2
� �

þ C*g:

We may remark that in the case of a linear two stage program the above set
coincides with the one defined in (2.5).

Proposition 24. Suppose that: (i) the recourse is fixed, (ii) the set �ð!Þ is
nonempty w.p.1, (iii) condition (2.47) holds. Then the expectation function �ðxÞ
is well defined and �ðxÞ > �1 for all x 2 R

n. Moreover, � is convex, lower

Ch. 2. Optimality and Duality in Stochastic Programming 89



semicontinuous and Lipschitz continuous on dom�, its domain dom� is a
convex closed subset of Rn and

dom � ¼ x 2 R
n : h� Tx 2WðYÞ w:p:1

� �
: ð2:49Þ

Note that the dual problem (2.38) is feasible iff WT� 2 dom f *2 ð�,!Þ. By
formula (2.48) assumption (ii) means that problem (2.38) is feasible, and hence
Qðx,!Þ is equal to the optimal value of (2.38), for a.e. !. The remainder of the
proof is similar to the linear case (Proposition 18).

2.4 Convex two-stage problems

Let us consider the following two-stage problem

Min
x2X
f f ðxÞ :¼ E½Fðx,!Þ�g, ð2:50Þ

where Fðx,!Þ is the optimal value of the second stage problem

Min
y2Y

qð y,!Þ subject to gið y,!Þ þ �i � 0, i ¼ 1, . . . ,m, ð2:51Þ

and �i ¼ tiðx,!Þ. Here X is a subset of Rn, Y is a subset of Rs, and qð y,!Þ,
giðy,!Þ and tiðx,!Þ are real valued functions. The above problem is a
particular case of the two-stage problem (2.19)–(2.20) discussed in Chapter 1.
We assume throughout this section that for a.e. ! 2 � the problem (2.51) is
convex, that is, the set Y is convex, and the functions qð�,!Þ and gið�,!Þ,
tið�,!Þ, i ¼ 1, . . . ,m, are convex. Recall that real valued convex functions are
continuous, in fact they are even locally Lipschitz continuous.

The second stage constraints can be absorbed into the objective function by
defining qðy,�,!Þ :¼ qðy,!Þ if ðy,�Þ satisfies the constraints of (2.51), and
qðy,�,!Þ :¼ þ1 otherwise. Consequently, problem (2.51) can be written as

Min
y2Rs

qðy,�,!Þ: ð2:52Þ

Our convexity assumptions imply that for a.e. ! 2 � the function qð�, � ,!Þ
is convex. Therefore we can study this problem in the framework of conjugate
duality discussed in Section 7.2 of the Appendix.6

Let us denote by #ð�,!Þ the optimal value of problem (2.51), or
equivalently of problem (2.52). Note that Fðx,!Þ ¼ #ðTðx,!Þ,!Þ, where

6 Note that in order to be consistent with the notation of two-stage programming, in the present case

the optimization in (2.51) is performed with respect to y while in Section 7.2 the corresponding

optimization is performed with respect to x.
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Tðx,!Þ :¼ ðt1ðx,!Þ, . . . , tmðx,!ÞÞ. The dual of problem (2.51) can be written in
the form

Max
��0

�T�þ inf
y2Y

Lð y,�,!Þ

	 �
, ð2:53Þ

where

Lð y,�,!Þ :¼ qð y,!Þ þ
Xm
i¼1

�igið y,!Þ

is the Lagrangian of problem (2.51). By the theory of conjugate duality we
have the following results (see Proposition 55).

Proposition 25. Let � and ! 2 � be given. Suppose that problem (2.51) is
convex. Then the following holds. (i) The functions #ð�,!Þ and Fð�,!Þ are convex.
(ii) Suppose that problem (2.51) is subconsistent. Then there is no duality gap
between problem (2.51) and its dual (2.53) if and only if the optimal value
function #ð�,!Þ is lower semicontinuous at �. (iii) There is no duality gap between
problems (2.51) and (2.53) and the dual problem (2.53) has a nonempty set of
optimal solutions if and only if the optimal value function #ð�,!Þ is
subdifferentiable at �. (iv) Suppose that the optimal value of (2.51) is finite.
Then there is no duality gap between problems (2.51) and (2.53) and the dual
problem (2.53) has a nonempty and bounded set of optimal solutions if and only
if � 2 int ðdom#ð�,!ÞÞ.

The regularity condition � 2 intðdom#ð�,!ÞÞ means that for all small
perturbations of � the corresponding problem (2.51) remains feasible. We can
also characterize the differentiability properties of the optimal value functions
in terms of the dual problem (2.53). Let us denote by Dð�,!Þ the (possibly
empty) set of optimal solutions of the dual problem (2.53).

Proposition 26. Let ! 2 � and � ¼ Tðx,!Þ be given. Suppose that problem
(2.51) is convex, and that problems (2.51) and (2.53) have finite and equal
optimal values. Then

@#ð�,!Þ ¼ Dð�,!Þ: ð2:54Þ

Suppose, further, that the functions tið�,!Þ, i ¼ 1, . . . ,m, are differentiable,
and that the condition

0 2 intfTðx,!Þ þ rTðx,!ÞRs
� dom #ð�,!Þg ð2:55Þ
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holds. Then

@Fðx,!Þ ¼ rTðx,!ÞTDð�,!Þ: ð2:56Þ

As before, all subdifferentials and derivatives in the above formulas are
taken with respect to x and �.

Corollary 27. Let ! 2 � and � ¼ Tðx,!Þ be given. Suppose that problem (2.51)
is convex. Then #ð�,!Þ is differentiable at � if and only if Dð�,!Þ is a singleton.
Suppose, further, that the functions tið�,!Þ, i ¼ 1, . . . ,m, are differentiable. Then
Fð�,!Þ is differentiable at x if Dð�,!Þ is a singleton.

Proof. If Dð�,!Þ is a singleton, then the set of optimal solutions of the dual
problem (2.53) is nonempty and bounded, and hence there is no duality gap
between problems (2.51) and (2.53). Thus formula (2.54) holds. Conversely, if
@#ð�,!Þ is a singleton and hence is nonempty, then again there is no duality
gap between problems (2.51) and (2.53), and hence formula (2.54) holds.

Now if Dð�,!Þ is a singleton, then #ð�,!Þ is continuous at � and hence the
regularity condition (2.55) holds. It follows then by formula (2.56) that Fð�,!Þ
is differentiable at x and formula

rFðx,!Þ ¼ rTðx,!ÞTDð�,!Þ ð2:57Þ

holds. u

Let us discuss now properties of the expectation function f ðxÞ :¼ E½Fðx,!Þ�.
If the set � is finite, say � ¼ f!1, . . . ,!Kg with corresponding probabilities pk,
k ¼ 1, . . . ,K , then f ðxÞ ¼

PK
k¼1 pkFðx,!kÞ and subdifferentiability of f ðxÞ

is described in Theorem 6 together with formula (2.56). In particular, we
obtain that f ð�Þ is differentiable at a point x if the functions tið�,!Þ,
i ¼ 1, . . . ,m, are differentiable at x and for every ! 2 � the corresponding
dual problem (2.53) has a unique optimal solution.

Let us discuss now the general case where � does not need to be finite.
Assume that the functions qðy,!Þ and giðy,!Þ, tiðx,!Þ, i ¼ 1, . . . ,m, are random
lower semicontinuous. Then it follows that the function qðy,Tðx,!Þ,!Þ is also
random lower semicontinuous. Consequently, we obtain by Theorem 19 from
the Appendix of Chapter 1 that for any x the optimal (minimal) value Fðx, �Þ is
measurable. If, moreover, for a.e. ! 2 � the function Fð�,!Þ is lower
semicontinuous, then the integrand Fðx,!Þ is random lower semicontinuous.
Since, by convexity, the functions tið�,!Þ are continuous, we have that Fð�,!Þ
is lower semicontinuous if #ð�,!Þ is lower semicontinuous. Also since Fðx, �Þ is
measurable, in order to verify that f ðxÞ is well defined we only need to check
that either E½Fðx,!Þþ� or E½ð�Fðx,!ÞÞþ� is finite.

By Theorem 9 and Proposition 26 we obtain the following result.
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Theorem 28. Suppose that: (i) the functions qð y,!Þ and gið y,!Þ, tiðx,!Þ,
i ¼ 1, . . . ,m, are random lower semicontinuous, (ii) for a.e. ! 2 � the problem
(2.51) is convex, (iii) for a.e. ! 2 � the optimal value function #ð�,!Þ is lower
semicontinuous, (iv) for a.e. ! 2 � the functions tið�,!Þ, i ¼ 1, . . . ,m, are dif-
ferentiable and the regularity condition (2.55) holds, (v) the expectation function
f ðxÞ is proper and its domain has a nonempty interior. Then for any x 2 dom f ,

@f ðxÞ ¼

Z
�

rTðx,!ÞTDðTðx,!Þ,!Þ dPð!Þ þNdom f ðxÞ: ð2:58Þ

Proof. It follows from assumptions (i)–(iii) that Fðx,!Þ is random lower
semicontinuous. If #ð�,!Þ < þ1, then # ð�,!Þ is lower semicontinuous at � iff
there is no duality gap between problems (2.51) and (2.53). Formula (2.58)
follows then from the corresponding formula of Theorem 9 and formula (2.56)
of Proposition 26. u

Under the assumptions of the above theorem we have that f ð�Þ is dif-
ferentiable at a point x iff x 2 intðdom f Þ andDðTðx,!Þ,!Þ is a singleton w.p.1.

The above analysis can be applied to the second stage problem of form
(2.35) with the function f2ð�,!Þ being convex (not necessarily polyhedral) for
a.e. ! 2 �. The dual of (2.35) can be still written in the form (2.38) However,
in the non-polyhedral case one needs some additional conditions in order to
ensure that there is no duality gap between the (primal) problem (2.35) and its
dual (2.38). For example, we have that if, for a given ðx,!Þ, the optimal value
of (2.35) is finite, then there is no duality gap between (2.35) and (2.38) and the
dual problem (2.38) has a nonempty and bounded set of optimal solutions iff
the following condition holds

hð!Þ � Tð!Þx 2 intfWð!Þ ½dom f2ð�,wÞ�g: ð2:59Þ

The above condition means that for small perturbations of � ¼
hð!Þ � Tð!Þx the corresponding (primal) problem remains feasible.

3 Multistage models

Consider the linear multistage problem

MinE ½ cT1 x1 þ cT2 x2 þ cT3 x3 þ ... þ cTTxT �
s:t: A11x1 ¼ b1,

A21x1 þ A22x2 ¼ b2,
A32x2 þ A33x3 ¼ b3,

...........................................................................
AT ,T�1xT�1 þ ATTxT ¼ bT ,

x1�0, x2�0, x3�0, ... xT �0:

ð3:1Þ
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In this problem x1 2 R
n1 , . . . , xT 2 R

nT are the parts of the decision vector
corresponding to stages 1, . . . ,T , and the random variables associated with
period t are �t :¼ ðct,At, t�1,Att, btÞ. Each xt is allowed to depend on
�½1, t� :¼ ð�1, . . . , �tÞ, but not on future observations �tþ1, . . . , �T . That is,
xt ¼ xtð�½1, t�Þ is viewed as a function of ð�1, . . . , �tÞ, and the minimization is
performed over appropriate functional spaces. In particular, x1 depends only
on �1 which is deterministic, and hence x1 is deterministic. The constraints of
(3.1) are assumed to hold for almost every realization of the random data
� ¼ ð�1, . . . , �T Þ. If the number of scenarios is finite, i.e., the distribution of
� has a finite support, then problem (3.1) can be written as a large linear
programming problem. See Chapter 1 for additional motivation and
discussion of multistage models.

We discuss in this section a slightly more general structure, a polyhedral
multistage model, which is formulated as follows:

Min E ½ f1ðx1, �1Þ þ f2ðx2, �2Þ þ f3ðx3, �3Þ þ . . .þ fT ðxT , �T Þ�
s:t: A11ð�1Þx1 ¼ b1ð�1Þ,

A21ð�2Þx1 þ A22ð�2Þx2 ¼ b2ð�2Þ,
A32ð�3Þx2 þ A33ð�3Þx3 ¼ b3ð�3Þ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AT ,T�1ð�T ÞxT�1 þ ATT ð�T ÞxT ¼ bT ð�T Þ:

ð3:2Þ

Here �1, . . . , �T is a vector valued random process associated with stages
1, . . . ,T , and the objective parts ftðxt, �tÞ, t ¼ 1, . . . ,T , associated with the
successive stages, are assumed to be random polyhedral functions. Random
polyhedral functions were introduced in Section 2.3, see equation (2.37) in
particular. Note a slight difference in notation here, it is explicitly assumed in
(3.2) that all random data are a function of the process �1, . . . , �T , which
include random variables defining the (polyhedral) objective functions and the
constraints. As in the linear multistage model (3.1), each xt may only depend
on �½1, t� but not on future observations, i.e., xt ¼ xtð�½1, t�Þ is a function of �½1, t�,
and the minimization is performed over appropriate functional spaces. Since
�1 becomes known before the first decision is made, we may assume that f1
depends on x1 only, but for the uniformity of notation we keep �1 in the
formulation of the problem.

Similarly to the two-stage case, every polyhedral multistage problem (with a
finite number of scenarios) can be converted into a linear multistage problem
by adding new variables and constraints. The form (3.2), though, is
more convenient to analyze. So in the remainder of this section we deal with
model (3.2). We denote � :¼ �½1,T � ¼ ð�1, . . . , �T Þ the random data of the
considered problem.
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Definition 29. A sequence of mappings xtð�Þ, t ¼ 1, . . . ,T , is called an
implementable policy if each xtð�Þ is a function of the history �½1, t� of the
process. An implementable policy xtð�½1, t�Þ, t ¼ 1, . . . ,T , is said to be a feasible
policy if it satisfies all constraints of (3.2) and xtð�½1, t�Þ 2 dom ftð�, �tÞ,
t ¼ 1, . . . ,T , for a.e. �.

Let us denote, as in Chapter 1, by Qtðxt�1, �½1, t�Þ the optimal value of the
following problem (the cost-to-go)

MinE½ ftðxt,�tÞþftþ1ðxtþ1,�tþ1Þ þ ��� þfT ðxT ,�T Þj�½1,t��

s:t: At,t�1ð�tÞxt�1þAttð�tÞxt ¼btð�tÞ,

Atþ1,tð�tþ1Þxt þ Atþ1,tþ1ð�tþ1Þxtþ1 ¼btþ1ð�tþ1Þ,

.............................................................................................

AT ,T�1ð�T ÞxT�1 þATT ð�T ÞxT ¼bT ð�T Þ:

ð3:3Þ

In the above problem values of xt�1 and �1, . . . , �t are assumed to be known,
and hence the optimal value of (3.3) is a function of these values. Problem
(3.3) is viewed as a multistage problem with the first period starting at time t,
and depending on xt�1 2 R

nt�1 through the first equation constraint.
As outlined in Chapter 1, functions Qtðxt�1, �½1, t�Þ satisfy, for a.e. �, the

following dynamic programming equation:

Qtðxt�1, �½1, t�Þ ¼ infxt2Rnt ’tðxt, �½1, t�Þ : At, t�1ð�tÞxt�1 þ Attð�tÞxt ¼ bt
� �

,

ð3:4Þ

where

’tðxt, �½1, t�Þ :¼ ftðxt, �tÞ þ E Qtþ1ðxt, �½1, tþ1�Þj �½1, t�
� �

: ð3:5Þ

In the remainder of this section we focus our attention on distributions with
a finite support of the random data vector �. Note that since it is assumed that
the problem is polyhedral and the distribution of �ð!Þ has a finite support, the
functions ’tð�, �Þ are random polyhedral. Let us analyze the Lagrangian

Ltðxt,�tÞ :¼ ’tðxt, �½1, t�Þ þ �
T
t ðbtð�tÞ � At, t�1ð�tÞxt�1 � Attð�tÞxtÞ

of problem (3.4) and the dual functional

Dtð�tÞ :¼ infxt2Rnt Ltðxt,�tÞ ¼ ’tðxtÞ � �
T
t Attxt þ �

T
t ðbt � At, t�1xt�1Þ

� �
:
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We omit for brevity the arguments �½1, t� in these expressions. It follows that
we can write the dual of the problem (3.4) as follows

Max
�t

Dtð�tÞ ¼ �’*t AT
tt�t

� �
þ �Tt ðbt � At, t�1xt�1Þ

� �
, ð3:6Þ

where ’*t is the conjugate of ’t. We deal here with polyhedral problems, so by
the duality theory of linear programming, if Qtðxt�1, �½1, t�Þ < þ1, then there is
no duality gap between problems (3.4) and (3.6), and hence

Qtðxt�1, �½1, t�Þ ¼ sup
�t

�’*t AT
tt�t

� �
þ �Tt ðbt � At, t�1xt�1Þ

� �
: ð3:7Þ

Moreover, if Qtðxt�1, �½1, t�Þ is finite, then both problems (3.4) and (3.6) have
nonempty sets of optimal solutions. Let us denote, as before, by Dtðxt�1, �½1, t�Þ
the set of optimal solutions of the dual problem (3.6). We then have an
analogue of Proposition 21.

Proposition 30. For every t ¼ 2, . . . ,T the function Qtð�, �½1, t�Þ is a convex
polyhedral function. Moreover, Qtð�, �½1, t�Þ is subdifferentiable at every xt�1, at
which Qtðxt�1, �½1, t�Þ is finite, and

@Qtðxt�1, �½1, t�Þ ¼ �A
T
t, t�1ð�tÞDtðxt�1, �½1, t�Þ: ð3:8Þ

Proof. The assertion is true for t ¼ T by Proposition 21. Suppose now that
t < T and the assertion holds for tþ 1. Since the distribution of �tþ1 is
discrete, the function (3.5) is a convex polyhedral function, as a sum of finitely
many convex polyhedral functions. Consequently, Proposition 21 applies to
problem (3.4) and our assertion is true for all t. u

Identically to the two stage case, the set of maximizers in (3.6), denoted
Dtðxt�1, �½1, t�Þ, is a convex closed polyhedron. Two cases are possible. If it
is bounded, then it is the convex hull of its finitely many vertices, and
Qtð�, �½1, t�Þ is finite around xt�1. If Dtðxt�1, �½1, t�Þ is unbounded, then its
recession cone (which is polyhedral) is the normal cone to the domain of
Qtð�, �½1, t�Þ at xt�1.

Example 31 (Trucking). Let us return to the trucking example (Example 9)
from Chapter 1. Let us develop the dynamic programming equations for
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this model. We have here that Qtðrt�1,D½1, t�Þ is equal to the optimal value of
the following problem

Max
yt, zt, rt

Xn
i, j¼1

ðqijzijt � cijyijtÞ þ E Qtþ1 rt,D½1, tþ1�
� �

j D½1, t�
� �( )

s:t: zijt � Dijt, i, j ¼ 1, . . . , n,

zijt � yijt, i, j ¼ 1, . . . , n,

ri, t�1 þ
Xn
k¼1

ykit �
Xn
j¼1

yijt ¼ rit, i ¼ 1, . . . , n,

rt � 0, yt � 0, zt � 0: ð3:9Þ

We used here the fact that rt is a sufficient state vector for this problem.

Let �it denote the Lagrange multipliers associated with the state constraints
in (3.9) and let �tðrt�1,D½1, t�Þ be the set of the optimal values of these
multipliers. Then we know that the function Qtð�,D½1, t�Þ is concave (we have a
maximization problem here) and its superdifferential7 is equal to

@Qtðrt�1,D½1, t�Þ ¼ �tðrt�1,D½1, t�Þ: ð3:10Þ

4 Optimality conditions, basic case

In this section we discuss optimization problems of the form

Min
x2X
f f ðxÞ :¼ E½Fðx,!Þ�g, ð4:1Þ

where F: Rn
��! R is an integrand and X is a nonempty subset of Rn. We

assume that the expectation function f ð�Þ is well defined on R
n. Let us recall

that from the theoretical point of view the feasibility constraint x 2 X can be
absorbed into the objective function by defining8 Fðx,!Þ :¼ Fðx,!Þ þ iX ðxÞ,
i.e.,

Fðx,!Þ ¼
Fðx,!Þ, if x 2 X ,
þ1, if x 62 X :

	

7 Since we deal here with a concave rather than convex function, we call @Qtðrt�1,D½1, t�Þ the

superdifferential rather than subdifferential.
8 Recall that iX ð�Þ denotes the indicator function of the set X.
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The optimization problem (4.1) can be formulated then in the form

Min
x2 Rn
f f ðxÞ :¼ E½Fðx,!Þ�g: ð4:2Þ

Clearly it follows that f ðxÞ ¼ f ðxÞ þ iX ðxÞ, and hence dom f ¼ X \ dom f .
Note that the feasible set of the problem (4.1) is given by the intersection of
the set X and dom f . This set coincides, of course, with the feasible set of the
problem (4.2) given by dom f . In this section we discuss the case where the set
X is convex and the integrand Fð�,!Þ is convex for a.e. ! 2 �, and hence the
expectation function f ð�Þ is also convex.

In the following proposition we present necessary and sufficient conditions
for a feasible point x0 to be an optimal solution of the problem (4.1). In order
to ensure necessity of these conditions we need a regularity assumption
(constraint qualification). A simple constraint qualification of such type is the
following:

riðXÞ \ riðdom f Þ 6¼ ;, ð4:3Þ

i.e., there exists a point x 2 riðXÞ belonging to the relative interior of the
domain of f . Note that if a point x 2 X , then any neighborhood of x has a
nonempty intersection with riðXÞ. Therefore, if the domain of f has a
nonempty interior, and hence riðdom f Þ ¼ intðdom f Þ, then the above
constraint qualification (4.3) is equivalent to the following

X \ intðdom f Þ 6¼ ;: ð4:4Þ

Note also that if f is finite in at least one point of the interior of its domain,
then f is continuous and subdifferentiable at that point, and hence is proper.

Proposition 32. Suppose that the set X and the function f are convex. Consider
a point x0 2 X such that f ðx0Þ is finite. Then x0 is an optimal solution of problem
(4.1) if the following condition holds:

0 2 @f ðx0Þ þNX ðx0Þ: ð4:5Þ

Moreover, if f is proper and the constraint qualification (4.3) is satisfied, then
condition (4.5) is also necessary for x0 to be an optimal solution of the problem
(4.1).

Proof. We have here that x0 2 dom f , where f ðxÞ :¼ f ðxÞ þ iX ðxÞ. It follows
immediately from the definition of subdifferentials that x0 is an optimal
solution of the problem (4.2) iff 0 2 @f ðx0Þ. Since the set X is nonempty, the
indicator function iX is proper. If condition (4.5) holds, then @f ðx0Þ is nonempty,
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and hence f is a proper function. It follows then by the Moreau–Rockafellar
Theorem (Theorem 50) that @f ðx0Þ includes the set @f ðx0Þ þ @iX ðx0Þ. Also we
have that @iX ðx0Þ coincides with NX ðx0Þ. Therefore, we obtain that
@f ðx0Þ þNX ðx0Þ � @f ðx0Þ:Consequently,ifcondition(4.5)holds,then0 2 @f ðx0Þ,
and hence x0 is an optimal solution of (4.2). Moreover, under the constraint
qualification (4.3) and the assumption that f is proper, @f ðx0Þ þ @iX ðx0Þ is
equal to @f ðx0Þ by the Moreau–Rockafellar Theorem, and hence the necessity
of (4.5) follows. u

The above optimality conditions can be combined, of course, with the
formula for the subdifferential of the expectation function given in Theorem 9.
Note that the constraint qualification condition (4.4) implies that the domain
of f has a nonempty interior.

Theorem 33. Suppose that: (i) the function Fðx,!Þ is random lower
semicontinuous, (ii) for a.e. ! 2 � the function Fð�,!Þ is convex, (iii) the
expectation function f is proper, (iv) the set X is convex, (v) the constraint
qualification (4.4) is satisfied. Then a point x0 2 X \ dom f is an optimal
solution of the problem (4.1) if and only if the following condition holds:

0 2

Z
�

@Fðx0,!ÞdPð!Þ þNdom f ðx0Þ þNX ðx0Þ: ð4:6Þ

In particular, if x0 belongs to the interior of the domain of f, then
Ndom f ðx0Þ ¼ f0g, and hence in that case the optimality condition (4.6) takes on
the form

0 2

Z
�

@Fðx0,!ÞdPð!Þ þNX ðx0Þ: ð4:7Þ

5 Optimality conditions for multistage models

Let us now turn to the polyhedral multistage model (3.2). We assume that
the random vector � ¼ ð�1, . . . , �T Þ has a distribution with a finite support.
Recall Definition 29 of a feasible policy xtð�½1, t�Þ of problem (3.2).

Since the distribution of � has a finite support, the value of the objective
function of (3.2) is finite for every feasible policy. A question arises when a
feasible policy is optimal. Note that since we deal with distributions with a
finite support, a statement that a certain property holds for a.e. � is equivalent
here to that this property holds for every realization of �. We write this simply
as ‘‘for every realization � . . .’’.
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Theorem 34. A feasible policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T, is optimal for (3.2) if and
only if, for all t ¼ 1, . . . ,T, and every realization �,

x̂xtð�½1, t�Þ2arg min
xt2R

nt
’tðxt, �½1, t�Þ :Attð�tÞxt¼btð�tÞ�At, t�1ð�tÞx̂xt�1ð�½1, t�1�Þ
� �

,

ð5:1Þ

where ’tðxt, �½1, t�Þ is defined in (3.5) with the term QTþ1 omitted for t ¼ T.

Proof. The assertion is obvious for T ¼ 1. Let us suppose that it is true for
T � 1. Consider problem (3.3) for t ¼ 2, where x̂x1 is assumed to be fixed. By
our assumption, the policy x̂xtð�½1, t�Þ, t ¼ 2, . . . ,T is optimal for this problem if
and only if relations (5.1) hold for t ¼ 2, . . . ,T . On the other hand, since
Q2ðx1, �½1, 2�Þ is the optimal value of (3.3) for t ¼ 2 for any ðx1, �½1, 2�Þ, the first
stage decision x̂x1 is optimal for (3.2) if and only if (5.1) is true for t ¼ 1. u

It follows from the above result that the multistage problem can be viewed
as a nested family of stochastic optimization problems of form (4.1), and we
can apply all the results derived in the preceding section.

Theorem 35. (i) A feasible policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T, is optimal for (3.2) if
and only if, for all t ¼ 1, . . . ,T, and every realization �½1, t�, there exist multipliers
�̂�tð�½1, t�Þ such that9

0 2 @ftðx̂xtð�½1, t�Þ, �tÞ�Attð�tÞ
T �̂�tð�½1, t�Þ þ E @Qtþ1ðx̂xtð�½1, t�Þ, �½1, tþ1�Þ j �½1, t�

� �
:

ð5:2Þ

(ii)Multipliers �̂�tð�½1, t�Þ satisfy (5.2) for a feasible policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T, if
and only if for every realization �½1, t�,

�̂�tð�½1, t�Þ 2 Dtðx̂xt�1ð�½1;t�1�Þ, �½1, t�Þ, ð5:3Þ

where Dtðx̂xt�1ð�½1, t�1�Þ; �½1;t�Þ is the set of optimal solutions of the dual problem
(3.6).

Proof. By Proposition 30 the functions in problem (5.1) are polyhedral, so the
optimality conditions of Theorem 33 hold without any additional constraint
qualification assumptions. Relation (5.2) follows then from Theorem 34.
Relation (5.3) is the consequence of the duality theorem in convex pro-
gramming applied to problem (5.1). u

9 For t ¼ T we omit the term with QTþ1 in (1.2).
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Proposition 30 provides us with the explicit form of the subdifferentials
involved in (5.2):

@Qtþ1ðxt, �½1, tþ1�Þ ¼ �Atþ1, tð�tþ1Þ
T
Dtþ1ðxt, �½1, tþ1�Þ: ð5:4Þ

This allows us to reformulate part (i) of Theorem 35 as follows.

Corollary 36. A feasible policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T, is optimal for (3.2) if and
only if, for all t ¼ 1, . . . ,T, and every realization �½1, t�, there exist multipliers
�̂�tð�½1, t�Þ such that10

02@ftðx̂xtð�½1, t�Þ, �tÞ�Attð�tÞ
T �̂�tð�½1, t�Þ�E Atþ1, tð�tþ1Þ

T �̂�tþ1ð�½1, tþ1�Þ j �½1, t�
� �

,

t ¼ 1, . . . ,T : ð5:5Þ

Proof. Suppose that a policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T , is optimal for (3.2).
Consider t ¼ 1. By Theorem 35, we can choose multipliers �̂�1 2 D1 such that
(5.2) holds for t ¼ 1. Note that there is no preceding stage, so the set D1 is
fixed. It follows from (5.2) and (5.4) that we can choose a measurable selection

�̂�2ð�½1, 2�Þ 2 D2ðx̂x1, �½1, 2�Þ

such that11

0 2 @f1ðx̂x1ð�1Þ, �1Þ � A11ð�1Þ
T �̂�1ð�1Þ � E A2,1ð�2Þ

T �̂�2ð�½1, 2�Þj �1
� �

, ð5:6Þ

so formula (5.5) is true for t ¼ 1. By Theorem 35 (ii), the same selection
�̂�2ð�½1, 2�Þ can be used in (5.2) for t ¼ 2. Then there exists a measurable selection

�̂�3ð�½1, 3�Þ 2 D3ðx̂x1, �½1, 3�Þ

such that (5.5) is true for t ¼ 2. Proceeding in this way we find selections (5.3)
such that (5.5) holds for all t ¼ 1, . . . ,T . u

It should be stressed that both the polyhedrality of the objective and the
finite number of realizations of � are essential for Theorems 34 and 35, and
for Corollary 36, because we could avoid the verification of constraint
qualification conditions for problems appearing in (5.1). For the nested
formulation (3.4) these conditions are difficult to ensure, in general. However,
when the distribution of � remains finite, we can formulate the necessary and
sufficient conditions for problems of form (3.2) with general convex functions.

10 Again, for t ¼ T we omit the term with T þ 1 in (5.5).
11 Since �1 is not random, the conditional expectation in (5.6) does not depend on �1, we write it for

uniformity of the notation.

Ch. 2. Optimality and Duality in Stochastic Programming 101



Let us rewrite (3.2) in a compact form

Min E½ f ðx, �Þ� ð5:7Þ

s:t: Ax ¼ b, ð5:8Þ

where

f ðx, �Þ :¼
XT
t¼1

ftðxtð�½1, t�Þ, �tÞ,

A is the block matrix defining the constraints of (3.2), and b is the
corresponding vector of the right hand sides. We should keep in mind that the
decision vector x ¼ xð�Þ is an implementable policy, that is,

xð�Þ ¼ ðxtð�½1, t�ÞÞt¼1,...,T ,

and each constraint of (3.2), associated with stage t, has as many realizations
as there are different values of �½1, t� possible. All these numbers are finite, so
(5.7)–(5.8) is a finite dimensional convex optimization problem.

Denote by X the linear manifold (affine space) defined by (5.8). It follows
from Proposition 32 that a policy x̂x 2 X \ dom Ef ð�, �Þ is optimal if the
following condition holds:

0 2 @ E½ f ðx̂x, �Þ� þNX ðx̂xÞ: ð5:9Þ

Moreover, if E½ f ð�, �Þ� is proper and the constraint qualification12 (4.3) is
satisfied, then condition (5.9) is also necessary for x̂x to be an optimal solution
of the problem (3.2).

Since X is a linear manifold, the normal cone NX ðxÞ is constant (i.e., does
not depend on x 2 X) and coincides with the linear space orthogonal to X.
Consequently, NX ðxÞ is equal to the set of vectors of form AT�, where

� ¼ �tð�½1, t�Þ
� �

t¼1,...,T
:

Let us introduce an equivalent representation of the normal cone. For each
possible realization �k½1, t� of �½1, t� we define13

�̂�t �
k
½1, t�


 �
:¼ �

1

Pf�½1, t� ¼ �k½1, t�g

 !
�t �

k
½1, t�


 �
: ð5:10Þ

12 Since X is an affine space, its relative interior coincides with X .
13 To avoid collisions of subscripts we slightly change our notation and use superscripts to denote

realizations (scenarios).
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It is legitimate, because Pf�½1, t� ¼ �
k
½1, t�g > 0. Then NX ðxÞ is the set of vectors

of the form

Attð�tÞ
T �̂�tð�½1, t�Þ þ E Atþ1, tð�tþ1Þ

T �̂�tþ1ð�½1, tþ1�Þj �½1, t�
� �� �

t¼1,...,T
,

where, for uniformity, we take the convention that all the terms involving
T þ 1 are 0.

Then simple manipulations show that the relation (5.9) is identical with
(5.5).

Corollary 37. Suppose that the distribution of � has a finite support and the
functions ftð�, �tÞ, t ¼ 1, . . . ,T, are convex for every realization of �. Then for a
feasible policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T, to be optimal it is sufficient that for all
t ¼ 1, . . . ,T, and every realization �½1, t�, there exist multipliers �̂�tð�½1, t�Þ such that
the relations (5.5) are satisfied. If, in addition, the constraint qualification (4.3)
holds, then conditions (5.5) are also necessary for x̂xtð�½1, t�Þ to be optimal for the
problem (3.2).

6 Duality, basic case

Let us discuss first the case where the set � is finite, say � ¼ f!1, . . . ,!Kg

with corresponding probabilities pk > 0, k ¼ 1, . . . ,K . As it was mentioned in
Chapter 1, in that case we can formulate problem (4.2) in the following
equivalent form

Minx1,...,xK , z
XK
k¼1

pkFðxk,!kÞ,

subject to xk ¼ z, k ¼ 1, . . . ,K , ð6:1Þ

where x1, . . . ,xK and z are n-dimensional vectors. Of course, we can eliminate
z from the above problem by expressing it in terms of x1, . . . , xK . However, it
will be convenient to view z as an additional variable.

Since the probabilities pk are assumed to be positive, the constraints of
problem (6.1) can be also written as the equations pkðxk � zÞ ¼ 0. This
suggests the following Lagrangian for problem (6.1),

Lðx1, . . . ,xK , z, �1, . . . , �K Þ :¼
XK
k¼1

pkFðxk,!kÞ þ
XK
k¼1

pk�
T
k ðxk � zÞ,

ð6:2Þ
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where �k 2 R
n, k ¼ 1, . . . ,K , are called Lagrange multipliers. The problem

(6.1) can be represented as the min–max problem

Min
x1,..., xK , z

sup
�1,..., �K

Lðx1, . . . ,xK , z, �1, . . . , �K Þ

	 �
: ð6:3Þ

Its dual problem is obtained by interchanging the order of the Min and
Max operators. Since the infimum of the Lagrangian over z is �1 unlessPK

k¼1 pk�k ¼ 0, this leads to the following dual of the problem (6.1):

Max�1,..., �K infx1,...,xK
XK
k¼1

pk Fðxk,!kÞ þ �
T
k xk

� �( )

subject to
XK
k¼1

pk�k ¼ 0 ð6:4Þ

Note the separable structure of the above problem,14 that is

inf
x1,..., xK

XK
k¼1

pk Fðxk,!kÞ þ �
T
k xk

� �
¼
XK
k¼1

pk inf
xk

Fðxk,!kÞ þ �
T
k xk

� �� �
:

ð6:5Þ

We also have that

inf
xk

FkðxkÞ þ �
T
k xk

� �
¼ � sup

xk

ð��kÞ
Txk � FkðxkÞ

� �
¼ �F*

kð��kÞ,

where Fkð�Þ :¼ Fð�,!kÞ and F*
k is the conjugate of Fk. Therefore we can write

the dual problem (6.4) in the form

Max�1,..., �K �
XK
k¼1

pkF*
k ��kð Þ

( )
,

subject to
XK
k¼1

pk�k ¼ 0: ð6:6Þ

Problems (6.1) and (6.4) can be represented by employing the min–max and
max–min operators, respectively, applied to the Lagrangian. It follows that

14 One should be careful in writing equation (6.5) since some of the optimal values there can be þ1 or

�1, and adding þ1 and �1 should be avoided.
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the optimal value of the problem (6.1) is always greater than or equal to the
the optimal value of its dual problem (6.4). It is also not difficult to see this
directly. Indeed, for any �1, . . . , �K such that

PK
k¼1 pk�k ¼ 0 the following

inequality holds

inf
x1,...,xK

XK
k¼1

pkFðxk,!kÞ þ
XK
k¼1

pk�
T
k xk

( )
� inf

x
f ðxÞ ¼

XK
k¼1

pkFðx,!kÞ

( )
:

ð6:7Þ

The above inequality is obtained by restricting the search at the left hand
side to xk ¼ x, k ¼ 1, . . . ,K . Since (6.7) holds for any multipliers �k satisfying
constraint

PK
k¼1 pk�k ¼ 0, it follows that the optimal value of (6.4) is less than

or equal to the optimal value of (4.2).
In order to ensure that problems (6.1) and (6.4) have equal optimal values,

i.e., that there is no duality gap between (6.1) and (6.4), one needs a constraint
qualification condition. It is possible to deal with the duality gap problem by
employing various techniques of convex analysis. We outline below a
particular approach which is relatively elementary and easy to extend to
infinite dimensional cases.

By the min–max representation, there is no duality gap between (6.1) and
(6.4) and both problems have optimal solutions iff the Lagrangian has a saddle
point. That is, there is a feasible point ðx1, . . . , zÞ of problem (6.1) and a
feasible point ð�1, . . . , �K Þ of (6.4) such that Lð�, . . . , � , �1, . . . , �K Þ attains
its (unconstrained) minimum at ðx1, . . . , zÞ and Lðx1, . . . , z, � , . . . , �Þ attains
its maximum at ð�1, . . . , �K Þ. Equivalently, ðx1, . . . , z, �1, . . . , �K Þ is a saddle
point iff

xk ¼ z, k ¼ 1, . . . ,K;
XK
k¼1

pk�k ¼ 0, ð6:8Þ

and ðx1, . . . , xK Þ is an optimal solution of the (unconstrained) problem

Min
x1,...,xK

XK
k¼1

pkFðxk,!kÞ þ
XK
k¼1

pk�
T

k xk

( )
: ð6:9Þ

In that case z is an optimal solution of (4.2) (or, equivalently, of (4.1)) and
ð�1, . . . , �K Þ is an optimal solution of (6.4). Since problem (6.9) is separable,
ðx1, . . . , xK Þ is an optimal solution of problem (6.9) iff

xk 2 arg min
xk

Fðxk,!kÞ þ �
T

k xk

n o
, k ¼ 1, . . . ,K: ð6:10Þ
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The functions Fð�,!kÞ are assumed to be convex, so condition (6.10)
holds iff �k 2 �@Fðxk,!kÞ, k ¼ 1, . . . ,K . Therefore ðx0, . . . ,x0, �1, . . . , �K Þ is
a saddle point of the Lagrangian iff

�k 2 �@Fðx0,!kÞ, k ¼ 1, . . . ,K, and
XK
k¼1

pk�k ¼ 0: ð6:11Þ

Theorem 38. Suppose that the set X and the functions Fð�,!kÞ, k ¼ 1, . . . ,K,
are convex. Then the following holds. (i) Points x0 and ð�1, . . . , �K Þ are optimal
solutions of problems (4.1) and (6.4), respectively, and there is no duality gap
between these problems if and only if condition (6.11) is satisfied. (ii) Problems
(4.1) and (6.4) have optimal solutions and there is no duality gap between these
problems if and only if there exists a point x0 such that

0 2
XK
k¼1

pk@Fðx0,!kÞ: ð6:12Þ

(iii) Problems (4.1) and (6.4) have optimal solutions and there is no duality gap
between these problems if problem (4.1) has an optimal solution x0, the function f
is proper and the regularity condition (4.3) is satisfied.

Proof. By the discussion preceding the theorem, ðx0, . . . ,x0, �1, . . . , �K Þ is a
saddle point of the Lagrangian iff condition (6.11) is satisfied. This proves
assertion (i). Since it is assumed that all pk are positive, condition (6.12) is
equivalent to existence of �k satisfying (6.11). Note that (6.12) implies that all
functions Fð�,!kÞ are subdifferentiable at x0 and hence Fðx0,!kÞ is finite, and
consequently f ðx0Þ is finite. Assertion (ii) then follows. By the Moreau–
Rockafellar Theorem, if the regularity condition (4.3) is satisfied and
x0 2 dom f , then

@f ðx0Þ ¼
XK
k¼1

pk@Fðx0,!kÞ: ð6:13Þ

Moreover, if x0 is an optimal solution of (4.1), then 0 2 @f ðx0Þ, and hence
assertion (iii) follows from (ii). u

The above results can be formulated in the following form. Consider the
problem

Min
xð!Þ2X

E Fðxð!Þ,!Þ þ �ð!ÞTxð!Þ
� �

: ð6:14Þ
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Here xð�Þ : �! R
n is a mapping, the constraint xð!Þ 2 X is assumed to

hold for every ! 2 �, and �ð�Þ : �! R
n is such that E½�ð!Þ� ¼ 0. Since it is

assumed that � is finite, mappings xð!Þ and �ð!Þ can be identified with vectors
ðx1, . . . , xK Þ and ð�1, . . . , �K Þ, respectively. Therefore, problem (6.14) is
the same as problem (6.9) (for �k ¼ �k). By Theorem 38, if the set X and the
functions Fð�,!kÞ, k ¼ 1, . . . ,K , are convex, x0 is an optimal solution of the
problem (4.1), the function f is proper and the regularity condition (4.3) is
satisfied, then there exists �ð!Þ such that E½�ð!Þ� ¼ 0 and xð!Þ:x0 is an
optimal solution of (6.14).

We can also investigate dual problems (6.1) and (6.4) in the framework of
conjugate duality. Let vð	Þ be the optimal value of the problem

Minx1,...,xK , z
XK
k¼1

pkFðxk,!kÞ,

subject to pkðxk � zÞ þ 	k ¼ 0, k ¼ 1, . . . ,K , ð6:15Þ

where 	 ¼ ð	1, . . . , 	K Þ and 	k 2 R
n, k ¼ 1, . . . ,K , are viewed as parameters

giving perturbations of problem (6.1). Clearly, for 	 ¼ 0 problem (6.15)
coincides with problem (6.1), and vð0Þ is the optimal value of (6.1). It is
straightforward to verify that the function vð	Þ is convex and its conjugate is

v*ð�Þ ¼ sup
XK
k¼1

�Tk yk�
XK
k¼1

pkFðxk,!kÞ :pkðxk�zÞþ	k¼0, k¼1,. . .,K

( )

¼ sup �
XK
k¼1

pk�
T
k ðxk � zÞ �

XK
k¼1

pkFðxk,!kÞ

( )

¼ �inf
XK
k¼1

pkFðxk,!kÞ þ
XK
k¼1

pk�
T
k ðxk � zÞ

( )
:

Consequently the dual problem (6.4) coincides with the problem of
maximization of �v*ð�Þ. That is, the optimal value of the dual problem is
equal to v**ð0Þ. By the theory of conjugate duality (see Section 9.2 in the
Appendix) we have the following results.

Proposition 39. Suppose that the set X and the functions Fð�,!kÞ, k ¼ 1, . . . ,K,
are convex. Then the following holds. (i) Suppose that the problem (6.1) is
subconsistent. Then there is no duality gap between problems (4.1) and (6.4)
if and only if the optimal value function vð	Þ is lower semicontinuous at 	 ¼ 0.
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(ii) There is no duality gap between problems (4.1) and (6.4) and the dual
problem (6.4) has a nonempty set of optimal solutions if and only if vð	Þ is
subdifferentiable at 	 ¼ 0. (iii) There is no duality gap between problems (4.1)
and (6.4) and the dual problem (6.4) has a nonempty and bounded set of
optimal solutions if and only if vð0Þ is finite and 0 2 intðdom vÞ. (iv) If the
dual problem (6.4) has a nonempty and bounded set of optimal solutions, then
vð	Þ is continuous at 	 ¼ 0 and there is no duality gap between problems (4.1)
and (6.4).

Remark 40. In the case of polyhedral problem (2.34)–(2.35) we have that
Fðx,!Þ ¼ f1ðxÞ þQðx,!Þ, where Qðx,!Þ is the optimal value of the second
stage problem (2.35). In that case problems (4.1) and (6.4) form a pair of dual
linear programming problems, and hence there is no duality gap between these
problems unless both of them are infeasible. Moreover, if the (common)
optimal value of the primal and dual problems is finite, then both problems
have nonempty sets of optimal solutions. That is, in the polyhedral case with a
finite number of scenarios, there is no need for additional regularity
conditions for the strong duality relation to hold.

Example 41 (Betting on Horses). There are n horses in a race. For every horse
i we know the probability pi that it wins and the amount si that the rest of the
public is betting on it. The track keeps a certain proportion C 2 ð0, 1Þ of the
total amount bet and distributes the rest among the public in proportion to
the amounts bet on the winning horse. We want to place bets totaling b dollars
to maximize the expected net return.

Let us denote by xi the amount bet on horse i. There are n scenarios
!1, . . . ,!n in this problem, with scenario !k representing the event that horse k
wins the race. Then that the amount FkðxÞ ¼ Fðx,!kÞ gained in scenario k is

FkðxÞ ¼ Axk=ðxk þ skÞ,

where A :¼ ð1� CÞðbþ
Pn

i¼1 siÞ is the total sum to be split. We can now write
the corresponding optimization problem as follows:

Max
x

A
Xn
k¼1

pkxk

xk þ sk
ð6:16Þ

s:t:
Xn
i¼1

xi ¼ b, ð6:17Þ

x � 0: ð6:18Þ
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In the extended formulation (6.1) we have separated decision vectors
xk ¼ ðxk1, . . . , x

k
nÞ for each scenario k ¼ 1, . . . , n. The problem takes on the

form

Max A
Xn
k¼1

pkx
k
k

xkk þ sk
ð6:19Þ

s:t:
Xn
i¼1

xk
i ¼ b, k ¼ 1, . . . , n, ð6:20Þ

xk � 0, k ¼ 1, . . . , n, ð6:21Þ

xk ¼ z, k ¼ 1, . . . , n: ð6:22Þ

Without the nonaticipativity constraints (6.22) this would mean
the comfortable situation of knowing the winning horse before placing the
bet. The optimal solution would be then, of course, xkk ¼ b, and xki ¼ 0 for
i 6¼ k.

Note that FkðxÞ ¼ Að1� sk=ðxk þ skÞÞ, and hence functions Fk are concave
on R

n
þ, and therefore, since we deal here with a maximization problem, (6.19)–

(6.22) is a convex problem. Clearly its feasible set is nonempty and bounded,
and hence it has an optimal solution. Since, in fact, functions Fk are strictly
concave, problem (6.19)–(6.22) possesses a unique optimal solution. Of
course, similar remarks apply to problem (6.16)–(6.18) as well. Moreover,
under small perturbations of the nonanticipativity constraints (6.22) it
remains feasible, and hence by Proposition 39 (iii) we have that the dual of
(6.19)–(6.22) has a nonempty and bounded set of optimal solutions and there
is no duality gap between these problems. In the present case we will be able to
write these optimal solutions explicitly.

Suppose that a ‘friend’ with inside information offers us ‘protection’ against
the uncertainty inherent in betting on horses. He offers to provide us with a
table of payments �ki , k, i ¼ 1, . . . , n, such that in the event that horse k wins
we shall pay him the amount �ki xi for each horse i, proportionally to the
amount xi bet on this horse. The payments �ki can be negative (in which case
he pays us), and in fact

XN
k¼1

pk�
k
i ¼ 0, i ¼ 1, . . . , n, ð6:23Þ

so that the expected cost of the deal is zero. If we shall enter the deal, he will
tell us which horse is going to win.
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It is intuitively clear that getting such information at the average cost zero
should give us a certain advantage. And, indeed, in that case we could
optimize our behavior by solving for k ¼ 1, . . . ,K the problems

Max
xk

A
xkk

xkk þ sk

 �
� ð�kÞTxk ð6:24Þ

s:t:
Xn
i¼1

xki ¼ b, ð6:25Þ

xk � 0: ð6:26Þ

The expectation of the optimal values of the above problems (6.24)–(6.26)
represents the value of the dual problem for the agreed choice of the costs
(i.e., multipliers) �ki . Consequently, by the weak duality we have that this
expectation is always greater than or equal to the optimal value of the
problem (6.16)–(6.18). That is, in such a deal we expect on average to gain an
additional nonnegative amount of money. In particular, if all �ki are zeros, i.e.,
the information is given to us free of charge, then the expected value of our
additional gain is equal to the expected value of perfect information (see
Chapter 1 for a discussion of EVPI).

Suppose now that our ‘friend’ makes his own optimization by choosing �ki
to minimize our expected gain. Thus he minimizes the dual value subject to the
constraints (6.23), i.e., the multipliers �ki form an optimal solution of the dual
problem. It turns out that in this case the deal will not help us at all. Since in
the present example there is no duality gap between the optimal values of the
primal and dual problems, for the optimal choice of �ki the expected value of
the additional gain is zero, and the optimal solution of the original problem
(6.16)–(6.18) provides the optimal solution of every problem (6.24)–(6.26),
k ¼ 1, . . . , n, of the well-informed. By the strict concavity, the opposite is true,
too: the optimal solutions of (6.24)–(6.26), k ¼ 1, . . . , n, form the optimal
solution of (6.16)–(6.18).

In other words, knowing the winning horse is not harmful, so the expected
optimal value of problems (6.24)–(6.26), in view of (6.23), is at least as good as
the optimal value of our original problem. If the multipliers �ki are chosen in
the optimal way, these values become equal, and this is the essence of duality
in this case.

We can find the optimal solution x̂x and the payment table � by the
following argument. Denoting by 
 the multiplier associated with the budget
constraint (6.17), we see that the optimal solution has the form

x̂xi ¼ max 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Apisi=


p
� si


 �
, i ¼ 1, . . . , n:
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Ordering the horses (and scenarios) in such a way that p1=s1 �
p2=s2 � . . . � pn=sn we see that there must exist l such that

x̂xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Apisi=

p

� si, i ¼ 1, . . . , l,
0, otherwise:

	

Since the budget b must be used, we can find l as the smallest integer for
which

ffiffiffiffi
pl

sl

r
>

Pl
i¼1

ffiffiffiffiffiffiffi
pisi
p

bþ
Pl

i¼1 si
�

ffiffiffiffiffiffiffiffi
plþ1

slþ1

r
:

Note that the left inequality holds for l ¼ 1. If such an integer does not
exist, we set l ¼ n. In any case


 ¼
A
Pl

i¼1

ffiffiffiffiffiffiffi
pisi
p


 �2
bþ

Pl
i¼1 si


 �2
We leave to the reader the elementary manipulations that support these

results. Then we get

�ki ¼
�
 if i 6¼ k,
�
þ 
=pk if i ¼ k:

	

It turns out that the (optimal) payment table �ki has a very special form.
Our friend pays us up front the amount 
b. We have to bet the amount b the
way we wish. In return we promise to pay him 
xk	=pk	 , where k* is the
winning horse. If we enter this deal, he will tell us what k* will be. It will not
help us at all. Our bets will be the same as if we did not know it.

Let us consider now the general case where the probability space � is not
necessarily finite. Recall that the constraint x 2 X can be absorbed into the
objective function, and hence problem (4.1) can be written in form (4.2).
Problem (4.2), in turn, can be formulated in the following equivalent form

Minxð�Þ2M, z2Rn E Fðxð!Þ,!Þ
� �

,

subject to xð!Þ ¼ z, a:e: ! 2 �: ð6:27Þ

Since, in fact, optimization in the above problem is performed over
constant mappings xð!Þ, the setM can be any space of measurable mappings
x : �! R

n such that the expectation in (6.27) is well defined. The choice of
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the spaceM affects, however, the corresponding duality relations. It appears
natural to take M to be the space of all measurable mappings xð!Þ.
Unfortunately, this may create problems with the definition of the expectation
of the functions Fðxð!Þ,!Þ and �ð!ÞTxð!Þ. Therefore, it is convenient to
restrict the space M to essentially bounded15 mappings. That is, we
assume that M :¼ Ln1ð�,F ,PÞ, where Ln1ð�,F ,PÞ is the linear space of
essentially bounded measurable mappings x : �! R

n. We assume in the
subsequent analysis that the expectation E ½Fðxð!Þ,!Þ� is well defined for all
xð�Þ 2 Ln1ð�,F ,PÞ. Note that if xð�Þ 2 Ln1ð�,F ,PÞ and16 �ð�Þ 2 Ln1ð�,F ,PÞ,
then E ½�ð!ÞTxð!Þ� is well defined and finite. When it will not cause a confusion
we will use subsequently the shortened notation Ln1 ¼ L

n
1ð�,F ,PÞ and

L
n
1 ¼ L

n
1ð�,F ,PÞ:

With problem (6.27) is associated the Lagrangian

Lðx, z, �Þ :¼ E Fðxð!Þ,!Þ þ �ð!ÞT ðxð!Þ � zÞ
� �

, ð6:28Þ

where ðx, zÞ 2 Ln1 �R
n and � 2 Ln1. By minimizing this Lagrangian with

respect to xð�Þ and z and maximizing with respect to �ð�Þ we obtain the
following dual of the problem (6.27):

Max�ð�Þ2Ln1 infx2Ln1E ½Fðxð!Þ,!Þ þ �ð!Þ
Txð!Þ�

� �
,

subject to E ½�ð!Þ� ¼ 0: ð6:29Þ

We have that a point ðx, z, �Þ 2 Ln1 �R
n
� L

n
1 is a saddle point of the

Lagrangian iff

xð!Þ ¼ z, a:e: ! 2 �, and E �ð!Þ
� �

¼ 0, ð6:30Þ

and

x 2 arg min E½Fðxð!Þ,!Þ þ �ð!ÞTxð!Þ� : x 2 Ln1
� �

: ð6:31Þ

Let us observe that condition (6.31) can be equivalently expressed as

z 2 arg min Fðz,!Þ þ �ð!ÞTz : z 2 R
n

� �
, a:e: ! 2 �: ð6:32Þ

15 A function xð!Þ is called essentially bounded if there exists a constant c such that jjxð!Þjj � c for a.e.

! 2 �.
16
Ln1ð�,F ,PÞ denotes the linear space of measurable mappings y : �! R

n such thatR
� jjyð!ÞjjdPð!Þ < þ1.
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Indeed, for a constant w.p.1 mapping xð!Þ:z, condition (6.31) is satisfied
iff for any x ð�Þ 2 Ln1 the inequality

Fðxð!Þ,!Þ þ �ð!ÞTxð!Þ � Fðz,!Þ þ �ð!ÞTz

holds w.p.1. This, in turn, is equivalent to (6.32).
Since Fð�,!Þ is convex w.p.1, condition (6.32) is equivalent to

�ð!Þ 2 �@Fðz,!Þ, a:e: ! 2 �: ð6:33Þ

Therefore, we obtain that a point ðx, z, �Þ 2 Ln1 �R
n � Ln1 is a saddle point

of the Lagrangian iff conditions (6.30) and (6.33) hold. Suppose, further, that
the function Fðx,!Þ is random lower semicontinuous, and hence the
expectation

E½@Fðz,!Þ� ¼

Z
�

@Fðz,!Þ dPð!Þ

is well defined. Then, by the definition of the integral of a multifunction, (6.33)
and the second equation of (6.30) imply that

0 2 E½@Fðz,!Þ�: ð6:34Þ

Conversely, if (6.34) holds, then there exists � 2 Ln1 satisfying (6.33) and
(6.30). Therefore, the Lagrangian, given in (6.28), has a saddle point iff there
exists z 2 R

n satisfying condition (6.34). We can formulate this results in the
following form.

Proposition 42. Suppose that the set X is convex, for a.e. ! 2 � the function
Fð�,!Þ is convex, and the function Fðx,!Þ is random lower semicontinuous. Then
there is no duality gap between problems (4.1) and (6.29) and both problems have
optimal solutions if and only if there exists z 2 R

n satisfying condition (6.34).

Recall that the inclusion E ½@Fðz,!Þ� � @f ðzÞ always holds. Therefore,
condition (6.34) implies that 0 2 @f ðzÞ, and hence z is an optimal solution of
(4.1). Conversely, if z is an optimal solution of (4.1), then 0 2 @f ðzÞ, and hence
if in addition E ½@Fðz,!Þ� ¼ @f ðzÞ, then (6.34) follows. Therefore, Theorem 9
and Proposition 42 imply the following result.

Theorem 43. Suppose that: (i) the function Fðx,!Þ is random lower
semicontinuous, (ii) for a.e. ! 2 � the function Fð�,!Þ is convex, (iii) the set
X is convex, (iv) problem (4.1) possesses an optimal solution x0 such that
x0 2 intðdom f Þ. Then there is no duality gap between problems (4.1) and (6.29),
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the dual problem (6.29) has an optimal solution �, and the constant mapping
xð!Þ:x0 is an optimal solution of the problem

Min
xð�Þ2Ln1

E Fðxð!Þ,!Þ þ �ð!ÞTxð!Þ
� �

: ð6:35Þ

Proof. Since x0 is an optimal solution of (4.1) we have that x0 2 X and f ðx0Þ
is finite. Moreover, since x0 2 intðdom f Þ and f is convex, it follows
that f is proper and Ndom f ðx0Þ ¼ f0g. Therefore, it follows by Theorem 9
that @f ðx0Þ ¼ E @Fðx0,!Þ½ �. Furthermore, since x0 2 intðdom f Þ we have that
@f ðx0Þ ¼ @f ðx0Þ þNX ðx0Þ. Consequently, 0 2 E @Fðx0,!Þ

� �
, and hence the

assertions follow by Proposition 42. u

It is also possible to investigate dual problems (4.1) and (6.29) in the
framework of conjugate duality. However, since we deal here with infinite
dimensional spaces like Ln1ð�,F ,PÞ, this would require an application of
functional analysis which will go beyond the scope of this book.

One can note again the separable structure of the problem (6.35). For each
! 2 �,

inf
x2Rn

Fðx,!Þ þ �Tx
� �

¼ �F*ð��,!Þ,

where F*ð�,!Þ is the conjugate of the function Fð�,!Þ. For a given
� 2 Ln1ð�,F ,PÞ, denote by M� ¼M�ð�,F ,Rn

Þ the space of all measurable
mappings x : �! R

n such that the expectation E ½Fðxð!Þ,!Þ þ �ð!ÞTxð!Þ� is
well defined. By Proposition 5 of Chapter 1, the infimum with respect to
x 2 M�ð�,F ,Rn

Þ can be taken inside the expected value, that is

inf
xð�Þ2M�

E Fðxð!Þ,!Þ þ �ð!ÞTxð!Þ
� �

¼ E �F*ð��ð!Þ,!Þ
� �

, ð6:36Þ

provided that Fðx,!Þ (and hence Fðx,!Þ) is random lower semicontinuous
and the expectation of the minimal value is well defined. The space
M�ð�,F ,Rn

Þ in the optimization problem at the left hand side of (6.36)
can be replaced by, possibly smaller, space Ln1ð�,F ,Rn

Þ if this optimization
problem has an optimal (nearly optimal) solution which is essentially
bounded. This happens, for example, if the set X is bounded. In that case
the dual problem (6.29) can be written in the form

Max�ð�Þ2Ln1 E �F
*ð��ð!Þ,!Þ

� �
,

subject to E½�ð!Þ� ¼ 0: ð6:37Þ
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7 Duality for multistage stochastic programs

Let us consider again the multistage stochastic programming problem (3.2).
Unless stated otherwise we assume in this section that the distribution of � has
a finite support and the functions ftð�, �Þ are random polyhedral, i.e., the
problem (3.2) is polyhedral.

The first approach introduces Lagrange multipliers �t, t ¼ 1, . . . ,T ,
associated with the constraints of (3.2) and the Lagrangian

Lðx,�Þ :¼ E

XT
t¼1

h
ftðxt, �tÞ þ �

T
t ðbtð�tÞ � Attð�tÞxt � At, t�1ð�tÞxt�1Þ

i( )

¼ E

XT
t¼1

h
ftðxt, �tÞ��

T
t Attð�tÞxt��

T
tþ1Atþ1, tð�tþ1Þxtþ�

T
t btð�tÞ

i( )
,

ð7:1Þ

with the convention that x0¼ 0 and the terms involving T þ 1 are zeros. The
multipliers �t, similarly to the decisions xt, may depend on �½1, t�, but not on
�tþ1, . . . , �T . That is, xt ¼ xtð�½1, t�Þ and �t ¼ �tð�½1, t�Þ are viewed as functions of
�½1, t�.

The dual functional is defined as

Dð�Þ :¼ inf
x2M

E Lðx,�Þ½ �, ð7:2Þ

where M is an appropriate functional space of allowable mappings
xð�Þ ¼ ðx1ð�Þ, . . . , xT ð�ÞÞ. Since, for given �, the Lagrangian Lð�,�Þ is separable
in xtð�Þ, we can move the operation of minimization with respect to xt under
the conditional expectation Eð�j�½1, t�Þ (see Proposition 5 of Chapter 1).
Therefore, we obtain

Dð�Þ ¼ E

XT
t¼1

inf
xt2R

nt
ftðxt, �tÞ��

T
t Attð�tÞxt�E �

T
tþ1Atþ1, tð�tþ1Þj�½1, t�

� �
xt

� �( )

þ E

XT
t¼1

�Tt btð�tÞ

( )
:

It follows that

Dð�Þ ¼ E

XT
t¼1

Dtð�t,�tþ1, �½1, t�Þ

( )
þ E

XT
t¼1

�Tt btð�tÞ

( )
,
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where

Dtð�t, �tþ1, �½1, t�Þ :¼ inf
xt2R

nt
ftðxt, �tÞ � �Tt Attð�tÞ

��
þE �Ttþ1Atþ1, tð�tþ1Þj�½1, t�
� ��

xt
�
: ð7:3Þ

The dual problem has the form

Max
�

Dð�Þ, ð7:4Þ

where the maximization is performed over such �tð�Þ which depend only on
�½1, t�, t ¼ 1, . . . ,T .

Since we assume here that there is a finite number of scenarios, the
allowable mappings xtð�Þ and �tð�Þ can be identified with finite dimensional
vectors. Moreover, since we deal with the polyhedral case, both primal and
dual problems can be written as large linear programming problems.
Therefore, the following duality result is a consequence of the general theory
of linear programming.

Theorem 44. The optimal values of problems (3.2) and (7.4) are equal unless
both problems are infeasible. If the (common) optimal value of these problems is
finite, then both problems have optimal solutions.

If the functions ftð�, �tÞ are convex (not necessarily polyhedral), a constraint
qualification like (4.3) is needed to ensure that there is no duality gap between
problems (3.2) and (7.4).

The form of the dual problem is particularly simple in the case of the linear
multistage problem (3.1). Indeed, let

ftðxt, �tÞ :¼
cTt ð�tÞxt, if xt � 0,

þ1, otherwise:

(

Then the infimum in (7.3) is �1, unless

Attð�tÞ
T�t þ E Atþ1, tð�tþ1Þ

T�tþ1j�½1, t�
� �

� ctð�tÞ,
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in which case the infimum is zero. Thus the dual problem (7.4) takes on the
form

Max
�

E

XT
t¼1

btð�tÞ
T�t

" #

s:t: Attð�tÞ
T�tþE Atþ1, tð�tþ1Þ

T�tþ1j�½1, t�
� �

�ctð�tÞ, t¼1, . . . ,T , ð7:5Þ

where for the uniformity of notation we set all ‘Tþ 1 terms’ equal to 0. The
multipliers �t in problem (7.5) are restricted to depend only on �½1, t�, that is,
they have to form a dual implementable policy.

For the dual problem (7.5) we can develop dynamic programming
equations, similarly to the primal problem (3.2). Let us consider the problem

Max
�t,..., �T

E

XT
�¼t

bT� ð��Þ��j�½1, t�

" #

s:t: A��ð��Þ
T��þE A�þ1, �ð��þ1Þ

T��þ1j�½1, ��
� �

�ctð��Þ, � ¼ t�1, . . . ,T , ð7:6Þ

In this problem, the values of �t�1 and of �½1, t� are assumed to be known.
We denote the optimal value of this problem by Stð�t�1, �½1, t�Þ. These values
are related for t ¼ 1, . . . ,T through the dual dynamic programming equation:
Stð�t�1, �½1, t�Þ is equal to the optimal value of the following problem

Max�t btð�tÞ
T�t þ E Stþ1ð�t, �½1, tþ1�Þj�½1, t�

� �
s:t: At�1, t�1ð�t�1Þ

T�t�1 þ E At, t�1ð�tÞ
T�tj�½1, t�1�

� �
� ct�1ð�t�1Þ, ð7:7Þ

where, for the uniformity of the notation, we assume that all terms involving
t¼ 0 are zero.

There is a duality relation between the primal cost-to-go functions
Qtðxt�1, �½1, t�Þ, defined in (3.3), and their dual counterparts Stð�t�1, �½1, t�Þ.

Theorem 45. A feasible policy x̂xtð�½1, t�Þ, t ¼ 1, . . . ,T, is optimal for (3.1) and a
dual feasible policy �̂�tð�½1, t�Þ, t ¼ 1, . . . ,T, is optimal for (7.5) if and only if for
every realization of � the following holds

Qt x̂xt�1ð�½1, t�1�Þ, �½1, t�
� �

¼ St �̂�t�1ð�½1, t�1�Þ, �½1, t�
� �

, t ¼ 1, . . . ,T :

There is another group of duality relations for multistage stochastic
programs, associated with the nonaticipativity constraints.

Let us consider problem (3.2) again, but let us assume now that each
decision xt may depend on all random data, �. Since � has finitely many
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realizations, �k, k ¼ 1, . . . ,K (attained with probabilities p1, . . . , pK ), we may
model our assumption by assigning a decision sequence,

xk ¼ ðxk1, . . . , x
k
T Þ,

to the k-th realization of �.17 The problem takes on the form

Min
PK
k¼1

pk

h
f1ðx

k
1,�

k
1Þþ f2ðx

k
2,�

k
2Þþ f3ðx

k
3,�

k
3Þþ . . . þ fT ðx

k
T ,�

k
T Þ

i
s:t: A11ð�

k
1Þx

k
1 ¼ b1ð�

k
1Þ,

A21ð�
k
2Þx

k
1þA22ð�

k
2Þx

k
2 ¼ b2ð�

k
2Þ,

A32ð�
k
3Þx

k
2þA33ð�

k
3Þx

k
3 ¼ b3ð�

k
3Þ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AT ,T�1ð�
k
T Þx

k
T�1þATT ð�

k
T Þx

k
T ¼ bT ð�

k
T Þ,

k¼ 1, . . . ,K:

ð7:8Þ

Although similar in appearance, this formulation is not equivalent to the
original problem (3.2), unless we introduce additional constraints that limit
the dependence of xt on � to the information that is available up to time t. As
discussed in Chapter 1, these conditions take the form of nonanticipativity
constraints,

xkt ¼ xjt for all k, j for which �
k
½1, t� ¼ �

j
½1, t�, t ¼ 1, . . . ,T : ð7:9Þ

This allows us to write problem (7.8)–(7.9) in a more abstract way. Define

f kðxkÞ ¼

PT
t¼1 ftðx

k
t , �

k
t Þ, if the constraints of ð7:8Þ are satisfied

for scenario k,
þ1 otherwise:

8<
:

Also, letW be the set of policies satisfying the nonanticipativity constraints
(7.9). We see thatW is a linear subspace of the set of all policies. The problem
can be now written in a lucid form

Min f ðxÞ :¼
XK
k¼1

pk f
kðxkÞ

( )
s:t: x 2 W: ð7:10Þ

17 To avoid collisions of subscripts we slightly change our notation and use superscripts to denote

realizations (scenarios).
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Clearly, f is a polyhedral function, so if this problem has a solution, the
optimality conditions and duality relations hold. Let us introduce the
Lagrangian associated with (7.10):

Lðx, �Þ :¼ f ðxÞ þ �, xh i: ð7:11Þ

The scalar product �,xh i is understood in the usual way, as

�,xh i :¼
Xk
k¼1

XT
t¼1

�kt , x
k
t

� �
:

Theorem 46. A policy x̂x 2 W is an optimal solution of (7.10) if and only if there
exist multipliers l̂l 2 W? such that

x̂x 2 arg min
x

Lðx, l̂lÞ: ð7:12Þ

Proof. The result follows from Proposition 32. Indeed, NW ðxÞ ¼ W
? for all

x 2 W. Denoting by l̂l the element of NWðx̂xÞ that appears in the optimality
conditions, we get

0 2 @Lðx̂x, l̂lÞ: ð7:13Þ

Since W is a linear space, this is necessary and sufficient for (7.12). u

Also, we can define the dual function

Dð�Þ :¼ min
x

Lðx, �Þ,

and the dual problem

Max
�2W?

Dð�Þ: ð7:14Þ

Theorem 47. The optimal values of problems (7.10) and (7.14) are equal unless
both problems are infeasible. If their (common) optimal value is finite, then both
problems have optimal solutions.

The crucial role in our approach is played by the requirement that � 2 W?.
Let us decipher this condition. For

� ¼ �kt
� �

t¼1,...,T , k¼1,...,K
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the condition � 2 W? is equivalent to

Xk
k¼1

XT
t¼1

�kt , x
k
t

� �
¼ 0 for all x 2 W:

Substituting

�k ¼ �k=pk, k ¼ 1, . . . ,K ,

we can write the last relation in a more abstract form as

E

XT
t¼1

�t, xth i

" #
¼ 0, for all x 2 W: ð7:15Þ

Since18 Etxt ¼ xt for all x 2 W, we obtain from (7.15) that

E

XT
t¼1

Et�t, xth i

" #
¼ 0, for all x 2 W,

which is equivalent to

Et�t ¼ 0, t ¼ 1, . . . ,T : ð7:16Þ

We can now rewrite our necessary conditions of optimality and duality
relations in a more explicit form. Let us re-define the Lagrangian (with a slight
abuse of notation)

Lðx,�Þ ¼ f ðxÞ þ E

XT
t¼1

�t, xth i

" #
,

the dual functional

Dð�Þ ¼ min
x

Lðx,�Þ,

18 In order to simplify notation we denote in the remainder of this section by Et the conditional

expectation conditional on �½1, t�.
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and the dual problem

Max Dð�Þ s:t: Et�t ¼ 0, t ¼ 1, . . . ,T : ð7:17Þ

Corollary 48. A policy x̂x 2 W is an optimal solution of (7.10) if and only if there
exist multipliers �̂� satisfying (7.16) such that

x̂x 2 arg min
x

Lðx, �̂�Þ: ð7:18Þ

Moreover, problem (7.10) has an optimal solution if and only if problem (7.17)
has an optimal solution. The optimal values of these problems are equal unless
both are infeasible.

An equivalent approach to formulating the dual problem is to use algebraic
expressions for the nonanticipativity constraints (7.9) and incorporate them
(with the corresponding multipliers) into the Lagrangian. For example, if we
write (7.9) as

Etxt ¼ xt, t ¼ 1, . . . ,T ,

we may formulate the Lagrangian

Lðx,�Þ ¼ f ðxÞ þ E

XT
t¼1

�t, xt � Etxth i

" #
,

the dual functional

Dð�Þ ¼ min
x

Lðx,�Þ,

and the dual problem

Max Dð�Þ: ð7:19Þ

There are no constraints on � in this dual problem. Since f is polyhedral
and the nonanticipativity conditions linear, Kuhn–Tucker optimality condi-
tions and duality relations hold for this formulation, similarly to Corollary 48,
but without additional constraints on � of form (7.16). However, these
constraints may be included into the dual problem without any loss of
optimality. To prove that, let us consider any dual solution � and define

�t ¼ �t � Et�t, t ¼ 1, . . . ,T :
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Clearly, it satisfies (7.16). Now, for any x we have

Lðx,�Þ � Lðx,�Þ ¼ E

XT
t¼1

Et�t,xt � Etxth i

" #

¼
XT
t¼1

E Et�t,xth i � E Et�t,Etxth ið Þ ¼ 0:

Consequently, @Lðx,�Þ ¼ @Lðx,�Þ, Dð�Þ ¼ Dð�Þ, so � can be substituted
for � in the optimality conditions and duality relations.

There are many different ways to express the nonanticipativity constraints
(7.9), and thus there are many equivalent ways to formulate the Lagrangian
and the dual problem. Some of them may be more convenient for some
computational methods, other may be more suitable for other methods. We
shall return to these issues in the sections devoted to numerical methods for
solving stochastic programming problems.

8 Min–max stochastic optimization

In practical applications the required probability distributions are either
estimated from available historical data or assigned by a subjective judgment.
Consequently, these distributions are never known exactly and to some extent
are also uncertain. We already briefly discussed that problem in Section 4 of
Chapter 1. In order to deal with the distribution uncertainty one can
formulate the following min–max analogue of problem (4.1):

Min
x2X

Max

2S

E
½Fðx,!Þ�: ð8:1Þ

Here S is a given set of probability measures (distributions), defined on a
sample space ð�,FÞ, and the notation E
 means that the expectation is taken
with respect to measure 
 2 S. Of course, if S :¼ fPg is a singleton, then the
above problem (8.1) coincides with problem (4.1). In this section we discuss
some basic properties of the min–max problem (8.1).

We assume that the sets X and S are nonempty, and that for every x 2 X
and 
 2 S, the expectation �ðx,
Þ :¼ E
½Fðx,!Þ� is well defined. Interchanging
the order of Min and Max operators, we obtain the following dual of the
problem (8.1):

Max

2S

Min
x2X

E
½Fðx,!Þ�: ð8:2Þ
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By the general theory of min–max duality we have that the optimal value of
(8.1) is always greater than or equal to the optimal value of (8.2).

The function �ðx,
Þ is linear in 
. Therefore, the max-value of
problem (8.1) is not changed if the set S is substituted by its convex hull
S* :¼ convðSÞ. This substitution may effect, however, the optimal value of
problem (8.2). We assume throughout this section that the set X is convex
and for every ! 2 �, the function Fð�,!Þ is convex. This implies, of course,
that the expectation function �ð�,
Þ is also convex for any 
 2 S. In order to
get a better insight into the problem let us discuss the following particular
cases.

Suppose that the set S is finite, say S :¼ fP1, . . . ,Plg. We already briefly
discussed that case in Section 4 of Chapter 1. Suppose also, for the sake of
simplicity, that the functions fiðxÞ :¼ EPi

½Fðx,!Þ�, i ¼ 1, . . . , l, are real valued
for all x 2 R

n. By the convexity assumption we have that these functions are
convex. Then the max-function

f0ðxÞ :¼ max
i2f1,..., lg

fiðxÞ

is also real valued and convex. Since functions fi, i ¼ 0, . . . , l, are real valued
and convex, these functions are continuous and subdifferentiable on R

n. We
have the following formula for the subdifferential of the max-function (see
Theorem 51 in the Appendix)

@f0ðxÞ ¼ conv [i2IðxÞ@fiðxÞ
� �

, ð8:3Þ

where

IðxÞ :¼ i : f0ðxÞ ¼ fiðxÞ, i ¼ 1, . . . , l
� �

is the set of active at x functions. By the optimality condition (4.5) we have19

that a point x 2 X is an optimal solution of the corresponding min–max
problem (8.1) iff there exist nonnegative multipliers �i, i 2 IðxÞ, such thatP

i2Ið x Þ �i ¼ 1 and

0 2
X
i2Iðx Þ

�i@fiðxÞ þNX ðxÞ: ð8:4Þ

19 Since it is assumed here that the function f ðxÞ is real valued, and hence its domain is Rn, constraint

qualification (4.4) holds automatically.
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By the Moreau–Rockafellar Theorem we also have that

X
i2Iðx Þ

�i@fiðxÞ ¼ @
X
i2IðxÞ

�i fiðxÞ

 !
:

Therefore, x is an optimal solution of the problem

Min
x2X

Ep* ½Fðx,!Þ�, ð8:5Þ

where P* :¼
P

i2IðxÞ �iPi: It also follows that ðx,P*Þ is a saddle point of the
corresponding min–max problem with the set S replaced by its convex hull
S* :¼ convðSÞ. We have here that there is no duality gap20 between problem
(8.1) and its dual

Max

2S*

Min
x2X

E
½Fðx,!Þ�, ð8:6Þ

and the set of optimal solutions of the dual problem (8.6) is nonempty. Note
that the optimal value of problem (8.2) can be smaller that the optimal value
of (8.6), and therefore it is essential here that the (finite) set S is replaced in
(8.6) by its convex hull S*.

Suppose now that the set � ¼ f!1, . . . ,!Kg is finite. Then a probability
measure (distribution) on � is defined by a vector P ¼ ð p1, . . . , pK Þ 2 R

K
þ

such that
PK

k¼1 pk ¼ 1. Let S � R
K
þ be a set of such vectors. Then the

corresponding min–max problem can be written as

Min
x2X

f0ðxÞ :¼ sup
P2S

XK
k¼1

pkFðx,!kÞ

( )
: ð8:7Þ

Suppose that the set S is convex and compact, the set X is convex and the
functions Fð�,!kÞ are convex real valued. We have then that the max-function
f0ðxÞ is convex real valued, and by Theorem 51,

@f0ðxÞ ¼ conv
[

P2S0ðxÞ

XK
k¼1

pk@Fðx,!kÞ

 !( )
, ð8:8Þ

20 The above derivations are based on existence of an optimal solution of (8.1). In the present case,

however, this is not essential for the ‘‘no duality gap’’ property to hold, which can be proved directly,

for example, by using the conjugate duality approach.
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where

S0ðxÞ :¼ arg max
P2S

XK
k¼1

pkFðx,!kÞ:

Note that the set S0ðxÞ is convex, nonempty and compact since the set S is
convex, nonempty and compact.

By the optimality condition (4.5) together with formula (8.8) we obtain that
ðx,P*Þ is a saddle point of the corresponding min–max problem iff x 2 X,
P* 2 S0ðxÞ and

0 2 @ EP	 ½Fðx,!Þ�ð Þ þNX ðxÞ: ð8:9Þ

We also have that a point x 2 X is an optimal solution of problem (8.7) iff
there exists P* 2 S0ðxÞ such that (8.9) holds. Therefore, if problem (8.7) has an
optimal solution, then its dual problem also has an optimal solution P*, there
is no duality gap between (8.7) and its dual, and the set of optimal solutions of
(8.7) coincides with the set of optimal solutions of the corresponding problem
(8.5).

The above analysis can be extended to the following general case of
a metric space � and its Borel sigma algebra B. Denote S0ðxÞ :¼
argmax
2SE
½Fðx,!Þ�.

Theorem 49. Let � be a metric space equipped with its Borel sigma algebra B, X
be a nonempty convex subset of R

n and S be a nonempty convex set of
probability measures on ð�,BÞ. Suppose that � is compact, for every x 2 R

n the
function Fðx, �Þ is continuous on �, and for every ! 2 � the function Fð�,!Þ is
real valued and convex on Rn. Then there is no duality gap between problem (8.1)
and its dual (8.2). Suppose, further, that the set S is closed in the weak topology
of the space of probability measures on ð�,BÞ, and the optimal value of problem
(8.1) is finite. Then the dual problem (8.2) has a nonempty set of optimal
solutions, and a point x 2 X is an optimal solution of (8.1) if and only if there
exists P* 2 S0ðxÞ such that x is an optimal solution of problem (8.5).

Proof. We outline a proof in the case where problem (8.1) has an optimal
solution. Since Fðx, �Þ is continuous and � is compact, the expectation
E
½Fðx,!Þ� is well defined for any ðx,
Þ 2 R

n
� S. Let us equip S with the

weak topology and consider function �ðx,
Þ :¼ E
½Fðx,!Þ�. We have that for
any 
 2 S the function �ð�,
Þ is convex and for any x 2 R

n the function �ðx, �Þ
is continuous on S. Since � is compact, we have by Prohorov’s theorem that
the topological closure of S is compact. We can assume that S is closed and
therefore is compact. It follows that the max-function f0ðxÞ :¼ sup
2S�ðx,
Þ is
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convex real valued. Let x be an optimal solution of problem (8.1). By
Theorem 51 (from the Appendix) we have that

@f0ðxÞ ¼ conv
[


2S0ð x Þ

@�ðx,
Þ

 !
: ð8:10Þ

This implies existence of a saddle point ðx,P*Þ, and hence the assertions of
the theorem follow. u

Suppose now that the set S is defined as the set of probability measures 

on ð�,BÞ satisfying the constraints

E
½ jð!Þ� ¼ bj, j ¼ 1, . . . ,m: ð8:11Þ

Here  1ð!Þ, . . . , mð!Þ are real valued measurable functions on ð�,BÞ and
b1, . . . , bm are given numbers. Then the problem

Max

2S

E
½Fðx,!Þ� ð8:12Þ

is called the problem of moments. By Theorem 60 (from the Appendix) we have
that it suffices to perform optimization in the above problem (8.12) over
probability measures with a finite support of at most s ¼ mþ 1 points. That
is, problem (8.12) is equivalent to the problem

Max
Xs
i¼1

piFðx,!iÞ

s:t:
Xs
i¼1

pi jð!iÞ ¼ bi, j ¼ 1, . . . ,m,

Xs
i¼1

pi ¼ 1, pi � 0, i ¼ 1, . . . , s, ð8:13Þ

where the maximum is taken with respect to P ¼ ð p1, . . . , psÞ and
!1, . . . ,!s 2 �.

9 Appendix

9.1 Differentiability and convex analysis

Consider a mapping g : Rn
! R

m. It is said that g is directionally dif-
ferentiable at a point x0 2 R

n in a direction h 2 R
n if the limit
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g0ðx0, hÞ :¼ lim
t#0

gðx0 þ thÞ � gðx0Þ

t
ð9:1Þ

exists, in which case g0ðx0, hÞ is called the directional derivative of gðxÞ at x0
in the direction h. If g is directionally differentiable at x0 in every
direction h 2 R

n, then it is said that g is directionally differentiable at x0.
Note that whenever exists, g0ðx0, hÞ is positively homogeneous in h, i.e.,
g0ðx0, thÞ ¼ tg0ðx0, hÞ for any t � 0. If gðxÞ is directionally differentiable at x0
and g0ðx0, hÞ is linear in h, then it is said that gðxÞ is Gâteux differentiable at x0.
(9.1) can be also written in the form

gðx0 þ hÞ ¼ gðx0Þ þ g0ðx0, hÞ þ rðhÞ, ð9:2Þ

where the remainder term r(h) is such that rðthÞ=t! 0, as t # 0, for any fixed
h 2 R

n. If, moreover, g0ðx0, hÞ is linear in h and the remainder term rðhÞ
is ‘uniformly small’ in the sense that rðhÞ=khk ! 0 as h! 0, then it is said
that gðxÞ is differentiable at x0 in the sense of Fréchet, or simply differentiable
at x0.

Clearly Fréchet differentiability implies Gâteux differentiability. The
converse of that is not necessarily true. However, for locally Lipschitz
continuous mappings both concepts do coincide. That is, if g(x) is Lipschitz
continuous in a neighborhood of x0 and directionally differentiable at x0,
then g(x) is directionally differentiable at x0 in the sense of Fréchet and
g0ðx0, �Þ is Lipschitz continuous on R

n. Recall that gðxÞ is said to be Lipschitz
continuous on a set X � R

n if there is a positive constant c such that
jjgðx1Þ � gðx2Þjj � cjjx1 � x2jj for all x1, x2 2 X .

Let C be a subset of R
n. It is said that x 2 R

n is an interior point of C
if there is a neighborhood N of x such that N � C. The set of interior points
of C is denoted intðC Þ. The convex hull of C, denoted convðCÞ, is the
smallest convex set including C. It is said that C is a cone if for any
x 2 C and t � 0 it follows that tx 2 C. The polar cone of a cone C � R

n is
defined as

C* :¼ z 2 R
n : zTx � 0, 8 x 2 C

� �
: ð9:3Þ

We have that the polar of the polar cone C** ¼ ðC*Þ* is equal to the
topological closure of the convex hull of C, and that C** ¼ C iff the cone C is
convex and closed.

Let C be a convex subset of Rn. The affine space generated by C is the space
of points in R

n of the form txþ ð1� tÞy, where x, y 2 C and t 2 R. It is said
that a point x 2 R

n belongs to the relative interior of the set C if x is an interior
point of C relative to the affine space generated by C, i.e., there exists a
neighborhood of x such that its intersection with the affine space generated by
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C is included in C. The relative interior set of C is denoted riðCÞ. Note that if
the interior of C is nonempty, then the affine space generated by C coincides
with R

n, and hence in that case riðCÞ ¼ intðCÞ. The normal cone to C at a point
x0 2 C is defined as

NCðx0Þ :¼ z : zT ðx� x0Þ � 0, 8 x 2 C
� �

: ð9:4Þ

The topological closure of the radial cone RCðx0Þ :¼ [t>0 ft
�1ðC � x0Þg is

called the tangent cone to C at x0, and denoted TCðx0Þ. Both cones TCðx0Þ and
NCðx0Þ are closed and convex, and each one is the polar cone of the other.

The support function of a set C � R
n is defined as

sðhÞ :¼ sup
z2C

zTh: ð9:5Þ

The support function sð�Þ is convex, positively homogeneous and lower
semicontinuous. If s1ð�Þ and s2ð�Þ are support functions of convex closed sets
A and B, respectively, then s1ð�Þ � s2ð�Þ iff A � B, and s1ð�Þ ¼ s2ð�Þ iff A ¼ B.

Consider an extended real valued function f : Rn
! R. The domain of f is

defined as dom f :¼ fx 2 R
n : f ðxÞ < þ1g. It is said that f is proper if its

domain is nonempty and f ðxÞ > �1 for all x 2 R
n. It is not difficult to show

that f is convex iff its epigraph epi f :¼ fðx, �Þ : f ðxÞ � �g is a convex subset
of Rnþ1.

Suppose now that f : Rn
! R is a convex function and x0 2 R

n is a point
such that f ðx0Þ is finite. Then f ðxÞ is directionally differentiable at x0, its
directional derivative f 0ðx0, �Þ is an extended real valued convex positively
homogeneous function and can be written in the form

f 0ðx0, hÞ ¼ inf
t>0

f ðx0 þ thÞ � f ðx0Þ

t
: ð9:6Þ

Moreover, if x0 is in the interior of the domain of f ð�Þ, then f ðxÞ is Lipschitz
continuous in a neighborhood of x0, the directional derivative f

0ðx0, hÞ is finite
valued for any h 2 R

n, and f ðxÞ is differentiable at x0 iff f 0ðx0, hÞ is linear in h.
It is said that a vector z 2 R

n is a subgradient of f ðxÞ at x0 if

f ðxÞ � f ðx0Þ � zT ðx� x0Þ, 8 x 2 R
n: ð9:7Þ

The set of all subgradients of f ðxÞ, at x0, is called the subdifferential
and denoted @f ðx0Þ. The subdifferential @f ðx0Þ is a closed convex subset of Rn.
It is said that f is subdifferentiable at x0 if @f ðx0Þ is nonempty. If f is
subdifferentiable at x0, then the normal cone Ndom f ðx0Þ, to the domain of f at
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x0, forms the recession cone of the set @f ðx0Þ. It is also clear that if f is
subdifferentiable at x0, then f ðxÞ > �1 for any x and hence f is proper.

By duality theory of convex analysis we have that if the directional
derivative f 0ðx0, �Þ is lower semicontinuous, then

f 0ðx0, hÞ ¼ sup
z2@f ðx0Þ

zTh, ð9:8Þ

i.e., f 0ðx0, �Þ is the support function of the set @f ðx0Þ. In particular, if x0 is an
interior point of the domain of f ðxÞ, then f 0ðx0, �Þ is continuous, @f ðx0Þ is
nonempty and compact and (9.8) holds. Conversely, if @f ðx0Þ is nonempty and
compact, then x0 is an interior point of the domain of f ðxÞ. Also f ðxÞ is
differentiable at x0 iff @f ðx0Þ is a singleton, i.e., contains only one element,
which then coincides with the gradient rf ðx0Þ.

Theorem 50 (Moreau–Rockafellar). Let fi : R
n
! R, i ¼ 1, . . . ,m, be proper

convex functions, f ð�Þ :¼ f1ð�Þ þ . . .þ fmð�Þ and x0 be a point such that fiðx0Þ
are finite, i.e., x0 2 \

m
i¼1dom fi Then

@f1ðx0Þ þ � � � þ @fmðx0Þ � @f ðx0Þ: ð9:9Þ

Moreover,

@f1ðx0Þ þ � � � þ @fmðx0Þ ¼ @f ðx0Þ ð9:10Þ

if any one of the following conditions holds: (i) the set \mi¼1riðdom fiÞ is
nonempty, (ii) the functions f1, . . . , fk, k � m, are polyhedral and the intersection
of the sets \ki¼1dom fi and \

m
i¼kþ1riðdom fiÞ is nonempty, (iii) there exists a point

x 2 dom fm such that x 2 intðdom fiÞ, i ¼ 1, . . . ,m� 1.

In particular, if all functions f1, . . . , fm in the above theorem are polyhedral,
then the equation (9.10) holds without an additional regularity condition.

The following result gives a description of subdifferentials of max-
functions. By clðAÞ we denote the topological closure of a set A � R

n.

Theorem 51 (Levin-Valadier). Let U be a compact topological space and
g : Rn

�U ! R be a real valued function. Suppose that: (i) for every u 2 U the
function guð�Þ ¼ gð�, uÞ is convex on Rn, (ii) for every x 2 R

n the function gðx, �Þ is
upper semicontinuous on U. Then the max-function f ðxÞ :¼ supu2Ugðx, uÞ is
convex real valued and

@f ðxÞ ¼ cl conv [u2U0ðxÞ@guðxÞ
� �� �

, ð9:11Þ
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where U0ðxÞ :¼ argmaxu2U gðx, uÞ.

Let us make the following observations regarding the above theorem. Since
U is compact and by the assumption (ii), we have that the set U0ðxÞ is
nonempty and compact. Since the function f ð�Þ is convex real valued, it is
subdifferentiable at every x 2 R

n and its subdifferential @f ðxÞ is a convex,
closed bounded subset of R

n. It follows then from (9.11) that the set
A :¼ [u2U0ðxÞ@guðxÞ is bounded. Suppose further that:

(iii) For every x 2 R
n the function gðx, �Þ is continuous on U.

Then the set A is closed, and hence is compact. Indeed, consider a sequence
zk 2 A. Then, by the definition of the set A, zk 2 @gukðxÞ for some sequence
uk 2 U0ðxÞ. Since U0ðxÞ is compact and A is bounded, by passing to a
subsequence if necessary, we can assume that uk converges to a point
u 2 U0ðxÞ and zk converges to a point z 2 R

n. By the definition of subgradients
zk we have that for any x0 2 R

n the following inequality holds

gukðx
0Þ � gukðxÞ � zTk ðx

0 � xÞ:

By passing to the limit in the above inequality as k!1, we obtain that
z 2 @guðxÞ. It follows that z 2 A, and hence A is closed. Now since convex hull
of a compact subset of Rn is also compact, and hence is closed, we obtain that
if the assumption (ii) in the above theorem is strengthened to the assumption
(iii), then the set inside the parentheses in (9.11) is closed, and hence formula
(9.11) takes the form

@f ðxÞ ¼ conv
[

u2U0ðxÞ

@guðxÞ

0
@

1
A: ð9:12Þ

Let f : Rn
! R be an extended real valued function. The conjugate function

of f is

f *ðzÞ :¼ sup
x2Rn

zTx� f ðxÞ
� �

: ð9:13Þ

The conjugate function f * : Rn
! R is always convex and lower

semicontinuous.

Theorem 52 (Fenchel–Moreau). Let f : Rn! R be a proper extended real
valued function. Then

f ** ¼ lscðconv f Þ: ð9:14Þ
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Here f ** denotes the conjugate of f * and conv f denotes the convex hull of f ,

ðconv f ÞðxÞ ¼ inff� : ðx,�Þ 2 convðepi f Þg,

i.e., conv f is the largest convex function majorized by f . Note that if
f ðxÞ ¼ �1 at some x 2 R

n, then f *ð�Þ:þ1 and f **ð�Þ:�1. It follows
from (9.14) if f is proper, then f ** ¼ f iff f is convex and lower semicontinuous.

It immediately follows from the definitions that

z 2 @f ðxÞ iff f *ðzÞ ¼ zTx� f ðxÞ:

By applying that to the function f **, instead of f , we obtain that
z 2 @f **ðxÞ iff f ***ðzÞ þ f **ðxÞ ¼ zTx. Now by the Fenchel–Moreau theorem
we have that f *** ¼ f *. Consequently, we obtain

@f **ðxÞ ¼ arg max
z2Rn

zTx� f *ðzÞ
� �

: ð9:15Þ

The following result about Lipschitz continuity of linear systems is known
as Hoffman’s lemma.

Theorem 53 (Hoffman). Consider the multifunctionMðbÞ :¼ fx 2 R
n : Ax � bg,

where A is a given m� n matrix. Then there exists a positive constant �,
depending on A, such that for any x 2 R

n and any b 2 domM,

distðx,MðbÞÞ � �kðAx� bÞþk: ð9:16Þ

The term21
kðAx� bÞþk, in the right hand side of (9.16), measures the

infeasibility of the point x.

9.2 Duality of optimization problems

Consider a real valued function L : X � Y ! R, where X and Y are
arbitrary sets. We can associate with the function Lðx, yÞ the following two
optimization problems:

Min
x2X

f ðxÞ :¼ sup
y2Y

Lðx, yÞ

( )
, ð9:17Þ

21 The operator ð�Þþ applied to a vector is taken componentwise.
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Max
y2Y

gðyÞ :¼ inf
x2X

Lðx, yÞ

	 �
, ð9:18Þ

viewed as dual to each other. We have that for any x 2 X and y 2 Y ,

gðyÞ ¼ inf
x02X

Lðx0, yÞ � Lðx, yÞ � sup
y02Y

Lðx, y0Þ ¼ f ðxÞ,

and hence the optimal value of problem (9.17) is greater than or equal to the
optimal value of problem (9.18). It is said that a point ðx, yÞ 2 X � Y is a
saddle point of Lðx, yÞ if

Lðx, yÞ � Lðx, yÞ � Lðx, yÞ, 8 ðx, yÞ 2 X � Y : ð9:19Þ

Proposition 54. The following holds: (i) The optimal value of problem (9.17) is
greater than or equal to the optimal value of problem (9.18). (ii) Problems
(9.17) and (9.18) have the same optimal value and each has an optimal solution if
and only if there exists a saddle point ðx, yÞ. In that case x and y are optimal
solutions of problems (9.17) and (9.18), respectively. (iii) If problems (9.17) and
(9.18) have the same optimal value, then the set of saddle points coincides with
the Cartesian product of the sets of optimal solutions of (9.17) and (9.18).

In applications of the above results to optimization problems with
constraints, the function Lðx, yÞ usually is the Lagrangian of the problem and
y is a vector of Lagrange multipliers.

An alternative approach to duality, referred to as conjugate duality, is the
following. Consider an extended real valued function  : Rn

�R
m
! R. Let

#ðyÞ be the optimal value of the parameterized problem

Min
x2Rn

 ðx, yÞ, ð9:20Þ

i.e., #ðyÞ :¼ infx2Rn ðx, yÞ. Note that implicitly the optimization in the above
problem is performed over the domain of the function  ð�, yÞ, i.e., dom ð�, yÞ
can be viewed as the feasible set of problem (9.20).

The conjugate of the function #ðyÞ can be expressed in terms of the
conjugate of  ðx, yÞ. That is, the conjugate of  is

 *ðx*, y*Þ :¼ sup
ðx, yÞ2Rn�Rm

n
ðx*ÞTxþ ðy*ÞTy�  ðx, yÞ

o
,
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and hence the conjugate of # can be written as

#*ðy*Þ :¼ supy2Rm ð y*ÞTy� #ð yÞ
� �

¼ supy2Rm ð y*ÞTy� infx2Rn ðx, yÞ
� �

¼ supðx, yÞ2Rn
�R

m ð y*ÞTy�  ðx, yÞ
� �

¼  *ð0, y*Þ:

Consequently, the conjugate of #* is

#**ð yÞ ¼ sup
y*2R

m
ð y*ÞTy�  *ð0, y*Þ
� �

: ð9:21Þ

This leads to the following dual of (9.20):

Max
y*2R

m
ð y*ÞTy�  *ð0, y*Þ
� �

: ð9:22Þ

In the above formulation of problem (9.20) and its (conjugate) dual (9.22)
we have that #ð yÞ and #**ð yÞ are optimal values of (9.20) and (9.22),
respectively. We also have by the Fenchel–Moreau Theorem that either #**ð�Þ
is identically �1, or

#**ðyÞ ¼ lscðconv #ÞðyÞ, 8 y 2 R
m: ð9:23Þ

It follows that #**ð yÞ � #ð yÞ for any y 2 R
m. It is said that there is no

duality gap between (9.20) and its dual (9.22) if #**ð yÞ ¼ #ð yÞ.
Suppose now that the function  ðx, yÞ is convex (as a function of

ðx, yÞ 2 R
n �R

m). It is straightforward then to verify that the optimal value
function #ð yÞ is also convex, and hence conv#ð�Þ:#ð�Þ. It is said that the
problem (9.20) is subconsistent, for a given value of y, if lsc#ð yÞ < þ1. If
problem (9.20) is feasible, i.e., dom ð�, yÞ is nonempty, then #ð yÞ < þ1, and
hence (9.20) is subconsistent.

Proposition 55. Suppose that the function  ð�, �Þ is convex. Then the following
holds: (i) The optimal value function #ð�Þ is convex. (ii) If problem (9.20) is
subconsistent, then #**ð yÞ ¼ #ð yÞ if and only if the optimal value function #ð�Þ is
lower semicontinuous at y. (iii) If #**ð yÞ is finite, then the set of optimal
solutions of the dual problem (9.22) coincides with @#**ð yÞ. (iv) The set of
optimal solutions of the dual problem (9.22) is nonempty and bounded if and only
if #ðyÞ is finite and #ð�Þ is continuous at y.

A few words about the above statements are now in order. Assertion (ii)
follows by the Fenchel–Moreau Theorem. Assertion (iii) follows from formula
(9.15). If #ð�Þ is continuous at y, then it is lower semicontinuous at y, and
hence #**ð yÞ ¼ #ð yÞ. Moreover, in that case @#**ð yÞ ¼ @#ð yÞ and is nonempty
and bounded provided that #ð yÞ is finite. It follows then that the set of
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optimal solutions of the dual problem (9.22) is nonempty and bounded.
Conversely, if the set of optimal solutions of (9.22) is nonempty and bounded,
then, by (iii), @#**ð yÞ is nonempty and bounded, and hence by convex analysis
#ð�Þ is continuous at y. Note also that if @#ð yÞ is nonempty, then
#**ð yÞ ¼ #ð yÞ and @#**ð yÞ ¼ @#ð yÞ.

The above analysis can be also used in order to describe differentiability
properties of the optimal value function #ð�Þ in terms of its subdifferentials.

Proposition 56. Suppose that the function  ð�, �Þ is convex and let y 2 R
m be a

given point. Then the following holds: (i) The optimal value function #ð�Þ is
subdifferentiable at y if and only if #ð�Þ is lower semicontinuous at y and the dual
problem (9.22) possesses an optimal solution. (ii) The subdifferential @#ð yÞ is
nonempty and bounded if and only if #ð yÞ is finite and the set of optimal
solutions of the dual problem (9.22) is nonempty and bounded. (iii) In both above
cases @#ð yÞ coincides with the set of optimal solutions of the dual problem (9.22).

Since #ð�Þ is convex, we also have that @#ðyÞ is nonempty and bounded iff
#ð yÞ is finite and y 2 intðdom#Þ. The condition y 2 intðdom#Þ means the
following: there exists a neighborhood N of y such that for any y0 2 N the
domain of  ð�, y0Þ is nonempty.

As an example let us consider the following problem

Minx2X f ðxÞ

subject to giðxÞ þ yi � 0, i ¼ 1, . . . ,m, ð9:24Þ

where X is a subset of R
n, f ðxÞ and giðxÞ are real valued functions, and

y ¼ ðy1, . . . , ymÞ is a vector of parameters. We can formulate this problem in
the form (9.20) by defining

 ðx, yÞ :¼ f ðxÞ þ FðGðxÞ þ yÞ,

where f ðxÞ :¼ f ðxÞ þ iX ðxÞ and Fð�Þ is the indicator function of the negative
orthant, i.e., FðzÞ :¼ 0 if zi � 0, i ¼ 1, . . . ,m, and FðzÞ :¼ þ1 otherwise, and
GðxÞ :¼ ðg1ðxÞ, . . . , gmðxÞÞ.

Suppose that the problem (9.24) is convex, that is, the set X and the
functions f ðxÞ and giðxÞ, i ¼ 1, . . . ,m, are convex. Then it is straightforward to
verify that the function  ðx, yÞ is also convex. Let us calculate the conjugate of
the function  ðx, yÞ,

 *ðx*, y*Þ ¼ supðx, yÞ2Rn
�R

m ððx*ÞTxþ ðy*ÞTy� f ðxÞ � FðGðxÞ þ yÞ
� �

¼ supx2Rn ððx*ÞTx� f ðxÞ � ðy*ÞTGðxÞ
�

þsupy2Rm ðy*ÞT ðGðxÞ þ yÞ � FðGðxÞ þ yÞ
� ��

:
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By change of variables z ¼ GðxÞ þ y we obtain that

sup
y2Rm
ðy*ÞT ðGðxÞ þ yÞ � FðGðxÞ þ yÞ
� �

¼ sup
z2Rm
ðy*ÞTz� FðzÞ
� �

¼ iRm
þ
ðy*Þ:

Therefore we obtain

 *ðx*, y*Þ ¼ sup
x2X
ðx*ÞTx� Lðx, y*Þ
� �

þ iRm
þ
ðy*Þ,

where Lðx, y*Þ :¼ f ðxÞ þ
Pm

i¼1 y*i giðxÞ, is the Lagrangian of the problem.
Consequently, the dual of the problem (9.24) can be written in the form

Max
��0

�Tyþ inf
x2X

Lðx, �Þ

	 �
: ð9:25Þ

Note that we changed the notation from y* to � in order to emphasize that
the above problem (9.25) is the standard Lagrangian dual of (9.24) with
� being vector of Lagrange multipliers. The results of Propositions 55 and 56
can be applied to problem (9.24) and its dual (9.25) in a straightforward way.

As another example consider the problem

Minx2X f ðxÞ

subject to giðxÞ þ hiðzÞ � 0, i ¼ 1, . . . ,m, ð9:26Þ

where X is a convex subset of R
n, f ðxÞ and giðxÞ are real valued convex

functions, and hiðzÞ are real valued convex functions of the parameter vector
z 2 R

l. By change of variables yi ¼ hiðzÞ, the above problem can be reduced to
the problem (9.24), and hence the optimal value vðzÞ of problem (9.26) is equal
to #ðHðzÞÞ, where #ð�Þ is the optimal value of problem (9.24) and
HðzÞ :¼ ðh1ðzÞ, . . . , hmðzÞÞ. Note that if y � y0, then the feasible set of problem
(9.24) corresponding to y0 is included in the feasible set corresponding to y,
and hence #ðyÞ � #ðy0Þ, i.e., #ð�Þ is componentwise nondecreasing function. It
follows that the optimal value function vðzÞ is convex, which is also not
difficult to show directly.

Suppose that the functions hiðzÞ, i ¼ 1, . . . ,m, are differentiable and
consider a point z 2 R

l. Then, since #ð�Þ is componentwise nondecreasing and,
by convexity of hiðzÞ, Hðzþ zÞ is componentwise greater than or equal to
HðzÞ þ rHðzÞz for any z 2 R

l, we have that for y :¼ HðzÞ and any y* 2 @#ð yÞ
the following inequalities hold

vðzþ zÞ ¼ #ðHðzþ zÞÞ � # HðzÞ þ rHðzÞzð Þ � vðzÞ þ ð y*ÞTrHðzÞz:

Ch. 2. Optimality and Duality in Stochastic Programming 135



It follows that rHðzÞTy* 2 @vðzÞ, or in other words that

rHðzÞT@#ð yÞ � @vðzÞ: ð9:27Þ

As a consequence of the above inclusion we obtain that if #ð�Þ is
subdifferentiable at y, then vð�Þ is subdifferentiable at z. If, moreover, the
constraint qualification

0 2 int HðzÞ þ rHðzÞRl � dom #
� �

ð9:28Þ

is satisfied, then it is possible to show that the inverse of the inclusion (9.28)
also holds, and hence in that case

rHðzÞT@#ð yÞ ¼ @vðzÞ: ð9:29Þ

The constraint qualification (9.28) holds, in particular, if the Jacobian
matrix rHðzÞ has full row rank m, or if y ¼ HðzÞ belongs to the interior of the
domain of #. Note that dom# is formed by such vectors y that the
corresponding problem (9.24) is feasible.

9.3 Probability and measure

It is said that an m-dimensional random vector V ¼ Vð!Þ has an absolutely
continuous distribution if for any set A � R

m of Lebesgue measure zero the
event fV 2 Ag has zero probability. The distribution of V is absolutely
continuous iff it has a density, i.e., there exists a real valued function gð�Þ such
that for any Borel set A � R

m probability of the event fV 2 Ag is equal to the
integral

R
A gðxÞdx. The function gð�Þ is called the probability density function.

Let fnð!Þ be a sequence of real valued measurable functions on a probability
space ð�,F ,PÞ. By fn " f a.e. we mean that for almost every ! 2 � the
sequence fnð!Þ is monotonically nondecreasing and hence converges to a limit
denoted f ð!Þ, where f ð!Þ can be equal to þ1.

Theorem 57 (Monotone Convergence Theorem). Suppose that fn " f a.e. and
there exists a P-integrable function gð!Þ such that fnð�Þ � gð�Þ. Then

R
� f dP is

well defined and
R
� fn dP "

R
� f dP.

Theorem 58 (Fatou’s lemma). Suppose that there exists a P-integrable function
gð!Þ such that fnð�Þ � gð�Þ. Then

Z
�

lim inf
n �!1

fn dP � lim inf
n �!1

Z
�

fn dP: ð9:30Þ
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Theorem 59 (Lebesgue Dominated Convergence Theorem). Suppose that there
exists a P-integrable function gð!Þ such that jfnj � g a.e., and that fnð!Þ
converges to f ð!Þ for almost every ! 2 �. Then

R
� fn dP is well defined andR

� fn dP!
R
� f dP.

The following result can be proved by induction in m.

Theorem 60 (Richter–Rogosinsky). Let ð�,FÞ be a measurable space, f1, . . . , fm
be measurable on ð�,FÞ real valued functions, and 
 be a nonnegative finite
measure on ð�,FÞ such that f1, . . . , fm are 
-integrable. Suppose that every finite
subset of � is F -measurable. Then there exists a nonnegative measure 	 on
ð�,FÞ with a finite support of at most m points such that

R
� fid
 ¼

R
� fid	 for

all i ¼ 1, . . . ,m.

10 Bibliographic notes

Basic properties of expectations, defined as integrals on probability spaces,
can be found in numerous books on probability and measure theory. For
example, we may refer to Billingsley (1995) where the interested reader can
find proofs of the Lebesgue and Monotone Convergence Theorems and
Fatou’s Lemma. Differentiability properties of the expectation functions were
discussed by many authors. Proposition 2 follows easily from the Lebesgue
Dominated Convergence Theorem (cf., e.g., Rubinstein and Shapiro (1993)).
For a thorough development of integration of multifunctions and integral
functionals we refer to Rockafellar (1976) and Chapter 8 in Ioffe and
Tihomirov (1979), where some additional references can be found. The
interchangeability formula (1.8) for the subdifferential and expectation
operators, given in Theorem 9, is taken from Theorem 4, p. 351, of Ioffe and
Tihomirov (1979). In the convex case it follows from the interchangeability
formula (1.8) that the expected value function f ðxÞ is differentiable at a point
x0 iff @Fðx0,!Þ is a singleton for a.e. ! 2 �. We derived this result in a more
direct way in Proposition 4.

Properties of the optimal value Qðx, �Þ of the second stage linear
programming problem were studied by Walkup and Wets (1967, 1969),
Wets (1966, 1974) and Kall (1976), so most of the material of Sections 2.1 and
2.2 can be found there. Example 15 is discussed in Birge and Louveaux (1997).
Polyhedral and convex two-stage problems, discussed in Sections 2.3 and 2.4,
are natural extensions of the linear two-stage problems. The conjugate duality,
used in Proposition 25 is based on Fenchel duality (Fenchel (1953)) and was
developed by Rockafellar (1974).

Optimality conditions of the type used in Proposition 32 are well known
(see, e.g., Chapter 1 in Ioffe and Tihomirov (1979)). See also Hiriart-Urruty
(1978) and Flåm (1992, 1995) for the analysis in the case of Lipschitz
continuous functions.
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Duality analysis of stochastic problems, and in particular dualization of
the nonanticipativity constraints was developed by Eisner and Olsen (1975),
Wets (1976), Rockafellar and Wets (1975, 1976a,b,c, 1977) (see also Wets
(1980) and Klein Haneveld (1986) and Rockafellar (1999) and the references
therein). We tried to keep the presentation in Section 6 and Section 7 relatively
elementary without an extensive use of functional analysis.

The min–max approach to stochastic programming, discussed in Section 8,
was investigated extensively by Dupačová (1977, 1978, 1987).

For a thorough treatment of the convex analysis theory we refer to
Rockafellar (1970). Theorem 53 is due to Hoffman (1952). For a proof of
Richter-Rogosinsky Theorem (theorem 60) see Rogosinsky (1958).
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138 A. Ruszczyński and A. Shapiro



Rockafellar, R.T., R.J.-B. Wets (1976a). Stochastic convex programming: basic duality. Pacific J.

Math. 62, 173–195.

Rockafellar, R.T., R.J.-B. Wets (1976b). Stochastic convex programming: singular multipliers and

extended duality, singular multipliers and duality. Pacific J. Math. 62, 507–522.

Rockafellar, R.T., R.J.-B. Wets (1976c). Stochastic convex programming: relatively complete recourse

and induced feasibility. SIAM Journal on Control and Optimization 14, 574–589.

Rockafellar, R.T., R.J-B. Wets (1977). Measures as Lagrange multipliers in multistage stochastic

programming. J. Math. Anal. Appl. 60, 301–313.

Rogosinsky, W.W. (1958). Moments of non-negative mass. Proc. Roy. Soc. London Ser. A 245, 1–27.

Rubinstein, R.Y., A. Shapiro (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic

Optimization by the Score Function Method, John Wiley & Sons, Chichester.

Walkup, D., R.J.-B. Wets (1967). Stochastic programs with recourse. SIAM J. Appl. Math. 15,

1299–1314.

Walkup, D., R.J.-B. Wets (1969). Stochastic programs with recourse II: on the continuity of the

objective. SIAM J. Appl. Math. 15, 1299–1314.

Wets, R.J.-B. (1966). Programming under uncertainty: the equivalent convex program. SIAM J. Appl.

Math. 14, 89–105.

Wets, R.J.-B. (1974). Stochastic programs with fixed recourse: the equivalent deterministic program.

SIAM Review 16, 309–339.

Wets, R.J.-B. (1976). Duality relations in stochastic programming, in: Symposia Mathematica,

Vol. XIX (Convegno sulla Programmazione Matematica e sue Applicazioni, INDAM, Rome,

1974), Academic Press, London, pp. 341–355.

Wets, R.J.-B. (1980). Stochastic multipliers, induced feasibility and nonanticipativity in stochastic

programming: Stochastic Programming (Proc. Internat. Conf., Univ. Oxford, Oxford, 1974),

Academic Press, London, pp. 137–146.

Ch. 2. Optimality and Duality in Stochastic Programming 139



Chapter 3

Decomposition Methods

Andrzej Ruszczyński
Department of Management Science and Information Systems, Rutgers University,

94 Rockafeller Rd, Piscataway, NJ 08854, USA

Abstract

Two- and multistage stochastic programming problems have very large dimen-
sion and characteristic structures which are tractable by decomposition. We
present cutting plane methods, nested decomposition methods, regularized
decomposition methods, trust region methods, augmented Lagrangian methods,
and splitting methods for convex stochastic programming problems.

Key words: Stochastic programming, decomposition, primal methods, dual
methods, operator splitting.

1 Introduction

Two- and multistage stochastic programming problems have very specific
structures which can be exploited by decomposition. The objective of this
chapter is to provide a detailed description and analysis of the main decom-
position methods used in stochastic programming.

To illustrate the main concepts, let us consider the two-stage stochastic
programmingproblem,whichhasbeen extensively analyzed inChapters 1 and2.
Recall that there are two groups of decision variables in the two-stage
problem: the first stage decisions x 2 R

n1 , which are deterministic, and the
second stage decisions y 2 R

n2 , which are allowed to depend on the random
problem data, �. The linear two-stage problem has the form

Min fcTxþ EQðx, �Þg

s:t: Ax ¼ b, x � 0, ð1:1Þ

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
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where �¼ (q,W, h,T ) is the vector of (possibly random) problem data, and

Qðx, �Þ :¼ inf
y2R

n2
þ

qTy jWy ¼ h� Tx
� �

: ð1:2Þ

We assume that the probability space O is finite, we denote by !s, s¼ 1,. . . ,S,
all elementary events and by ps, s¼ 1,. . . ,S, their probabilities. We also use
the notation Ts

¼T(!s),Ws
¼W(!s), hs¼ h(!s), ys¼ y(!s), qs¼ q(!s). Then we

can rewrite (1.1) and (1.2) as

Min
x2X

f ðxÞ :¼ cTxþ
XS
s¼1

psQ
sðxÞ

( )
, ð1:3Þ

with

QsðxÞ :¼ inf
y2R

n2
þ

ðqsÞTy jWsy ¼ hs � Tsx
� �

ð1:4Þ

and

X ¼ fx 2 R
n1 : Ax ¼ b, x � 0g:

The polyhedral structure of Qs( � ) is characterized in Proposition 11 in
Chapter 2. To avoid unnecessary technical complications we assume that
Qs(x)>�1 for all x2X.

The main idea of primal decomposition methods is to address the problem in
its form (1.3). These methods solve many subproblems of form (1.4) to
construct some models (approximations) of the recourse costs Qs( � ) and of the
expected recourse cost. These models are used in a master problem, which
generates approximations of the first stage solution, x. The differences
between various primal methods lie mainly in the way the master problem is
constructed and solved. We shall discuss several versions of primal methods in
Sections 2–4. In Section 5 we shall extend these ideas to multistage problems.

Problem (1.3)–(1.4) can be rewritten as a large scale linear programming
problem

Min cTxþ
XS
s¼1

psðq
sÞ
Tys

( )

s:t: Ax ¼ b,

TsxþWsys ¼ hs, s ¼ 1, . . . , S,

x � 0, ys � 0, s ¼ 1, . . . , S: ð1:5Þ
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Splitting the fist stage decisions x into copies x1,. . . , xS corresponding to
scenarios we can reformulate (1.5) as follows:

Min
XS
s¼1

psðc
Txs þ ðqsÞTysÞ

s:t: Axs ¼ b, s ¼ 1, . . . , S,

TsxþWsys ¼ hs, s ¼ 1, . . . , S,

xs � 0, ys � 0, s ¼ 1, . . . , S,

xs ¼ x�, s, � ¼ 1, . . . , S: ð1:6Þ

The idea of dual methods is to relax the last group of constraints, which are
called in stochastic programming the nonanticipativity constraints, by
assigning to them some Lagrange multipliers. In the most straightforward
approach a multiplier �s,� is associated with each scenario pair1 and we
formulate the Lagrangian

Lðx, y, �Þ ¼
XS
s¼1

ps

�
cTxs þ ðqsÞTys

�
þ
XS
s¼1

Xs
�¼1

ð�s,�ÞT ðxs � x�Þ:

The problem of minimizing the Lagrangian, subject to all the remaining
constraints, splits into S independent scenario subproblems, each for vectors
xs and ys. Their solutions depend on the multipliers and the role of the master
problem is to find the optimal values of these multipliers, so that the x-parts of
the scenario solutions will become identical. Dual decomposition methods
differ in the ways the nonanticipativity constraints are spelled out, the ways
the Lagrangian is defined, the subproblems constructed, and multipliers
changed. We shall present them in Sections 6–9.

There are two fundamental advantages of decomposition methods. First,
they replace a large and difficult stochastic programming problem by a
collection of smaller and easier problems. This allows for solving extremely
large models, which are intractable otherwise. Secondly, the subproblems
involved in decomposition methods are usually standard linear, quadratic or
nonlinear problems, which need to be developed and solved for the simplest
deterministic versions of the model. Consequently, standard off-the-shelf
optimization software may be used for the solution of these subproblems. As a
result, decomposition methods provide a highly efficient and specialized
methodology for solving very large and difficult stochastic programming
problems by employing readily available tools.

1 A smaller set of constraints can express nonanticipativity, but this form is sufficient to introduce the

idea of dualization.
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It should be stressed that the form of the constraints Ax¼ b and x� 0 has
been chosen only for the simplicity of presentation. We may have here
arbitrary constraints of form x2X, where X is a convex closed polyhedron.
Similarly, instead of the conditions y� 0 in the second stage problems, we may
require ys2Ys, where Ys is a convex closed polyhedron for each scenario
s¼ 1,. . . ,S. Also, the constraints linking the first and the second stage
decisions in (1.1) or (1.2) may have the form of an arbitrary combinations of
linear equations and inequalities.

2 The cutting plane method

2.1 The main concepts

The idea of cutting plane methods is to construct a sequence {xk} of
approximations to the solution of (1.3) in the following way. The known
pieces of the functions Qs( � ) and facets of their domains are used to construct
an approximation of the expected recourse cost

PS
s¼1 psQ

sðxÞ. This
approximation is employed to compute the values of the first stage variables,
xk, at the current iteration. At these values of the first stage decisions sub-
problems (1.4) yield new information about the shape of Qs( � ). This is used to
calculate xkþ 1, and the iteration continues.

To see how the new information can be obtained, let us suppose that
Qs(xk)<1. Then, as described in Proposition 12 of Chapter 2,

@QsðxkÞ ¼ �ðTsÞ
TDsðxkÞ, ð2:1Þ

where

DsðxkÞ :¼ arg max
ðWsÞ

T��qs
�T ðhs � TsxkÞ ð2:2Þ

is the set of optimal solutions of the dual to problem in (1.4) at x¼ xk. Let �k,s

be one of these optimal dual solutions. Then, by the definition of the
subdifferential,

QsðxÞ � QsðxkÞ � ðTsÞ
T�k,s, x� xk

� �
for all x 2 R

n1 :

This inequality defines an objective cut:

QsðxÞ � �k,s þ ðgk,sÞTx, for all x 2 R
n1 , ð2:3Þ

144 A. Ruszczyński



where

gk,s ¼ �ðTsÞ
T�k,s, ð2:4Þ

�k,s ¼ QsðxkÞ þ ð�k,sÞTTsxk ¼ ðhsÞT�k,s: ð2:5Þ

In the last equation (2.5) we have used the duality relation between (1.4) and
the optimal value of problem (2.2):

QsðxkÞ ¼ ð�k,sÞT ðhs � TsxkÞ:

It follows that to obtain an objective cut for Qs( � ) at xk we need to solve
problem (1.4) at x¼ xk, retrieve Lagrange multipliers �k,s associated with its
constraints, and apply formulas (2.3)–(2.5). Equivalently, we may solve the
dual problem appearing in (2.2). Moreover, if we restrict our attention to basic
solutions of these problems, the multipliers �k,s will be chosen from a finite set
which does not depend on xk: the set of basic feasible solutions of the dual
problem. We shall call such cuts basic objective cuts.

If subproblem (1.4) at x¼ xk is infeasible, we can derive an inequality that
must be satisfied by every x2 domQs:

�k,s þ ðrk,sÞTx � 0, ð2:6Þ

and which is violated at xk. We shall call it a feasibility cut, and we shall say
that it cuts xk off. To see how such a feasibility cut can be obtained, consider
the Phase I problem corresponding to (1.4):

Min
y,z
kzk

s:t: Wsyþ z ¼ hs � Tsx,

y � 0: ð2:7Þ

Here z¼ (z1,. . . , zm) is a vector of artificial variables and k � k denotes a norm
on the space R

m. For technical reasons we will use the ‘1 norm
kzk1 :¼ jz1j þ � � � þ jzmj, or the max-norm kzk1 :¼ maxfjz1j, . . . , jzmjg. Note
that both norms k � k1 and k � k1 are polyhedral in the sense that they can be
represented as a maximum of a finite number of linear functions. Let us
denote by Us(x) the optimal value of (2.7). It is clear that problem (2.7) is
always feasible and its optimal value is finite, and moreover Qs(x)<1 if and
only if Us(x)¼ 0. We have, therefore, Us(xk)>0.

The function Us(x) is an optimal value of a convex problem having x as a
parameter in the constraint right hand side. Moreover, if the norm k � k is
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polyhedral, then (2.7) can be formulated as a linear programming problem.
The dual of (2.7) is given by the max–min problem

Max
�

Min
z,y�0
fkzk þ �T ðhs � Tsx�Wsy� zÞg:

By calculating the minimum in the above problem, we can write the dual in the
following form

Max
�

�T ðhs � TsxÞ

s:t: ðWsÞ
T� � 0, k�k* � 1, ð2:8Þ

where k � k* denotes the dual of the norm k � k (recall that the norms k � k1 and
k � k1 are dual to each other). We have, by the standard theory of linear
programming, that in the case of a polyhedral norm k � k there is no duality
gap between problems (2.7) and (2.8) and both problems have optimal
solutions. Furthermore, the function Us( � ) is a piecewise linear convex
function and its subdifferential @Us(x) is equal to �(Ts)T�s(x), where �s(x) is
the set of optimal solutions of the dual problem (2.8).

Therefore, we can construct for Us( � ) an objective cut (�k,s, rk,s) in a way
similar to (2.3):

rk,s 2 @UsðxkÞ,

�k,s ¼ UsðxkÞ � hrk,s, xki:

Then for every x 2 R
n1

UsðxÞ � UsðxkÞ þ hrk,s, x� xki ¼ �k,s þ ðrk,sÞTx,

and the above relation turns into equality at x¼ xk. Since Us(x)¼ 0 at all
feasible x, the last inequality implies (2.6). Moreover, Us(xk)>0, so (2.6) cuts
xk off, as promised. Again, by restricting the dual solutions to basic solutions
we can guarantee that the number of all possible feasibility cuts is finite. We
shall call such cuts basic feasibility cuts.

Summing up, the epigraph of Qs( � ) is a closed convex polyhedron defined
by finitely many basic objective and feasibility cuts.

The objective cuts at xk (if they can be computed successfully) yield a cut
for the expected second stage cost

QðxÞ ¼
XS
s¼1

psQ
sðxÞ � �k þ ðgkÞTx, ð2:9Þ
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where

gk ¼
XS
s¼1

psg
k,s, �k ¼

XS
s¼1

ps�
k,s: ð2:10Þ

Let k¼ 1, 2, . . . be the iteration number and let Jk
obj be the set of iteration

numbers j� k such that the cut (2.10) could be calculated. Similarly, let Jk
feaðsÞ

be the set of iterations when a feasibility cut was generated for scenario s.
The cuts constructed so far are used in the master problem

Min fcTxþ vg ð2:11Þ

s:t: � j þ ðg jÞ
Tx � v, j 2 Jk

obj, ð2:12Þ

� j,s þ ðr j,sÞ
Tx � 0, j 2 Jk

feaðsÞ, s ¼ 1, . . . , S, ð2:13Þ

Ax ¼ b, x � 0, ð2:14Þ

whose solution (xkþ 1, vkþ 1) is the next approximation to the solution of (1.3)
and a lower bound for Q( � ).

To describe the cutting plane method and analyze its properties, let
us assume at first that the initial point, x1, is such that Qs(x1)<1 for all
s¼ 1, . . . ,S. We also assume that the set

X ¼ fx 2 R
n1: Ax ¼ b, x � 0g

is bounded. The operation of the Cutting Plane Method is presented in Fig. 1.

Step 0. Set k¼ 1, J0
obj ¼ ;, J

0
feaðsÞ ¼ ;, s¼ 1,. . . ,S, v1¼�1.

Step 1. For s¼ 1,. . . ,S solve subproblem (1.4) with x¼ xk.

(a) If Qs(xk)<1, construct the objective cut (2.3) and set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ;

(b) If Qs(xk)¼1 (i.e., problem (1.4) is infeasible), construct the feasibility cut (2.6) and

set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ [ fkg.

If Qs(xk)<1 for all s¼ 1,. . . ,S, construct the aggregate objective cut (2.9) and set

Jk
obj ¼ Jk�1

obj [ fkg; otherwise set Jk
obj ¼ Jk�1

obj .

Step 2. If Q(xk)¼ vk then stop (optimal solution has been found); otherwise continue.

Step 3. Solve the master problem (2.11)–(2.14). If it is infeasible, stop (the original

problem has no feasible solutions). Otherwise, denote by (xkþ 1, vkþ 1) its solution,

increase k by one, and go to Step 1.

Fig. 1. The cutting plane algorithm.
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2.2 Convergence

Let us denote by f * the optimal value of the original two-stage problem
(1.3), with the convention that f *¼1 if this problem is infeasible.

The key property of the master problem is that its optimal value provides a
lower bound for the optimal value of the original problem. To see this, let us
consider the function

QkðxÞ :¼ max
j2Jk

obj

½� j þ ðg jÞ
Tx�: ð2:15Þ

By (2.9),

QkðxÞ � QðxÞ, for all x and all k ¼ 1, 2, . . . , ð2:16Þ

Let us assume that x is fixed in (2.11)–(2.14), so that the optimization is
carried out with respect to the variable v. The optimal value of v is then clear
from (2.12):

v̂vðxÞ ¼ max
j2Jk

obj

½� j þ ðg jÞ
Tx� ¼ QkðxÞ:

It follows that the master problem is equivalent to minimizing cTxþQk(x)
subject to the constraints (2.13)–(2.14).

Let us also introduce the sets

Xk :¼ fx : constraints ð2:13Þ holdg: ð2:17Þ

By the construction of the feasibility cuts

Xk � dom Qð�Þ, k ¼ 1, 2, . . . ð2:18Þ

Consequently, the master problem (2.11)–(2.14) is equivalent to

Min fcTxþQkðxÞg ð2:19Þ

s:t: x 2 Xk, ð2:20Þ

Ax ¼ b, x � 0: ð2:21Þ

By virtue of (2.16) and (2.17) we have the following result.
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Lemma 1. If the master problem is feasible at iteration k, then cTxkþ 1
þ

vkþ 1
� f *. If the master problem is infeasible at iteration k, then f *¼ þ1.

Consequently, the infeasibility test at Step 3 is correct.
We can now prove the convergence of the cutting plane algorithm in its

simplest form.

Theorem 2. Assume that the set X is bounded and that Q(x1)<1. Moreover,
let all cuts constructed at Step 1a and Step 1b be basic objective and feasibility
cuts. Then after finitely many iterations the Cutting Plane Algorithm finds an
optimal solution of (1.3).

Proof. If Q(xk)¼ vk then

cTxk þQðxkÞ ¼ cTxk þQkðxkÞ � cTxþQkðxÞ � cTxþQðxÞ

for all x2Xk
\X. By virtue of (2.18), the point xk is optimal for (1.3). If

vk<Q(xk)<1, the new objective cut (2.9) cuts the point (xk, vk) off the set of
feasible solutions of the master problem. If Qs(xk)¼1 for some s, the new
feasibility cut (2.6) cuts xk off the set of feasible solutions of the master
problem. In any case, if xk is not optimal, Step 2 generates a new cut which is
different from the cuts present in the master problem. Since the number of
different basic objective and feasibility cuts is finite, the algorithm must
stop. u

The assumption that the cuts are basic has been made only for simplicity.
We can prove exactly the same result without it, and we shall do it right now.
Let us recall that we assume that the set X is bounded. Also, to allow
infeasible starting points we add the constraint v��M to (2.14), where �M is
a lower bound for the optimal cost.

Lemma 3. For every s¼ 1,. . . ,S the number of iterations for which Us(xk)>0 is
finite.

Proof. Since Us( � ) is polyhedral and its domain is the whole R
n1 , it may be

represented as

UsðxÞ ¼ max 0, max
j2J
ð�j þ ðdjÞ

TxÞ

� �
,

where J is a finite set. For each x we can define the set

IðxÞ :¼ f j : �j þ ðdjÞ
Tx ¼ UsðxÞg;
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(it may be empty when Us(x)¼ 0). Clearly, there may be only a finite number
of different sets I(x), and we shall denote them by I1, I2,. . . , IL. Each of the sets
Il defines a cell:

Cl :¼ fx : �j þ ðdjÞ
Tx ¼ UsðxÞ, j 2 Il; �j þ ðdjÞ

Tx < UsðxÞ, j 2 JnIlg:

Suppose that our assertion is false, and Us(xk)>0 for infinitely many k. Let us
consider an iteration k such that Us(xk)>0, and let Cl be the cell containing
xk. Then the feasibility cut generated at xk,

UsðxkÞ þ hrk,s, x� xki � 0, ð2:22Þ

has

rk,s ¼
X
j2Il

�jdj, �j � 0,
X
j2Il

�j ¼ 1:

For all x2Cl we have:

UsðxÞ ¼
X
j2Jl

�jð�j þ ðdjÞ
TxÞ

¼
X
j2Jl

�jð�j þ ðdjÞ
Txk þ ðdjÞ

T
ðx� xkÞÞ

¼ UsðxkÞ þ hrk,s, x� xki:

By (2.22) no point xm generated by the algorithm for m>k may belong to
the set fx 2 Cl : U

sðxÞ > 0g. Since the number of cells is finite, we obtain a
contradiction. u

We are now ready to state our main result.

Theorem 4. After finitely many iterations the Cutting Plane Algorithm either
discovers infeasibility or finds an optimal solution of (1.3).

Proof. By Lemma 3, after finitely many iterations the method either discovers
infeasibility, or continues without any new feasibility cuts added, i.e.,
xk2 domQ( � ) for all sufficiently large k.

Since Q( � ) is polyhedral it may be represented as

QðxÞ ¼ max
j2J
ð	j þ ðujÞ

TxÞ, for all x 2 dom Q,
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where J is a finite set. For each x we can define the set

IðxÞ :¼ f j : 	j þ ðujÞ
Tx ¼ QðxÞg:

There may be only a finite number of different sets I(x), and we shall denote
them by I1, I2,. . . , IL. Each of the sets Il defines a cell:

Cl :¼ fx : 	j þ ðujÞ
Tx ¼ QðxÞ, j 2 Il; 	j þ ðujÞ

Tx < QðxÞ, j 2 JnIlg:

Suppose that our assertion is false, and f (xk)>f * for infinitely many k.
Let f (xk)>f * for some xk2Cl. If x

k
2 int domQ, the objective cut generated at

xk has the form

QðxkÞ þ hgk, x� xki � v, ð2:23Þ

with the subgradient

gk ¼
X
j2Il

�juj, �j � 0,
X
j2Il

�j ¼ 1:

For all x 2 Cl \ int domQ we have:

QðxÞ ¼
X
j2Jl

�jð	j þ ðujÞ
TxÞ

¼
X
j2Jl

�jð	j þ ðujÞ
Txk þ ðujÞ

T
ðx� xkÞÞ

¼ QðxkÞ þ hgk, x� xki:

By (2.23), for every m>k such that xm 2 Cl \ int domQ we must have

QðxmÞ � vm,

so no new cut will be generated at xm.
Let us now consider the case when xk2Cl and xk is a boundary point of

domQ. Since domQ is a convex closed polyhedron, it may be represented as

dom Q ¼ fx : wT
j x � �j, j 2 J 0g,

for some vectors wj and constants �j. Its boundary is a finite collection of
facets defined as

�
 :¼ fx : w
T
j x ¼ �j, j 2 J
; wT

j x < �j, j 2 J 0nJ
g,
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where J
, 
¼ 1,. . . ,M, are all nonempty subsets of J0 for which the above
formula defines a nonempty set. Every subgradient of Q( � ) at xk has the form

gk ¼
X
j2Il

�juj þ zk, �j � 0,
X
j2Il

�j ¼ 1:

where zk is a normal vector to domQ at xk. By the definition of the normal
vector

hzk, x� xki ¼ 0, for all x 2 �
:

Thus, for all x2Cl\�
 we have:

QðxÞ ¼
X
j2Jl

�jð	j þ ðujÞ
TxÞ

¼
X
j2Jl

�jð	j þ ðujÞ
Txk þ ðujÞ

T
ðx� xkÞÞ

¼ QðxkÞ þ hgk � zk, x� xki

¼ QðxkÞ þ hgk, x� xki:

By (2.23), no new cuts will be generated at iteration m>k such that
xm2Cl\�
.

Thus, after visiting finitely many cells and intersections of cells with facets
the algorithm will satisfy the stopping test of Step 2. u

Simplicity is the main advantage of the Cutting Plane Method. However,
the number of cuts in the master problem grows and there is no easy way to
keep it bounded. A natural idea would be to drop inactive cuts, that is, these
objective and feasibility cuts which are satisfied as sharp inequalities at the
current solution (xk, vk) of the master problem.

If we use the method with basic cuts only (as discussed in Theorem 2), we
may drop inactive cuts whenever the optimal value of the master program
increases.

We note at first that when inactive cuts are deleted, no decrease of the
optimal value of the master problem may result. Thus the sequence of optimal
values of the master problem, {cTxkþ vk<f *} is monotone. To prove that it is
convergent to f *, suppose that cTxkþ vk<f * for some k and that no increase
of the master’s objective occurs for all m>k. Then no deletion takes place,
and Theorem 2 guarantees the convergence of cTxmþ vm to f *, a
contradiction. Therefore, an increase in the master’s objective must occur at
some m� k. The number of different optimal values of the master problem is
finite, because there exists a finite number of different sets of basic objective
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and feasibility cuts. Therefore, an increase in this value can occur only finitely
many times, and the method must stop at an optimal solution after finitely
many iterations.

In the version with arbitrary subgradient cuts we have no guaranteed
finiteness of the sets of objective and feasibility cuts, and it is difficult to
propose a useful and reliable rule for deleting inactive cuts.

Actually, in both cases, deleting all inactive cuts is not a good idea, because
experience shows that many of them will have to be reconstructed.

2.3 The multicut version

Convergence properties of the Cutting Plane Method can be improved by
using the objective cuts in their original form, without the averaging operation
(2.9)–(2.10). For each s we define a lower approximation Qk,s of Qs as follows:

Qk,sðxÞ :¼
max
j2Jk

obj
ðsÞ
� j,s þ ðg j,sÞ

Tx
	 


, if � j,s þ ðr j,sÞTx � 0, j 2 Jk
feaðsÞ,

þ1, otherwise:

(

ð2:24Þ

Here Jk
objðsÞ is the subset of {1,. . . , k} corresponding to iterations at which cuts

(2.3) were obtained. These models enter the master problem

Min
x2X

cTxþ
XS
s¼1

psQ
k,sðxÞ

( )
, ð2:25Þ

which is an approximation of (1.3) from below.
A more explicit form of (2.25), similar to (2.11)–(2.14), can be written as

follows:

Min cTxþ
XS
s¼1

psv
s

( )
ð2:26Þ

�j,s þ ðg j,sÞ
Tx � vs, j 2 Jk

objðsÞ, s ¼ 1, . . . , S, ð2:27Þ

�j,s þ ðr j,sÞ
Tx � 0, j 2 Jk

feaðsÞ, s ¼ 1, . . . , S, ð2:28Þ

Ax ¼ b, x � 0: ð2:29Þ

The multicut method requires more memory, but it uses the previously-
collected data more efficiently, because cuts from different scenarios can be
combined in various ways.

Ch. 3. Decomposition Methods 153



The algorithm is presented in detail in Fig. 2. To allow starting the method
without any cuts available, we may add the constraint v��M to the master,
where �M is a lower bound for the optimal cost.

Theoretical convergence properties of the Multicut Method are exactly the
same as the properties of the Cutting Plane Method. Theorem 2 remains valid,
and its proof is the same. Lemma 3 is also true, because the feasibility cuts are
used in the same way in both versions. To prove the analogue of Theorem 4
we need only technical adjustments.

Theorem 5. After finitely many iterations the Multicut Algorithm either
discovers infeasibility or finds an optimal solution of (1.3).

Proof. Since each Qs( � ) is polyhedral it may be represented as

QsðxÞ ¼ max
j2Js
ð	sj þ ðu

s
j Þ
TxÞ, for all x 2 dom Qs,

where Js is a finite set. For each x and every s we define

IsðxÞ :¼ f j 2 Js : 	sj þ ðu
s
j Þ
Tx ¼ QsðxÞg:

There may be only a finite number of different sets Is(x), and we shall denote
them by Is1, I

s
2, . . . , I

s
Ls . Each of the sets Isl defines a cell:

Cs
l :¼ fx : 	

s
j þ ðu

s
j Þ
Tx ¼ QsðxÞ, j 2 Isl ; 	

s
j þ ðu

s
j Þ
Tx < QsðxÞ, j 2 JsnIsl g:

Next, similarly to the proof of Theorem 4, let �
, 
¼ 1,. . . ,M, be the facets of
domQ, and let �0¼ int domQ.

Step 0. Set k¼ 1, J0
objðsÞ ¼ ;, J

0
feaðsÞ ¼ ;, v

1,s
¼�1, s¼ 1,. . . ,S.

Step 1. For s¼ 1,. . . ,S solve subproblem (1.4) with x¼ xk.

(a) If Qs(xk)<1 then set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ. If Q
s(xk)>vk,s then construct the objective

cut (2.3) and set Jk
objðsÞ ¼ Jk�1

obj ðsÞ [ fkg; otherwise set Jk
objðsÞ ¼ Jk�1

obj ðsÞ.

(b) If Qs(xk)¼1 (i.e., problem (1.4) is infeasible), construct the feasibility cut (2.6) and

set Jk
objðsÞ ¼ Jk�1

obj ðsÞ, J
k
feaðsÞ ¼ Jk�1

fea ðsÞ [ fkg.

Step 2. If QðxkÞ ¼
PS

s¼1 psv
k,s then stop (optimal solution has been found); otherwise

continue.

Step 3. Solve the master problem (2.26)–(2.29). If it is infeasible, stop (the original

problem has no feasible solutions). Otherwise, denote by (xkþ 1, vkþ 1) its solution,

increase k by one, and go to Step 1.

Fig. 2. The multicut algorithm.
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Let f(xk)>f * for some xk in the intersection C1
l1
\ C2

l2
\ � � � \ CS

lS
\ �
.

Thus, for at least one s we must have Qs(xk)>vk,s. Proceeding exactly like in
the proof of Theorem 4 we can prove that for every m>k such that xm is in the
same intersection of cells and a facet, we have

QsðxmÞ � vm,s:

Consequently, the intersection C1
l1
\ C2

l2
\ � � � \ CS

lS
\ �
 may be visited at

most S times.
Since there are finitely many possible intersections of cells and a facet and

each of them may be visited only finitely many times, the algorithm will satisfy
the stopping test of Step 2. u

Our remarks about deleting inactive cuts made at the end of the preceding
section remain valid for the Multicut Method. If basic cuts are used, inactive
cuts may be removed whenever the optimal value of the master problem
increases. If general subgradient cuts are employed, no easy rule can be found.

2.4 Estimating objective cuts

So far we have assumed that the number of elementary events ! in (1.1)–
(1.2) is finite, and that we are able to solve all possible realizations of
subproblem (1.2) for !2O. In many cases these assumptions are not satisfied.
For example, if the right hand side in (1.2) has m independent components and
each may have r different realizations, the number of elementary events equals
S¼ rm, which is a very large number, even for moderate values of r and m. A
good example here is the capacity expansion problem of Chapter 1, Section 2,
in which the number of possible scenarios is so large that the solution of all
possible realizations of the second stage problem is practically impossible.

There are two ways around this difficulty. One is to generate a sample
�1,. . . , �N of the problem data, having cardinality N which is manageable.
Then we can solve the two-stage problem with this sample rather than with the
true distribution of the data, hoping that the sample is representative enough
to lead to a good approximation of the true solution. In Chapter 5 we discuss
in detail the properties of this method.

The second approach is to work with estimated cuts rather than with exact
cuts at each iteration of the Cutting Plane Method. Let us illustrate this
approach on the case of a finite sample space O of very large cardinality S. The
main difficulty is then the necessity to solve at each iteration of the method
S subproblems (1.4), corresponding to data realizations �1,. . . , �S. These
solutions are needed to calculate the objective value at xk:

QðxkÞ ¼
XS
s¼1

psQðx
k, �sÞ ð2:30Þ
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and the objective cut (2.9)–(2.10):

QðxÞ � �k þ ðgkÞTx, ð2:31Þ

where

gk ¼
XS
s¼1

psg
k,s, �k ¼

XS
s¼1

ps�
k,s: ð2:32Þ

Let us assume that the second stage problem (1.4) is solvable for all
x satisfying the first stage constraints and for all �1, . . . , �S, that is, we deal
with a problem with relatively complete recourse.

In order to estimate the quantities defined by (2.30)–(2.32), at iteration k we
draw independent realizations �1, . . . , �N of random problem data, which will
be, in general, different at each iteration. They correspond to a random sample
s1, . . . , sN of the scenario numbers: �
 ¼ �s



.

Then we solve (1.4) only for these sampled scenarios and we construct the
Monte Carlo estimates

~QQðxkÞ :¼
1

N

XN

¼1

Qðxk, �
Þ,

~ggk :¼
1

N

XN

¼1

gs



: ð2:33Þ

Unfortunately, for reasonable sample sizes N the variance of these estimates
may be large. The chapter on Monte Carlo techniques will discuss in much
detail methods to deal with this difficulty, such as the importance sampling
method. Here we provide only a superficial characterization of this approach.

Let P̃ be another probability distribution on O, that is, let ~pps be some new
probabilities assigned to the scenarios �1,. . . , �S. We assume that the recourse
cost Q(x, �) is nonnegative for feasible first stage decisions.2 We can rewrite
the expression for the expected value of the second stage cost as follows:

QðxÞ ¼
XS
s¼1

~pps½Qðx, �
sÞps= ~pps�: ð2:34Þ

2 We can treat in a similar way any recourse cost that is bounded from below.
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This formula can be interpreted as the expectation of the function in brackets
with respect to the distribution P̃. The Monte Carlo estimate of (2.34) takes
on the form

~QQðxÞ ¼
1

N

XN

¼1

Qðx, �
Þp
= ~pp
, ð2:35Þ

where �1, . . . , �N are independent observations drawn according to the
new distribution P̃. We can now choose P̃ to decrease the variability of
Qðx, �sÞps= ~pps. In fact, setting ~pps ¼ psQðx, �

sÞ=QðxÞ, we can make this function
constant with respect to s, and the Monte Carlo estimate (2.35)—perfect for
any N. This, however, involves the expected cost that we want to compute.
Still, our hypothetical construction suggests a way to proceed: use

~pps ¼ psWðx, �
sÞ=WðxÞ, ð2:36Þ

with some approximation W of Q. The approximation should be, of course,
nonnegative, easy to compute, and easy to integrate. Clearly, the way in which
such an approximation may be constructed depends on the structure of the
original problem. However, there is a big danger of numerical instability here
(see the chapter on Monte Carlo methods).

In the derivation of P̃ we paid much attention to the accuracy of
the recourse cost estimation (2.35). The same probabilities, though, and the
same observations �
 can be used to construct a subgradient estimate
~ggk ¼ ð1=NÞðð

PN

¼1 gk
p
Þ= ~pp
Þ, which is consistent with (2.35).

2.5 Extension to convex problems

The Cutting Plane Method can be extended to two-stage problems with
convex objectives of the following form

Min
x2X

f ðxÞ :¼ f1ðxÞ þ
XS
s¼1

psQ
sðxÞ

( )
, ð2:37Þ

where Qs(x) is the optimal value of the second stage problem

Min
y

f s2 ð yÞ subject to TsxþWsy ¼ hs, y 2 Ys: ð2:38Þ

We assume that the functions f1 : R
n1 ! R and f s2 : R

n2 ! R, s¼ 1,. . . ,S, are
convex and the sets X and Ys are bounded convex polyhedra. Our model
(2.37)–(2.38) is a special case of the model (2.50)–(2.51) from Chapter 2, but

Ch. 3. Decomposition Methods 157



with linear constraints linking the first and the second stage variables, and
with polyhedral domains of the objectives at both stages. Since the sets Ys are
bounded, for every x the second stage problem (2.38) either has an optimal
solution or is infeasible.

The dual to the second stage problem (2.38) has the form

Max
�

�T ðhs � TsxÞ � ð f
s

2 Þ* ðW
sÞ
T�

	 
n o
, ð2:39Þ

where ð f
s

2Þ* is the convex conjugate of the second stage objective,

f
s

2 ð yÞ :¼
f s2 ðyÞ if y 2 Ys

þ1 otherwise:

�

We refer the reader to Chapter 2, Sections 2.3 and 2.4, for the derivation of the
dual problem. By the duality theory of convex programming we have that if,
for some x, problem (2.38) has a solution, then the dual problem (2.39) has a
solution, and the optimal values of both problems are equal.3

By Proposition 25 of Chapter 2, each function Qs( � ) is convex and lower
semicontinuous. Proposition 26 of Chapter 2 provides us with the general
form of a subgradient of Qs(x) at points x at which (2.38) has a solution. Due
to the linearity of the constraints and the finiteness of f s2 we do not need
additional constraint qualification conditions and we get

@QsðxÞ ¼ �ðTsÞ
TDsðxÞ, ð2:40Þ

where Ds(x) is the set of solutions to the dual problem (2.39). Of course, the
elements of Ds(x) are the values of Lagrange multipliers associated with the
constraints of (2.38).

It follows that at every point xk at which the second stage problem (2.38)
has a solution, we can construct an objective cut in a way similar to (2.3):

QsðxÞ � �k,s þ ðgk,sÞTx, for all x 2 R
n1 , ð2:41Þ

where

gk,s ¼ �ðTsÞ
T�k,s,

�k,s ¼ QsðxkÞ þ ð�k,sÞTTsxk,

3 By the polyhedrality of the feasible sets and by the finiteness of f s2 we do not need additional

constraint qualification conditions here.
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and �k,s2Ds(xk). We can also calculate a cut for f1( � ) at x
k:

f1ðxÞ � �
k,0 þ ðgk,0ÞTx, for all x 2 R

n1 ,

where

gk,0 2 @f1ðx
kÞ,

�k,0 ¼ f1ðx
kÞ � ðgk,0ÞTxk:

All these objective cuts at xk (if they can be computed successfully) yield a cut
for the overall objective

f ðxÞ � �k þ ðgkÞTx, ð2:42Þ

where

gk ¼ gk,0 þ
XS
s¼1

psg
k,s, �k ¼ �k,0 þ

XS
s¼1

ps�
k,s: ð2:43Þ

If the second stage problem (2.38) is infeasible, we can derive the feasibility
cut (2.6) exactly as in the linear case, just with the constraint y2Ys instead of
y� 0 in the Phase I problem (2.7).

The Cutting Plane Method for convex problems is almost identical with the
method for linear problems. It has the master problem

Min v

s:t: � j þ ðg jÞ
Tx � v, j 2 Jk

obj,

� j,s þ ðr j,sÞTx � 0, j 2 Jk
feaðsÞ, s ¼ 1, . . . , S,

x 2 X , ð2:44Þ

whose solution is denoted (xkþ 1, vkþ 1). The detailed algorithm is presented in
Fig. 3.

To allow starting from infeasible points, we may add the constraint v��M
to (2.44), where �M is a lower bound for the optimal cost.

To carry out the convergence analysis of the Cutting Plane Method in the
convex case, we shall need an additional assumption.

Assumption 6. There exists a constant C such that kgk,sk�C for all k¼ 1, 2,. . .
and all s¼ 1,. . . ,S, whenever Qs(xk)<1.
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Due to the boundedness of the sets X and Ys, the linearity of second stage
constraints and the finiteness of f s2 ð�Þ, this assumption can always be satisfied.
Indeed, we already know that Qs( � ) is lower semicontinuous and sub-
differentiable at every point of its domain. Moreover, domQs is a compact set,
and the existence of bounded subgradients follows from general properties of
convex functions. We can show it in our case directly, by showing the
existence of uniformly bounded Lagrange multipliers �k,s at the solutions to
the dual problem (2.38).

Theorem 7. If problem (2.37)–(2.38) has no feasible solutions the Cutting Plane
Method will stop at Step 3 after finitely many iterations. If problem (2.37)–
(2.38) has feasible solutions then the Cutting Plane Method either stops at Step 2
at an optimal solution, or generates a sequence of points {xk} such that

lim
k!1

f ðxkÞ ¼ f *:

Proof. Since the master problem is a relaxation of (2.37), if the method stops
at Step 3, the original problem is infeasible. Also, we always have vk� f *, so
the method can stop at Step 2 only if xk is optimal. It remains to analyze the
case of infinitely many steps.

The construction and the use of feasibility cuts is the same as in the linear
case, and Lemma 3 remains valid. Thus, if the problem has no feasible
solutions, the method will discover this after finitely many iterations.
Moreover, if feasible points exist and the method does not stop at an optimal
solution, we shall have f (xk)<1 for all sufficiently large k.

For ">0 we define

K" ¼ fk : f * þ " < f ðxkÞ < þ1g:

Step 0. Set k¼ 1, J0
obj ¼ ;, J

0
feaðsÞ ¼ ;, s¼ 1,. . . ,S, v1¼�1.

Step 1. For s¼ 1,. . . ,S solve subproblem (2.38) with x¼ xk.

(a) If Qs(xk)<1, construct the objective cut (2.41) and set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ;

(b) If Qs(xk)¼1 (i.e., problem (2.38) is infeasible), construct the feasibility cut (2.6)

and set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ [ fkg.

If Qs(xk)<1 for all s¼ 1,. . . ,S, construct the aggregate objective cut (2.42) and set

Jk
obj ¼ Jk�1

obj [ fkg; otherwise set Jk
obj ¼ Jk�1

obj .

Step 2. If Q(xk)¼ vk then stop (optimal solution has been found); otherwise continue.

Step 3. Solve the master problem (2.44). If it is infeasible, stop (the original problem has

no feasible solutions). Otherwise, denote by (xkþ 1, vkþ 1) its solution, increase k by

one, and go to Step 1.

Fig. 3. The cutting plane algorithm for convex problems.
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Let k1, k22K" with k1<k2. Since f ðxk1Þ > f * þ " and f * � vk1 there will be a
new objective cut generated at xk1 . It will be in the master from k1 on, so it has
to be satisfied at xk2 :

f ðxk1Þ þ hgk1 , xk2 � xk1i � vk2 � f *:

On the other hand, " < f ðxk2Þ � f *, which combined with the last inequality
yields

" < f ðxk2Þ � f ðxk1Þ � hgk1 , xk2 � xk1i:

The function f ( � ) is subdifferentiable in its domain and X is compact, so there
is a constant C such that f ðx1Þ � f ðx2Þ � Ckx1 � x2k, for all x1, x22 dom f\X.
By Assumption 6 we can choose C big enough so that kgkk � C for all k. It
follows that

" < 2Ckxk1 � xk2k for all k1, k2 2 K":

Since the set X is compact, the last inequality implies that the set K" is finite for
each ">0. u

Similarly to the linear case, we can develop a multicut version of the
method. It is virtually identical to the method discussed in the preceding
section; the only difference is that we also need to construct and store cuts for
the first stage objective. We leave to the reader the obvious technical details.
Its theoretical convergence properties are exactly the same as those of the
method with aggregate cuts discussed here.

The proof of convergence of the cutting plane method in the convex case
indicates that the problem of deleting inactive cuts is even more acute than in
the linear case. In fact, no reliable rule exists for the deletion of inactive cuts in
the general convex case.

3 Regularized decomposition

3.1 The idea of regularization

The principal difficulty associated with cutting plane methods is the growth
of the number of cuts that need to be stored in the master problem. Also, there
is no easy way to make use of a good starting solution.
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To mitigate these difficulties we add a quadratic regularizing term to the
polyhedral model used in the master problem (2.25). We obtain the following
regularized master problem:

Min
x2X

�

2
kx� wkk2 þ cTxþ

XS
s¼1

psQ
k,sðxÞ

( )
, ð3:1Þ

where the models Qk,sð�Þ are defined in (2.24). In the proximal term
(�/2)kx�wk

k
2, where �>0, the center wk is updated depending on the

relations between the value of f(xkþ 1) at the master’s solution, xkþ 1, and its
prediction provided by the current model:

f kðxkþ1Þ :¼ cTxkþ1 þ
XS
s¼1

psQ
k,sðxkþ1Þ: ð3:2Þ

Recall that f( � ) is our true objective (see (1.3)). If these values are equal or
close, we set wkþ 1

¼ xkþ 1 (serious step); otherwise wkþ 1
¼wk (null step). In

any case, the collections of objective and feasibility cuts are updated, and the
iteration continues.

We present the Regularized Decomposition Method in its most efficient
multicut version. A method with averaged cuts can be developed and analyzed
in an identical way.

The regularized master can be equivalently formulated as a quadratic
programming problem

Min cTxþ
XS
s¼1

psv
s þ

�

2
kx� wkk2

( )
ð3:3Þ

�j,s þ ðg j,sÞ
Tx � vs, j 2 Jk

objðsÞ, s ¼ 1, . . . , S, ð3:4Þ

�j,s þ ðr j,sÞ
Tx � 0, j 2 Jk

feaðsÞ, s ¼ 1, . . . , S, ð3:5Þ

Ax ¼ b, x � 0: ð3:6Þ

The detailed algorithm is stated in Fig. 4. As before, we assume that the initial
point x1 is such that Q(x1)<1. Also, 	 2 (0, 1) is a fixed constant used to
compare the observed improvement in the objective value to the predicted
improvement.
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3.2 Relation to the proximal point method

To understand the mechanism of convergence of the Regularized
Decomposition Method, let us suppose that the models Qk,sð�Þ in the master
problem (3.1) are exact: Qk,sðxÞ ¼ QsðxÞ for all x 2 R

n1 and all s¼ 1,. . . ,S.
Consider the optimal value of such an ideal master problem

f�ðwÞ :¼ min
x2X

�

2
kx� wk2 þ cTxþ

XS
s¼1

psQ
sðxÞ

( )
: ð3:7Þ

The function f�( � ) is called the Moreau–Yosida regularization of f( � ). If
dom f\X 6¼ ;, its regularization has many remarkable properties: convexity,
continuous differentiability, Lipschitz continuity with constant 1, etc. For our
purposes, its relations to f are of primary importance.

Lemma 8. Suppose that there exists ~xx 2 X such that f ð ~xxÞ < f ðwÞ. Then

f�ðwÞ � f ðwÞ � �k ~xx� wk2’
f ðwÞ � f ð ~xxÞ

�k ~xx� wk2

� �
,

Step 0. Set k¼ 1, J0
objðsÞ ¼ ;, J

0
feaðsÞ ¼ ;, v

1,s
¼�1, s¼ 1,. . . ,S.

Step 1. For s¼ 1,. . . ,S solve subproblem (1.4) with x¼ xk.

(a) If Qs(xk)<1 then set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ. If Q
s(xk)>vk,s then construct the objective

cut (2.3) and set Jk
objðsÞ ¼ Jk�1

obj ðsÞ [ fkg; otherwise set Jk
objðsÞ ¼ Jk�1

obj ðsÞ.

(b) If Qs(xk)¼1 (i.e., problem (1.4) is infeasible), construct the feasibility cut (2.6) and

set Jk
objðsÞ ¼ Jk�1

obj ðsÞ, J
k
feaðsÞ ¼ Jk�1

fea ðsÞ [ fkg.

Step 2. If k¼ 1 or if

f ðxkÞ � ð1� 	Þf ðwk�1Þ þ 	f k�1ðxkÞ,

then set wk
¼ xk; otherwise set wk

¼wk�1.

Step 3. Solve the master problem (3.3)–(3.6). If it is infeasible, stop (the original problem

has no feasible solutions). Otherwise, denote by (xkþ 1, vkþ 1) its solution and set

f kðxkþ1Þ ¼ cTxkþ1 þ
PS

s¼1 psv
kþ1,s.

Step 4. If f k(xkþ 1)¼ f(wk) then stop (wk is an optimal solution); otherwise continue.

Step 5. Remove from the sets of cuts Jk
objðsÞ and Jk

feaðsÞ, s¼ 1,. . . ,S, some (or all) cuts

whose Lagrange multipliers at the solution of (3.3)–(3.6) were 0. Increase k by one, and

go to Step 1.

Fig. 4. The regularized decomposition algorithm.
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where

’ð�Þ ¼
0 if � < 0,
�2 if 0 � � � 1,
�1þ 2� if � > 1:

8<
:

Proof. By convexity, the entire segment containing points x ¼ wþ tð ~xx� wÞ
with 0� t� 1 is feasible for (3.7). Restricting the minimization to these x will
provide an upper bound:

f�ðwÞ � min
0�t�1

f ðð1� tÞwþ t ~xxÞ þ
�t2

2
k ~xx� wk2

� 

� f ðwÞ þ min
0�t�1

tð f ð ~xxÞ � f ðwÞÞ þ
�t2

2
k ~xx� wk2

� 
:

In the last estimate we also used the convexity of f( � ). The value of t that
minimizes the above expression is equal to

t̂t ¼ min 1,
f ðwÞ � f ð ~xxÞ

�k ~xx� wk2

� �
:

Our assertion follows now from a straightforward calculation. u

At the solution x(w) of problem (3.7) we shall have

f ðxðwÞÞ � f�ðwÞ � f ðwÞ � �k ~xx� wk2’
f ðwÞ � f ð ~xxÞ

�k ~xx� wk2

� �
:

Therefore, if a better point exists, the ideal master (3.7) will find a better point.
Consequently, x¼w is the minimizer in (3.7) if and only if w is a minimizer
of f.

In fact, the Proximal Point Method,

wkþ1 ¼ xðwkÞ, k ¼ 1, 2, . . . ð3:8Þ

must converge to an optimal solution, if an optimal solution exists.

Theorem 9. Suppose that problem (1.3) has an optimal solution. Then the
sequence {wk} generated by the Proximal Point Method is convergent to an
optimal solution of (1.3).
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Proof. Let x* be an optimal solution. We have the identity

kwkþ1�x*k2 ¼ kwk � x*k2 þ 2hwkþ1 � wk, wkþ1 � x*i � kwkþ1 � wkk2:

ð3:9Þ

The necessary condition of optimality for (3.7) at the solution wkþ 1
¼x(wk)

yields

0 2 @ f ðxÞ þ
�

2
kx� wkk2

h i
, at x ¼ wkþ1:

Thus,

��ðwkþ1 � wkÞ 2 @f ðwkþ1Þ: ð3:10Þ

By the subgradient inequality,

f ðx*Þ � f ðwkþ1Þ � �hwkþ1 � wk, x* � wkþ1i:

Using this inequality in (3.9) (and skipping the last term) we obtain

kwkþ1 � x*k2 � kwk � x*k2 �
2

�
ð f ðwkþ1Þ � f ðx*ÞÞ: ð3:11Þ

Several conclusions follow from this inequality. First, the sequence {wk} is
bounded, because the distance to x* is nonincreasing. Secondly, summing up
(3.11) from k¼ 1 to 1, we get

X1
k¼2

ð f ðwkÞ � f ðx*ÞÞ �
�

2
kw1 � x*k2,

so f (wk)! f (x*). Consequently, for every accumulation point ~xx of {wk} we
have f ð ~xxÞ ¼ f ðx*Þ. We choose one such ~xx, substitute it for x* in (3.11) and
conclude that the entire sequence {wk} is convergent to ~xx. u

It is easy to see that we have not used in our analysis the fact that f is
polyhedral; Theorem 9 remains true for any convex function f which has a
minimum.4 For polyhedral f the convergence is finite.

4 A more general view on the Proximal Point Method is presented in Section 9.2.
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Theorem 10. Suppose that f is a convex polyhedral function and that a minimum
of f exists. Then the Proximal Point Method stops after finitely many steps at a
minimizer of f.

Proof. Suppose that the method does not stop. Therefore, 0 62 @f(wkþ 1),
k¼ 1, 2,. . . and thus,

0 62
[1
k¼1

@f ðwkþ1Þ:

Since f is polyhedral, only finitely many different subdifferentials @f(wkþ 1)
exist. Each of them is a convex closed polyhedral set, so the right hand side of
the last displayed relation is a union of finitely many closed sets. Thus, it is
closed. Consequently, there exists ">0 such that the ball B(0, ") of radius "
centered at 0 has no common points with this union of subdifferentials. We get

Bð0, "Þ \ @f ðwkþ1Þ ¼ ;, k ¼ 1, 2, . . . :

Since the sequence {wk} is convergent by Theorem 9, we have wkþ 1
�wk
! 0.

Therefore, �(wkþ 1
�wk)2B(0, ") for large k and we obtain a contradiction

with (3.10). u

3.3 Convergence of the regularized decomposition method

The main difference between the Regularized Decomposition Method (and
bundle methods, in general) and the Proximal Point Method (see Section 3.2) is
that the master problem (3.1) uses a model f k( � ) instead of the true function
f ( � ). Recall that

f kðxÞ ¼
cTxþ

PS
s¼1 psQ

k,sðxÞ if x 2 X ,
þ1 otherwise:

�

Its minimizer, xkþ 1, is no longer guaranteed to be better than wk. The role of
null steps is to correct the model f k, if xkþ 1 is not better than wk. We shall see
that such model improvements ensure that progress will be made whenever
any progress is possible.

The analysis of convergence of the Regularized Decomposition Method
requires an additional assumption.

Assumption 11. There exists a constant C such that kgk,sk�C for all
k¼ 1, 2,. . . and all s¼ 1,. . . ,S, whenever Qs(xk)<1.
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It is clearly satisfied if basic objective cuts are employed. Also, if
domQs ¼ R

n1 , by the polyhedrality of Qs, Assumption 11 holds. The only
situation, in which a potential for violating this assumption exists, is when xk is
a boundary point of domQs, in which case arbitrary large elements of the
normal cone to domQs may be added to the subgradient of Qs( � ).
Technically, in such a situation the active second stage constraints are linearly
dependent and arbitrary large multipliers �k,s may be used in formula (2.4).
If our method for solving the second stage problem does not exhibit such
properties, Assumption 11 will hold in this case, too.

By the construction of the method, the sequence { f(wk)} is nonincreasing.
Our first result shows that the algorithm cannot get stuck at a nonoptimal
point.

This property is obvious when basic cuts are employed, because each new
cut added at Step 1 cuts the current master’s solution off. As a result, due to
the strict convexity of the master’s objective, the optimal value of (3.1)
increases after each null step. Since the number of possible combinations of
basic cuts is finite, either a serious step will occur, or the stopping test of Step 4
will be satisfied.

For general subgradient cuts we need some analysis, but the conclusion
remains the same.

Lemma 12. Suppose that wk is not an optimal solution of problem (1.3). Then
there exist m>k such that f (wm)<f (wk).

Proof. Suppose that null steps are made at iterations j¼ kþ 1, kþ 2,. . . . Thus
wj
¼wk and

f ðx jÞ > f j�1ðx jÞ þ ð1� 	Þð f ðw j�1Þ � f j�1ðx jÞÞ:

Denote �j ¼ f ðw kÞ � f j�1ðx jÞ. We have

f ðx jÞ > f j�1ðx jÞ þ ð1� 	Þ�j: ð3:12Þ

We shall show that the optimal value of the master problem increases by a
quantity related to �j, when new objective cuts are added.

First, the master’s optimal value will not change, if we delete inactive cuts.
We shall denote the model without inactive cuts by f j�1ðxÞ. Subdifferentiating
(3.1) we see that �(wk

�x j ) is a subgradient of f j�1ð�Þ at x j, because x j is the
master’s solution. Thus,

f jðxÞ � f j�1ðxÞ � f j�1ðx jÞ þ �hwk � x j, x� x ji, for all x: ð3:13Þ

Ch. 3. Decomposition Methods 167



Secondly, by (3.12), after adding new objective cuts at x j we shall have

f jðx jÞ > f j�1ðx jÞ þ ð1� 	Þ�j:

Therefore, for all x,

f jðxÞ > f j�1ðx jÞ þ ð1� 	Þ�j þ hg, x� x ji,

where g2 @f j(x j). Combining (3.13) with the last inequality we obtain

f jðxÞ�maxð f j�1ðx jÞþ�hw k�x j, x�x ji, f j�1ðx jÞþð1�	Þ�jþhg, x�x
jiÞ

� f j�1ðx jÞ þ �hw k � x j, x� x ji

þmaxð0, ð1� 	Þ�j þ hg� � ðw
k � x jÞ, x� x jiÞ:

Consequently, the next master’s objective can be estimated from below as
follows:

f jðxÞ þ
�

2
kx� wkk2 � f j�1ðx jÞ þ �hw k � x j, x� x ji þ

�

2
kx� w kk2

þmaxð0, ð1� 	Þ�j þ hg� �ðw
k � x jÞ, x� x jiÞ

¼ f j�1ðx jÞ þ
�

2
kx j � w kk2 þ

�

2
kx� x jk2

þmaxð0, ð1� 	Þ�j þ hg� �ðw
k � x jÞ, x� x jiÞ:

It follows that the master’s optimal value,

j ¼ f jðx jþ1Þ þ
�

2
kx jþ1 � w kk2,

satisfies the inequality

j � j�1 � min
x2X

�

2
kx�x jk2þmaxð0, ð1�	Þ�jþhg��ðw

k�x jÞ, x�x jiÞ

h i
� min

h2R

�h2

2
þmaxð0, ð1� 	Þ�j � 2ChÞ

� 
,

where in the last relation we have used the estimates kgk�C and
k�ðw k � x jÞk � C:
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The right hand side of the above expression can be estimated as follows.
If (1�	)�j� 4C2/� we have

h ¼ ð1� 	Þ�j=ð2CÞ, j � j�1 � �ð1� 	Þ
2�2j =ð8C

2Þ,

otherwise

h ¼ 2C=�, j � j�1 � �2C
2=�þ ð1� 	Þ�j � ð1� 	Þ�j=2:

The sequence {j} is increasing and bounded above by f (wk). If there
are no serious steps after iteration k we conclude that �j! 0. Since
f (wk)� j� f (wk)��jþ 1, we have j"f (w

k).
On the other hand, the master’s objective is bounded above by the Moreau–

Yosida regularization (3.7)

j � fðw
jÞ ¼ fðw

kÞ:

If wk is not optimal, Lemma 8 yields f(w
k)<f(wk) and we obtain a

contradiction. u

We are now ready to prove the convergence of the Regularized
Decomposition Method. Our analysis will have much in common with the
analysis of the Proximal Point Method.

Theorem 13. Suppose that problem (1.3) has an optimal solution. Then the
Regularized Decomposition Method generates a sequence {wk} which is
convergent to an optimal solution of (1.3).

Proof. If wk is optimal for some k, then wjþ 1
¼wj for j¼ k, kþ 1,. . . , and the

theorem is true. If wk is not optimal for any k, then, by Lemma 12, each series
of null steps is finite and is followed by a serious step. Thus, the number of
serious steps is infinite. Let us denote by K the set of iterations at which
serious steps occur. If wkþ 1

¼ xkþ 1 is the optimal solution of the master (3.1),
we have the necessary condition of optimality

0 2 @ f kðxÞ þ
�

2
kx� wkk2

h i
, at x ¼ wkþ1:

Thus,

��ðwkþ1 � wkÞ 2 @f kðwkþ1Þ:

Ch. 3. Decomposition Methods 169



Let x* be an optimal solution of (1.3). By the subgradient inequality for f k

we get

f kðx*Þ � f kðwkþ1Þ � �hwkþ1 � wk, x* � wkþ1i: ð3:14Þ

There is a serious step from wk to wkþ 1
¼xkþ 1, so the test of Step 2 is satisfied

(for kþ 1):

f ðwkþ1Þ � ð1� 	Þf ðwkÞ þ 	f kðwkþ1Þ:

After elementary manipulations we can rewrite it as

f kðwkþ1Þ � f ðwkþ1Þ �
1� 	

	
½ f ðwkÞ � f ðwkþ1Þ�: ð3:15Þ

Combining the last inequality with (3.14) and using the obvious relation
f (x*)� f k(x*) we obtain

f ðx*Þ � f ðwkþ1Þ þ
1� 	

	
½ f ðwkþ1Þ � f ðwkÞ� � �hwkþ1 � wk, x* � wkþ1i:

This can be substituted to the identity (3.9) which, after skipping the last term,
yields

kwkþ1 � x*k2 � kwk � x*k2 �
2

�
½ f ðwkþ1Þ � f ðx*Þ�

þ
2ð1� 	Þ

	�
½ f ðwkÞ � f ðwkþ1Þ� for all k 2 K: ð3:16Þ

It is very similar to inequality (3.11) in the proof of Theorem 9, and our
analysis will follow the same line.

The series
P1

k¼1 ½ f ðw
kÞ � f ðwkþ1Þ� is convergent, because { f (wk)} is

nonincreasing and bounded from below by f (x*). Therefore, we obtain
from (3.16) that the distance kwkþ 1

�x*k is uniformly bounded, and {wk}
must have accumulation points.

Summing up (3.16) for k2K we get

X
k2K
ð f ðwkþ1Þ � f ðx*ÞÞ �

�

2
kw1 � x*k2 þ

1� 	

	
f ðw1Þ � lim

k!1
f ðwkÞ

� 
,
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so f (wkþ 1)! f (x*), k2K. Consequently, at every accumulation point ~xx
of {wk} one has f ð ~xxÞ ¼ f ðx*Þ. Since ~xx is optimal, we can substitute it for x* in
(3.16). Skipping the negative term we get

kwkþ1 � ~xxk2 � kwk � ~xxk2 þ
2ð1� 	Þ

	�
½ f ðwkÞ � f ðwkþ1Þ�:

It is true not only for k2K but for all k, because at k 62K we
have a trivial equality here. Summing these inequalities from k¼ j to k¼ l>j
we get

kwlþ1 � ~xxk2 � kwj � ~xxk2 þ
2ð1� 	Þ

	�
½ f ðwjÞ � f ðwlþ1Þ�:

Since ~xx is an accumulation point, for any ">0 we can find j such that
kwj � ~xxk � ". Also, if j is large enough, f (wj )�f (wlþ 1)� " for all l>j, because
{ f(wk)} is convergent. Then kwlþ1 � ~xxk2 � "2 þ 2"ð1� 	Þ=ð	�Þ for all l>j, so
the entire sequence {wk} is convergent to ~xx. u

Let us now prove a useful technical property of the Regularized
Decomposition Method.

Remark 14. Under the conditions of Theorem 13,

lim
k!1

k ¼ f *, ð3:17Þ

lim
k!1

f kðxkþ1Þ ¼ f *, ð3:18Þ

lim
k!1
ðxkþ1 � wkÞ ¼ 0, ð3:19Þ

where f * is the optimal value of our problem.

Proof. We shall prove at first that

f ðwkÞ � 	k � f ðwk�1Þ � 	k�1, k ¼ 1, 2, . . . : ð3:20Þ
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The inequality is true at all null steps, as shown in the proof of Lemma 12. If
there is serious step at iteration k, we get from (3.13) that

k � min
x

f kðxÞ þ
�

2
kx� wkk2

h i
� min

x
f k�1ðwkÞ þ �hwk�1 � wk, x� wki þ

�

2
kx� wkk2

h i
¼ f k�1ðwkÞ �

�

2
kwk � wk�1k2

¼ k�1 � �kw
k � wk�1k2: ð3:21Þ

The test for a serious step is satisfied, so

f ðwk�1Þ � f ðwkÞ � 	½ f ðwk�1Þ � f k�1ðwkÞ�

¼ 	½ f k�1ðwk�1Þ � f k�1ðwkÞ� � 	�kwk � wk�1k2,

where in the last transformation we have used (3.13) again. Combining the last
relation with (3.21) we obtain (3.20), as required.

The optimal value of the master satisfies the inequality k� f (wk), so

f ðwkÞ � 	k � ð1� 	Þf ðw
kÞ � ð1� 	Þ f *:

It follows from (3.20) that the sequence { f (wk)�	k} is convergent, hence {k}
is convergent. If there is a serious step at iteration k, inequality (3.15) implies
that

f ðwkÞ � k � f kðwkþ1Þ � f ðwkþ1Þ �
1� 	

	
½ f ðwkÞ � f ðwkþ1Þ�:

Both sides converge to f * as k!1, k2K, so k! f * at serious steps. But the
entire sequence {k} is convergent and (3.17) follows.

The objective of the master problem (3.1) is strictly convex. Therefore, its
value at wk can be estimated by using its minimum value, k, and the distance
to the minimum, kwk

�xkþ 1
k, as follows:

f ðwkÞ � k þ
�

2
wk � xkþ1
�� ��2:

Therefore,

0 �
�

2
wk � xkþ1
�� ��2� f ðwkÞ � k:
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Since the right hand side converges to zero, (3.19) holds. Relation (3.18)
follows directly from it. u

If problem (1.3) has feasible solutions but is unbounded, the Regularized
Decomposition Method generates a sequence {wk} such that f(w k)!�1. To
prove this suppose that f(wk) remains bounded from below. Then we can
choose x* such that f(x*)<f(wk) for all k, and inequality (3.16) remains true.
Thus, f(wk)! f(x*) as proved in the above theorem. But f(x*) can be made
arbitrarily small by the choice of x*, and we obtain absurd.

Our analysis, so far, did not rely on the fact that the function f( � ) is
polyhedral. Actually, the convexity and Assumption 11 are sufficient for the
convergence of the Regularized Decomposition Method to a solution, if a
solution exists.

In the polyhedral case we can prove finite convergence of the method,
provided that basic cuts are employed and that the deletion rules are slightly
refined.

Lemma 15. Suppose that problem (1.3) has an optimal solution. Assume that the
Regularized Decomposition Method uses basic objective and feasibility cuts. If
the method does not stop then the number of serious steps is infinite and there
exists k0 such that for all k>k0

xkþ1 ¼ arg min f kð�Þ, ð3:22Þ

and

f kðxkþ1Þ ¼ f *, ð3:23Þ

where f * denotes the optimal value of f.

Proof. By Theorem 13, the sequence {wk} is convergent to some optimal
solution x*. If the number of serious steps is finite, we must have wk

¼ x* for
all sufficiently large k. We have already discussed such a situation before
Lemma 12. Since each new cut added at Step 1 cuts the current master’s
solution off, the optimal value of (3.1) increases after each null step. The
number of possible combinations of basic cuts is finite, so the stopping test of
Step 4 must activate. Thus, if the method does not stop, the number of serious
steps must be infinite.

Let us now look more closely at the master problem (3.1). The necessary
condition of optimality for (3.1) implies

��ðxkþ1 � wkÞ 2 @f kðxkþ1Þ: ð3:24Þ
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There are only finitely many models f k( � ) possible and each of them, as a
polyhedral function, has finitely many different subdifferentials. Therefore,
the quantity dist(0, @f k(xkþ 1)) may take only finitely many different values.
Since the left hand side of (3.24) converges to zero by Remark 14, we must
have

0 2 @f kðxkþ1Þ

for all sufficiently large k, so (3.22) is true.
Since only finitely many different minimum values of models f k( � ) may

occur, Remark 14 implies (3.23) for all sufficiently large k. u

It follows that in the case of infinitely many steps, the serious steps of the
Regularized Decomposition Method look (for all sufficiently large k) similarly
to the steps of the Cutting Plane Method. The only role of the regularizing
term at these late iterations is to select the solution of the linear master
problem that is closest to the current center wk. We also see that the minimum
value of the linear master does not change and remains equal to the minimum
value of the original problem. We need, therefore, to exclude the possibility of
infinitely many such degenerate iterations. To achieve this, we need to slightly
modify the algorithm.

The simplest modification is to forbid deletion of cuts at any iteration k at
which the value of the linear part of the master’s objective does not change,
i.e., when

f kðxkþ1Þ ¼ f k�1ðxkÞ:

Indeed, by Lemma 15, after finitely many steps the Regularized
Decomposition Method will enter the phase when (3.23) holds. From then
on, no deletion will take place. By (3.22) the optimal solution of each master
problem is the same as the optimal solution of the master problem (2.25) of the
multicut method. By Theorem 5, the method will stop after finitely many steps.

The possibility to delete inactive cuts is one of the main computational
advantages of the Regularized Decomposition Method. It becomes
particularly important when the number of scenarios S is much larger than
the dimension n1 of the first stage vector x. The number of linearly
independent active cuts in (3.1) cannot exceed n1þS. Since each of S models
Qk,s( � ) must have at least one active objective cut, it follows that at most n1 of
them will be represented by more than one active cut. We call them critical
scenarios. All the other scenarios can be sufficiently well represented by linear
models. Increasing S can only increase the number of noncritical scenarios,
which do not contribute much to the complexity of the problem. Clearly, the
set of critical scenarios depends on the current data: �, wk, f k. Our algorithm
can be viewed as an iterative way of updating this set, by introducing new cuts
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to some scenarios (possibly making them critical) and removing cuts from
some other scenarios (possibly making them noncritical). The notion of
critical scenarios can also be exploited in developing methods for the solution
of the master problem (3.1).

The efficiency of the Regularized Decomposition Method can be improved
by dynamically changing the proximal parameter, �. The general principle
is clear: if the steps are too long, increase �, if they are too short, decrease �.
A good way to decide whether steps are too long is to observe the difference

�k ¼ f ðxkÞ � f ðwk�1Þ:

We know that if it is positive (actually, not sufficiently negative) a null step will
be made. If �k is large, for example larger than f(wk�1)�f k�1(xk), it is
advisable to increase �. On the other hand, when f(xk)¼ f k�1(xk), we may
conclude that the step is too short, because we do not learn new cuts, so � has
to be decreased. Detailed rules are discussed in the literature listed at the end
of this chapter.

Another practical question associated with the Regularized Decomposition
Method is the solution of the master problem (3.1). While for linear master
problems, like (2.25), commercially available linear programming solvers may
be employed, the regularized master requires a quadratic programming solver.
Fortunately, the quadratic regularizing term is particularly simple, just the
sum of squares, so the problem is very stable.

To allow infeasible starting points, we may add the constraints vs��M to
the master (3.3)–(3.6), where �M is a lower bound for the optimal cost. If no
feasible solution exists, the method will discover it in finitely many steps.

4 Trust region methods

One of the advantages of the Regularized Decomposition Method over the
Cutting Plane Method is the ability to control the length of the steps made. It
avoids making long shots towards minima of poor approximations and it
makes good use of a reasonable initial point. Another way to prevent
inefficient long steps is to explicitly limit the step size in the master problem
(2.11)–(2.14) or in its multicut version (2.25). This is the idea of Trust Region
Methods. The trust region master has the form

Min
x2X

cTxþ
XS
s¼1

psQ
k,sðxÞ

( )
, ð4:1Þ

s:t: kx� wkk
*
� �: ð4:2Þ
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Here, similarly to the Regularized Decomposition Method, wk is the ‘‘best’’
point found so far. The role of the constraint (4.2) is to keep the master’s
solution, xkþ 1, in a neighborhood of wk: a ball of radius �>0 centered at wk.

From the theoretical point of view, the norm k � k* may be any norm in R
n1 .

However, if we use the Euclidean norm, the master problem (4.1)–(4.2)
becomes a quadratically constrained optimization problem. There is no
advantage of using it instead of the regularized decomposition master (3.1).
Indeed, if �k is the Lagrange multiplier associated with the constraint

kx� wkk2 � �2,

which is equivalent to (4.2), then xkþ 1 is also a solution of the regular-
ized master (3.1) with �¼ 2�k. For these reasons we shall discuss the Trust
Region Method with

kdk
*
¼ max

1� j� n1
jdjj:

Then the constraint (4.2) can be represented as simple bounds

�� � xj � wk
j � �, j ¼ 1, . . . , n1,

and the master problem (4.1)–(4.2) becomes a linear programming problem.
Our presentation of the Trust Region Method will be very similar to the

description of the Regularized Decomposition Method. We use f k(x) to
denote the master’s objective:

f kðxÞ ¼
cTxþ

PS
s¼1 psQ

k,sðxÞ if x 2 X ,
þ1 otherwise:

�

As before, we assume that the initial point x1 is such that Q(x1)<1. Also,
	 2 (0, 1) is a parameter of the method used to judge whether the master’s
solution, xkþ 1, is significantly better than wk. The detailed algorithm is
presented in Fig. 5.

The analysis of convergence of the Trust Region Method is much easier
than in the case of the Regularized Decomposition Method.

Theorem 16. Suppose that problem (1.3) has an optimal solution. Then the
sequence {wk} generated by the Trust Region Method has the property that

lim
k!1

f ðwkÞ ¼ f *,

where f * is the optimal value of (1.3).
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Proof. Suppose that the number of serious steps is finite and let w denote the
last point to which a serious step has been made. After the last serious step,
the Trust Region Method becomes identical with the Cutting Plane Method
(in its multicut version), for problem (1.3) with the additional constraint
that kx�wk*��. By Theorem 5 we have that { f(xk)} is convergent to the
minimum value of the problem having the additional constraint kx�wk*��.
This minimum value must be equal to f(w), if no serious steps are made after
w. Thus f (w)¼ f *, since otherwise a small step from w towards an optimal
solution x* would guarantee improvement.

Let us now consider the case of infinitely many serious steps. Let x* be a
solution of problem (1.3), and let

hk ¼ kw
k � x*k

*
:

Suppose that there is a serious step after iteration k, that is wkþ 1
¼xkþ 1.

Then we have (by the rule of Step 2)

f ðxkþ1Þ � f * � ð1� 	Þð f ðwkÞ � f *Þ þ 	ð f kðxkþ1Þ � f *Þ: ð4:3Þ

If hk��, then x* is feasible for the master problem and

f kðxkþ1Þ � f kðx*Þ � f ðx*Þ:

Step 0. Set k¼ 1, J0
objðsÞ ¼ ;, J

0
feaðsÞ ¼ ;, v

1,s
¼�1, s¼ 1,. . . ,S.

Step 1. For s¼ 1,. . . ,S solve subproblem (1.4) with x¼ xk.

(a) If Qs(xk)<1 then set Jk
feaðsÞ ¼ Jk�1

fea ðsÞ. If Q
s(xk)>vk,s then construct the objective

cut (2.3) and set Jk
objðsÞ ¼ Jk�1

obj ðsÞ [ fkg; otherwise set Jk
objðsÞ ¼ Jk�1

obj ðsÞ.

(b) If Qs(xk)¼1 (i.e., problem (1.4) is infeasible), construct the feasibility cut (2.6) and

set Jk
objðsÞ ¼ Jk�1

obj ðsÞ, J
k
feaðsÞ ¼ Jk�1

fea ðsÞ [ fkg.

Step 2. If k¼ 1 or if

f ðxkÞ � ð1� 	Þf ðwk�1Þ þ 	f k�1ðxkÞ,

then set wk
¼ xk; otherwise set wk

¼wk�1.

Step 3. Solve the master problem (4.1)–(4.2). If it is infeasible, stop (the original problem

has no feasible solutions). Otherwise, denote by (xkþ 1, vkþ 1) its solution and set

f kðxkþ1Þ ¼ cTxkþ1 þ
PS

s¼1 psv
kþ1,s.

Step 4. If f k(xkþ 1)¼ f (wk) then stop (wk is an optimal solution); otherwise increase k by

one, and go to Step 1.

Fig. 5. The trust region algorithm.
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This combined with (4.3) yields

f ðxkþ1Þ � f * � ð1� 	Þð f ðwkÞ � f *Þ:

Suppose now that hk>�. Consider the point

~xx ¼
�

hk
x* þ 1�

�

hk

� �
wk:

By construction, its distance to wk is �. Since it is feasible for the master
problem, we have

f kðxkþ1Þ � f * � f kð ~xxÞ � f * � 1�
�

hk

� �
ð f ðwkÞ � f *Þ,

where we have also used the convexity of f k( � ). Combining this inequality
with (4.3) we see that

f ðxkþ1Þ � f * � 1�
	�

hk

� �
ð f ðwkÞ � f *Þ:

In both cases, if there is a serious step after iteration k we have

f ðwkþ1Þ � f * � 1�
	�

maxð�, hkÞ

� �
ð f ðwkÞ � f *Þ:

Let the index l¼ 1, 2, . . . number the serious steps only and let us write �l for
the value of f(wk)�f * at the l-th new center wk. The last inequality can be then
rewritten as

�lþ1 � 1�
	�

maxð�, hkðlÞÞ

� �
�l , l ¼ 1, 2, . . . ,

where k(l ) is the iteration number at which the l-th serious step is made. By the
triangle inequality for the norm k � k* we have

hkðlÞ � h1 þ l�:
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Therefore,

�lþ1 � 1�
	�

h1 þ l�

� �
�l, l ¼ 1, 2, . . . , ð4:4Þ

The sequence {�l} is decreasing and bounded from below by 0. Suppose that
�l� ">0 for all l. Then, summing (4.4) from l¼ 1 to m we obtain

0 � �mþ1 � �1 � "	�
Xm
l¼1

1

h1 þ l�
,

which yields a contradiction as m!1, because the series
P1

l¼1 l�1 is
divergent. Thus �l! 0. u

Let us observe that we have not used the polyhedrality of f( � ) in our
analysis. In fact, Theorem 16 remains true for the convex problem (2.37)–
(2.38). The proof can be repeated verbatim, only at the beginning, in the case
of finitely many serious steps, we have to use Theorem 7 instead of Theorem 5.

Also, similarly to the analysis of the Regularized Decomposition Method,
we can prove that f(wk)! inf f even if the problem has no solution.5 Indeed,
suppose that there exists f *>inf f such that f(wk)� f * for all k. Then Theorem
16 implies that f(wk)! f *. But f * can be chosen arbitrarily close to inf f, and
the result follows.

In the linear case we can prove the finite convergence of the Trust Region
Method.

Theorem 17. The Trust Region Method finds an optimal solution of problem
(1.3) after finitely many steps.

Proof. If the number of serious steps is finite, the result follows from
Theorem 5. Suppose that the number of serious steps is infinite. It follows
from Theorem 16 that, for sufficiently large k, there exists an optimal solution
in the �-neighborhood of wk. Therefore,

f kðxkþ1Þ � f *,

for all sufficiently large k.
Proceeding as in the proof of Theorem 5 we conclude that the number of

steps at which new cuts are added to the master problem must be finite,
because there are finitely many cells of linearity of f( � ). Thus,

f ðxkþ1Þ ¼ f kðxkþ1Þ

5 inf f denotes the infimum of f over the feasible set of (1.3).
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for all sufficiently large k. Combining the last two relations we see that we
must have f(xkþ 1)¼ f * for all sufficiently large k. Consequently, only one
serious step can be made after that, a contradiction. u

As in the case of the Cutting Plane Method, deleting inactive cuts is not
easy. If we use basic cuts alone, we may afford deleting inactive cuts whenever
the optimal value of the master problem increases. For general subgradient
cuts, no reliable rule can be found. Things are easier if we use the Euclidean
norm for the trust region definition, because the arguments from the analysis
of the Regularized Decomposition Method apply here. Using Euclidean
norms, though, does not provide any significant benefits over the Regularized
Decomposition Method.

The size of the trust region �, similarly to the parameter � of the
Regularized Decomposition Method, can be adjusted in the course of
computation. If f(xkþ 1) is significantly larger than f k(xkþ 1), we may decrease
� to avoid too long steps. If no new cuts are generated, we may increase � to
allow longer steps.

The Trust Region Method has been defined and analyzed under the
assumption that a feasible starting point, x1, is known. If such a point is not
readily available, we may add the constraints vs��M to (2.14), and start the
method with some�>0. If inconsistency is detected (which must happen after
finitely many steps by Theorem 5), we may increase �, and repeat the
procedure. If (1.3) has feasible points, after finitely many such adjustments a
feasible point will be found. After that, wemay return to a smaller�, if we wish.

5 Nested cutting plane methods for multistage problems

5.1 Basic ideas

The idea of cutting plane methods can be extended to linear and polyhedral
multistage stochastic programming problems with finitely many scenarios. We
shall present it for the polyhedral model analyzed in detail in Chapter 2. The
problem has the form:

Min E

n
f1ðx1, �1Þ þ f2ðx2, �2Þ þ f3ðx3, �3Þ þ � � � þ fT ðxT , �T Þ

o
s:t: A11ð�1Þx1 ¼ b1ð�1Þ,

A21ð�2Þx1 þ A22ð�2Þx2 ¼ b2ð�2Þ,

A32ð�3Þx2 þ A33ð�3Þx3 ¼ b3ð�3Þ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AT ,T�1ð�T ÞxT�1 þ ATT ð�T ÞxT ¼ bT ð�T Þ,

ð5:1Þ
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where ft, t¼ 1,. . . ,T, are random polyhedral functions, as defined in Chapter 2.
In (5.1) each xt¼xt(�[1,t]) is a function of �[1,t], the random data of the
problem. We assume that the process � has finitely many scenarios:
�s ¼ ð�s1, . . . , �

s
T Þ, each of them with probability ps>0.

The probabilistic structure of the random data can be given in the form of a
scenario tree. It has nodes arranged at levels which correspond to stages
1, 2,. . . ,T. At level 1 we have only one root node, and we associate with it the
value of �1 (which is known at stage 1). At level 2 we have at least as many
nodes as many different realizations of �2 may occur. Each of them is
connected with the root node by an arc. For each node i at level 2 (which
corresponds to a particular realization �ðiÞ2 of �2) we create at least as many
nodes at level 3 as different values of �3 may follow �ðiÞ2 , and we connect
them with the node i, etc. Generally, nodes at level t correspond to possible
values of �t that may occur. Each of them is connected to a unique node at
level t�1, called the ancestor node, which corresponds to the identical first t�1
parts of the process �[1,t], and is also connected to nodes at level tþ 1,
which correspond to possible continuations of �[1,t]. The set of nodes is
denoted N. We refer the reader to Figure 2 in Chapter 1 for an example of a
scenario tree.

For each node i2N and its ancestor a¼ a(i) in the scenario tree we denote
by �ai the probability of moving from node a to node i. Each probability �ai
can be viewed as the conditional probability of the process being in node
i given its history up to the ancestor node a¼ a(i). We can relate them to
scenario probabilities ps as follows. Every scenario s can be defined by its
nodes i1, i2,. . . , iT, arranged in the chronological order, i.e., node i2 (at
level t¼ 2) is connected to the root i1¼ 1, node i3 is connected to the node
i2, etc. The probability of that scenario is then given by the product
ps ¼ �i1i2�i2i3 � � � �iT�1iT .

It is also convenient to introduce node probabilities p(i). Denoting by B(i)

the set of scenarios passing through node i (at level t) of the scenario tree, we
let p(i) :¼P[B(i)]. If i1, i2,. . . , it, with i1¼ 1 and it¼ i, is the history of the process
up to node i, then the probability p(i) is given by the product

pðiÞ ¼ �i1i2�i2i3 � � � �it�1it

of the corresponding conditional probabilities. We also have the
recursive relation: p(i)¼�aip

(a), where a¼ a(i) is the ancestor of the node i.
This equation defines the conditional probability �ai from the probabilities
p(i) and p(a).

Proceeding exactly as in Section 3.2 of Chapter 1, we denote the value
of xt associated with node i at level t by x(i). Similarly, let T (i), W (i) and h(i)

be the values At,t�1, Att and bt in scenarios passing through node i. Finally,
let f (i)( � )¼ ft( � , �

s), where s is a scenario passing through node i (the value
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of �t is identical in all these scenarios). We can then rewrite the problem as
follows

Min
X
i2N

pðiÞf ðiÞðxðiÞÞ

s:t: T ðiÞxðaðiÞÞ þW ðiÞxðiÞ ¼ hðiÞ, i 2 N nf1g,
W ð1Þxð1Þ ¼ hð1Þ: ð5:2Þ

The idea of nested decomposition is embedded in the tree formulation (5.2).
For each node i of the scenario tree we define the subtree T (i) rooted at i and
the associated cost-to-go function

QðiÞðxðaðiÞÞÞ :¼ inf
X
j2T ðiÞ

�ijf
ðjÞðx ðjÞÞ

��� T ðjÞxa ðjÞ þW ðjÞx ðjÞ ¼ h ðjÞ, j 2 T ðiÞ
( )

ð5:3Þ

with �ij¼ p(j)/p(i) denoting the conditional probability of reaching node j2 T (i)
from i. It is the specialization to the tree model of the function defined in
Chapter 2, formula (3.3). Our superscript (i) of Q represents in a sufficient way
the entire history of � before node i has been reached.6

As outlined in Chapters 1 and 2, these functions are related through the
dynamic programming equation

QðiÞðxðaðiÞÞÞ ¼ inf
xðiÞ

f ðiÞðxðiÞÞ þ
X
j2SðiÞ

�ijQ
ð jÞðxðiÞÞ

��� T ðiÞxðaðiÞÞ þW ðiÞxðiÞ ¼ hðiÞ

( )
,

ð5:4Þ

where S(i) is the set of successors of node i: such j that i¼ a( j). Clearly, when
i is the leaf node (it corresponds to the last stage T ) there are no successors,
and the summation is over the empty set. If i is the root node corresponding to
the initial stage, there is no ancestor a(i), and Q has no arguments (it is just the
optimal value of the entire problem). However, for the uniformity of notation,
we shall work with the general form (5.4).

By Propositions 21 and 30 of Chapter 2, each cost-to-go function Q(i)( � ),
if it is finite at at least one point, is a convex polyhedral function.
Therefore, (5.4) is a two-stage problem with convex polyhedral ‘second-stage’
functions Q( j)( � ).

Equation (5.4) carries much information about our problem. In particular,
it allows us to construct in a recursive way polyhedral approximations to the

6 For i¼ 1 the cost-to-go Q(1) has no arguments and represents the optimal value of problem (5.1).
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cost-to-go functions at every node, by employing objective and feasibility cuts
in a manner similar to the two-stage case. Indeed, let Qð jÞð�Þ be lower
polyhedral approximations to Q(j)( � ), j2S(i). Then

QðiÞðxðaðiÞÞÞ � inf
xðiÞ

f ðiÞðxðiÞÞ þ
X
j2SðiÞ

�ijQ
ð jÞðxðiÞÞ

���T ðiÞxðaðiÞÞ þW ðiÞxðiÞ ¼ hðiÞ

( )
:

ð5:5Þ

Let x(a(i)) be fixed and let the problem at the right hand side of (5.5) have a
solution with the optimal value vðxðaðiÞÞÞ. Denote by �(i) the Lagrange
multipliers associated with the constraint T(i)x(a(i))þW(i)x(i)¼ h(i). Then, by
Proposition 21 of Chapter 2, we can construct an objective cut, similarly
to (2.3):

QðiÞðxÞ � vðxðaðiÞÞÞ � h½T ðiÞ�T�ðiÞ, x� xðaðiÞÞi for all x:

This inequality defines an objective cut:

QðiÞðxÞ � �ðiÞ þ ðgðiÞÞTx, for all x, ð5:6Þ

where

gðiÞ ¼ �ðT ðiÞÞT�ðiÞ, ð5:7Þ

�ðiÞ ¼ vðxðaðiÞÞÞ þ ð�ðiÞÞTT ðiÞxðaðiÞÞ: ð5:8Þ

Thus, to obtain an objective cut for Q(i)( � ) at x(a(i)) we need to solve the
problem at the right hand side of (5.5), retrieve the Lagrange multipliers �(i)

associated with its constraints, and apply formulas (5.6)–(5.8). In general, we
have

vðxðaðiÞÞÞ � QðiÞðxðaðiÞÞÞ,

and our objective cut does not have to support Q(i)( � ) at x(a(i)). However, if the
models Qð jÞðxðiÞÞ, j2S(i), are exact, then our objective cut is exact at x(a(i)).

If the problem in (5.5) is infeasible, we can construct a feasibility cut,

�ðiÞ þ ðrðiÞÞTx � 0, ð5:9Þ

similarly to the way described in Section 2.1. If f (i)( � ) is a linear function, we
proceed identically as in Section 2.1. If f (i)( � ) is a more complex convex
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polyhedral function, we convert the problem in a usual way to a problem with
a linear objective, by adding one new variable and new constraints describing
the pieces of f (i)( � ).

It is important to remember that the right hand side of (5.5) is a lower
bound for Q(i)( � ), so the feasibility cuts remain valid for the true cost-to-go
function.

5.2 The nested cutting plane method

With each node of the scenario tree we can associate an approximate
problem P(i) of the form appearing at the right hand side of (5.5). Each of
these problems maintains and updates the following data: its current solution
x(i), convex polyhedral models of the cost-to-go functions Qð jÞð�Þ of its
successors j2S(i) (if any), and the current approximation v(i) of the optimal
value of its own cost-to-go function. The operation of each subproblem is
formalized in Fig. 6.

It remains to describe the way in which these subproblems are initiated,
activated in the course of the solution procedure, and terminated.

We assume that we know a sufficiently large numberM such that each cost-
to-go function can be bounded from below by �M. Our initial approxi-
mations of the successors’ functions are just

QðjÞð�Þ ¼ �M:

Step 1. If i is not the root node, retrieve from the ancestor problem P(a(i)) its current

approximate solution x(a(i)).

Step 2. If i is not a leaf node, retrieve from each successor problem P( j ), j2 S(i), all new

objective and feasibility cuts and update the approximations of their cost-to-go

functions QðjÞð�Þ.

Step 3. Solve the problem

Min f ðiÞðxðiÞÞ þ
X
j2SðiÞ

�ijQ
ð jÞðxðiÞÞ

( )

s:t: T ðiÞxðaðiÞÞ þW ðiÞxðiÞ ¼ hðiÞ:

(a) If it is solvable, replace x(i) by the new solution and v(i) by the optimal value. If

i is not the root node and v(i) increased, construct a new objective cut (5.6)–(5.8).

(b) If the problem is infeasible, and i is not the root node, construct a new feasibility

cut (5.9). If i is the root node, then stop, because the entire problem is infeasible.

Step 4. Wait for the command to activate again, and then go to Step 1.

Fig. 6. Subproblem P(i) of the nested decomposition method.
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At the beginning, no ancestor solutions are available, but we can initiate
each subproblem with some arbitrary point x(i)2 dom f (i).

There is much freedom in determining the order in which the subproblems
are solved. Three rules have to be observed.

I. There is no sense to activate a subproblem P(i) whose ancestor’s
solution x(a(i)) did not change, and whose successors P( j), j2S(i), did
not generate any new cuts since this problem was activated last.

II. If a subproblem P(i) has a new solution x(i), each of its successors P( j),
j2S(i) has to be activated some time after this solution has been
obtained.

III. If a subproblem P(i) generates a new cut, i.e., if it is infeasible or has a
new optimal value v(i), its ancestor P(a(i)) has to be activated some time
after this cut has been generated.

We shall terminate the method if Rule I applies to all subproblems, in
which case we claim that the current solutions x(i) constitute the optimal
solution of the entire problem. The other stopping test is the infeasibility test
at Step 3(a) for the root node. It is obvious, because we operate with
relaxations here, and if a relaxation is infeasible, so is the true problem.

Theorem 18. The Nested Cutting Plane Method after finitely many subproblem
solutions either discovers the infeasibility of problem (5.1) or stops at its optimal
solution.

Proof. Arguing exactly as in the proofs of Theorems 4 and 5 we can prove
that each leaf subproblem can generate only finitely many different object-
ive and feasibility cuts. Thus, each of its predecessors can have only finitely
many different polyhedral models of the leaves’ optimal value functions.
Consequently, it can also generate only finitely many different objective and
feasibility cuts. Proceeding in this way from the leaves to the root we conclude
that the root subproblem can be activated only finitely many times, because it
may receive only finitely many different cuts. This, however, implies that its
successors can be activated only finitely many times, by new root’s solutions
or by new cuts coming from their successors. Continuing this argument from
the root to the leaves we deduce that each subproblem can be activated only
finitely many times. The method must stop.

Suppose that the method stops as a result of Rule I. Consider the
immediate predecessors of the leaf nodes. Arguing as in the proofs of
Theorems 4 and 5 we have

xðiÞ ¼ arg min f ðiÞðxÞ þ
X
j2SðiÞ

�ijQ
ð jÞðxÞ j T ðiÞxðaðiÞÞ þW ðiÞx ¼ hðiÞ

( )
:

ð5:10Þ
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Moreover, we know that the cuts generated at these solutions support Q(i) at
x(a(i)). Thus, QðiÞðxðaðiÞÞÞ ¼ QðiÞðxðaðiÞÞÞ. Consequently, relations (5.10) must hold
at the ancestor a(i). By induction, these relations are true at all nodes.
The optimality of the current solution follows then from Theorem 34 of
Chapter 2. u

5.3 Modifications and extensions

There are many ways in which the general idea of nested decomposition can
be modified and adapted to a particular problem.

Regularization and trust regions
First, we may use the concepts of regularization or trust regions to stabilize

the iterates and to facilitate the convergence. The best place to introduce
these modifications is the root problem, associated with the first stage.
The operation of the method is then almost identical with the two-stage case:
the root node is the regularized (trust region) master, and the subtrees rooted
at its successors are giant second stage problems. The protocol for processing
the subproblems cannot be so flexible as in the purely linear method: we
need an exact solution to the ‘second stage problem’ in order to decide
whether a serious step can be made. In other words, we solve the ‘second stage
problems’ by a linear nested decomposition method with a flexible protocol,
and only after they are solved to optimality, we make adjustments at the
root node.

Regularization or trust regions at lower level nodes introduce more
complication. In general, optimal values of these modified subproblems
are no longer lower bounds for the true cost-to-go functions. Therefore,
these subproblems cannot generate objective cuts for their predecessors so
easily as linear subproblems could. Only when the entire subtree rooted at
such a subproblem is solved to optimality, a valid cut can be generated. It
follows that using regularization or trust regions at lower levels of the tree
restricts the processing order of the subproblems to depth-first protocols, in
which a subproblem is processed only if all its successors are solved to
optimality.

Cut sharing
The number of cuts that are generated and stored by the nested

decomposition method may easily become very large. In some cases we may
reduce this number by using the similarity between the cost-to-go functions
Q(i) corresponding to different nodes. The most dramatic simplification occurs
when the parts of the data vector �t, corresponding to different time stages
t¼ 1,. . . ,T are statistically independent, in which case the distribution
of �[tþ 1,T ] does not depend on �[1,t]. In simple words, the data subtrees
rooted at nodes i at level t may differ only by the data at level t and are
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identical otherwise. If the data at two nodes i and j at level t are the same, their
cost-to-go functions Q(i)( � ) and Q(j)( � ), defined by (5.3), are identical.
It follows that every cut generated for a particular function Q(i)( � ) is valid for
all other functions at this level which happen to have identical data f (i)( � ), T (i),
W (i) and h(i).

Estimating cuts
Similarly to the two-stage case discussed in Section 2.4, we may work with

estimated expected value cuts rather than with exact averages. However, in the
nested method the estimation errors propagate quickly in the subproblem tree.
For more information see the chapter on Monte Carlo methods.

6 Introduction to dual methods

Dual methods for stochastic programming problems are based on duality
relations associated with the nonanticipativity constraints. Since the methods
are essentially the same for two-stage and multistage models, we shall present
them here only for the general multistage case.

Let us consider the polyhedral multistage problem:

Min Ef f1ðx1, �1Þ þ f2ðx2, �2Þ þ f3ðx3, �3Þ þ � � � þ fT ðxT , �T Þg

s:t: A11ð�1Þx1 ¼ b1ð�1Þ,

A21ð�2Þx1 þ A22ð�2Þx2 ¼ b2ð�2Þ,

A32ð�3Þx2 þ A33ð�3Þx3 ¼ b3ð�3Þ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AT ,T�1ð�T ÞxT�1 þ ATT ð�T ÞxT ¼ bT ð�T Þ,

ð6:1Þ

with each xt¼ xt(�[1,t]) being a function of �[1,t]. We assume throughout this
chapter that the process �t, t¼ 1,. . . ,T, has finitely many realizations, �s,
s¼ 1,. . . ,S, attained with probabilities p1,. . . , ps. The objective parts
associated with the successive stages, ft(xt, �t), t¼ 1,. . . ,T, are random
polyhedral functions.7

In the dual approach we assume that each decision xt may depend on all
random data, �. Since � has finitely many realizations we may model our
assumption by assigning a decision sequence,

xs ¼ ðxs1, . . . , x
s
T Þ,

7 See Chapter 2, Section 2.3.
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to the sth realization of �. The problem takes on the form

Min
XS
s¼1

ps½ f1ðx
s
1, �

s
1Þ þ f2ðx

s
2, �

s
2Þ þ f3ðx

s
3, �

s
3Þ þ � � � þ fT ðx

s
T , �

s
T Þ�

s:t: A11ð�
s
1Þx

s
1 ¼ b1ð�

s
1Þ,

A21ð�
s
2Þx

s
1 þ A22ð�

s
2Þx

s
2 ¼ b2ð�

s
2Þ,

A32ð�
s
3Þx

s
2 þ A33ð�

s
3Þx

s
3 ¼ b3ð�

s
3Þ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AT ,T�1ð�
s
T Þx

s
T�1 þ ATT ð�

s
T Þx

s
T ¼ bT ð�

s
T Þ,

s ¼ 1, . . . , S:

ð6:2Þ

As discussed extensively in Chapters 1 and 2, this formulation is not
equivalent to the original problem (6.1), unless we introduce additional
constraints that limit the dependence of xt on � to the information that is
available up to time t. These conditions take the form of nonanticipativity
constraints,

xst ¼ x�t for all s, � for which �s½1,t� ¼ �
�
½1,t�, t ¼ 1, . . . , T : ð6:3Þ

Abstractly, they define a subspace W of implementable policies. For numerical
methods it is convenient to describe this subspace by a set of algebraic
equations. Clearly, (6.3) is such a set, but there is much redundancy in it. Let
us describe one way in which the nonanticipativity constraints can be written
explicitly.

Let It be the set of nodes at level t. For a node i2 It we denote by B(i) the set
of scenarios that pass through node i and are, therefore, indistinguishable
on the basis of the information available up to time t. The sets B(i) for all i2 It
are the atoms of the sigma-subalgebra Ft associated with the time stage t.
We denote them by B1

t , . . . ,B	tt .
Let us assume that all scenarios are ordered in such a way that each set B
t is

a set of consecutive numbers l
t , l


t þ 1, . . . , r
t . Then nonanticipativity can be

expressed by the system of equations

xst�x
sþ1
t ¼0, s ¼ l
t , . . . , r



t�1, t ¼ 1, . . . , T � 1, 
 ¼ 1, . . . , 	t: ð6:4Þ

In other words, each decision is related to its neighbors from the left and from
the right, if they correspond to the same node of the scenario tree. The
coefficients of constraints (6.4) define a giant matrix

G ¼ ½G1 � � � GS�
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whose rows have two nonzeros each: 1 and �1. Thus, we obtain an algebraic
description of the nonanticipativity constraints:

Gx ¼ 0:

Example 19. Consider the scenario tree depicted in Fig. 7.
Let us assume that the scenarios are numbered from the left to the right.

Our nonanticipativity constraints take on the form:

x11 � x21 ¼ 0, x21 � x31 ¼ 0, . . . , x71 � x81 ¼ 0,

x12 � x22 ¼ 0, x22 � x32 ¼ 0, x32 � x42 ¼ 0,

x52 � x62 ¼ 0, x62 � x72 ¼ 0, x72 � x82 ¼ 0,

x23 � x33 ¼ 0,

x53 � x63 ¼ 0, x63 � x73 ¼ 0:

Using I to denote an identity matrix of an appropriate dimension, we may
write the constraint matrix G as shown in Fig. 8. G is always a very sparse
matrix, because each of its rows has only two nonzeros.

Let us define the objective functions associated with the scenarios:

f sðxsÞ :¼

PT
t¼1 ftðx

s
t , �

s
t Þ if the constraints of ð6:2Þ are satisfied

for scenario s,

þ1 otherwise:

8><
>:

Fig. 7. Example of a scenario tree.
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Problem (6.2)–(6.3) can be now written compactly as

Min f ðxÞ :¼
XS
s¼1

ps f
sðxsÞ

( )

s:t: Gx ¼ 0: ð6:5Þ

The optimality conditions and the duality theory for problem (6.5) have been
studied in Chapter 2. Let us recall briefly the main concepts and results.

Consider the Lagrangian of (6.5):

Lðx, �Þ :¼ f ðxÞ þ h�, Gxi

¼
XS
s¼1

ps f
sðxsÞ þ

XS
s¼1

h�, Gsxsi:

The associated dual function has the form

Dð�Þ :¼ inf
x

Lðx, �Þ ¼
XS
s¼1

inf
xs
½ ps f

sðxsÞ þ h�, Gsxsi�: ð6:6Þ

Fig. 8. The constraint matrix corresponding to the scenario tree from Fig. 7. The

subdivision corresponds to scenario subvectors x1,. . . , x8.
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Thus,

Dð�Þ ¼
XS
s¼1

Dsð�Þ

with each Ds( � ) defined by a scenario subproblem:

Dsð�Þ ¼ inf
xs
½ ps f

sðxsÞ þ h�, Gsxsi�, s ¼ 1, . . . , S: ð6:7Þ

We see that

Dð�Þ ¼ �sup
x
½h�GT�, xi � f ðxÞ� ¼ �f *ð�GT�Þ,

where f *( � ) is the Fenchel conjugate of f ( � ). Thus, D( � ) is concave and
polyhedral. By the Fenchel–Moreau Theorem, at any point � at which
D(�)>�1 we have

@Dð�Þ ¼ fGx : x 2 X̂Xð�Þg, ð6:8Þ

where X̂Xð�Þ is the set of minimizers in (6.6).8 Clearly,

X̂Xð�Þ ¼ X̂X1ð�Þ � � � � � X̂XSð�Þ

with X̂Xsð�Þ denoting the solution set of the sth subproblem in (6.7).
We shall restrict our presentation to the case when the sets dom f s are

bounded for each s. In this case the dual functional D( � ) is finite everywhere
and each set X̂Xð�Þ is a bounded convex polyhedron.

It follows that in order to calculate the value and a subgradient of D(�) we
need to solve scenario subproblems (6.7) and aggregate their values to D(�)
and their solutions to a subgradient of D at �.

Also, we see that

Dsð�Þ ¼ �sup
xs
½h�ðGsÞ

T�, xsi � ps f
sðxsÞ� ¼ �psð f

sÞ*ð�GT�=psÞ,

Thus,

@Dsð�Þ ¼ fGsxs : xs 2 X̂Xsð�Þg: ð6:9Þ

8 Since D( � ) is concave, @D(�) is the set of vectors g such that D(�0)�D(�)þhg, �0��i for all �0.
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The dual problem has the form

Max Dð�Þ: ð6:10Þ

By the duality theory (cf. Theorems 46 and 47 of Chapter 2) we know that if
the primal problem (6.5) has an optimal solution then the dual problem (6.10)
has an optimal solution, optimal values of both problems coincide, and for
any optimal solution l̂l of the dual problem and any optimal solution x̂x of the
primal problem we have

x̂x 2 X̂Xðl̂lÞ,

i.e., the primal solution solves the scenario subproblems (6.7).
This is the fundament of the dual methods. Their main structure is the same:

employ an iterative method for solving (6.10) and recover the primal solution
from the scenario subproblems (6.7). In the solution of the dual problem we
shall take advantage of the decomposable structure of the dual function.

7 The dual cutting plane method

The structure of the dual problem (6.10) is very similar to the form of the
primal problem (1.3) discussed in connection with the two-stage model: we
have to maximize a sum of many concave polyhedral functions. Therefore, we
may adapt to our case the Cutting Plane Method presented in Section 2.

At any point �k generated by the method we can solve each scenario
subproblem (6.7) and obtain a solution xk,s. They define objective cuts:

Dsð�Þ � Dsð�kÞ þ hGsxk,s, �� �ki, s ¼ 1, . . . , S,

for each scenario subproblem, and the objective cut

Dð�Þ � Dð�kÞ þ hGxk, �� �ki ð7:1Þ

for the entire dual function.
Since the feasible sets Xs are assumed to be bounded, for any � the scenario

subproblems have optimal solutions and the dual function is bounded.
Therefore, we do not need to operate with feasibility cuts here.

We shall assume that we know a polyhedron � which contains the optimal
solution of the dual problem. It may be a sufficiently large box. Let J k be a
subset of {1,. . . , k}. The cuts collected at iterations j2 J k are included into the
master problem:

Max v ð7:2Þ
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s:t: Dð�jÞ þ hGx j, �� �ji � v, j 2 Jk, ð7:3Þ

� 2 �, ð7:4Þ

whose decision variables are � and v2R. To illustrate its meaning, let us fix �
and carry out the maximization in v. We see that the optimal value of v is
equal to

D
k
ð�Þ ¼ min

j2Jk
½Dð�jÞ þ hGxj, �� �ji�:

By the subgradient inequality (7.1), D
k
ð�Þ � Dð�Þ for all �. Thus, the master

problem (7.2)–(7.4) is the problem to maximize a certain upper estimate of the
dual functional. After this problem is solved, the true value of the dual
functional is calculated, the approximation Dk( � ) improved, and the iteration
continues. The algorithm in its simplest form is presented in Fig. 9.

The convergence properties of the method have been analyzed in Section 2.
Theorem 4 can be rephrased here as follows.

Theorem 20. If the dual problem has an optimal solution in the set �, then the
Dual Cutting Plane Algorithm finds an optimal solution of the dual problem in
finitely many iterations.

In the presentation above we have assumed that all cuts collected at earlier
iterations are retained in the master problem, that is, J k

¼ {1,. . . , k}. We
would like to decrease their number by deleting some or all inactive cuts.
As discussed in Section 2 it is safe in the version of the method which uses so-
called basic cuts. In our case, basic cuts correspond to optimal solutions of the
scenario subproblems which are drawn from a finite set. Since the feasible sets
of the scenario subproblems are bounded convex polyhedra, such finite sets
exist: they are basic feasible solutions of the scenario subproblems. So, if our
method generates only basic solutions to scenario subproblems, we may drop
inactive cuts, whenever the optimal value of the master problem decreases.

Step 0. Set k¼ 1, J0¼;, v1¼1.

Step 1. For s¼ 1,. . . ,S solve subproblem (6.7) with �¼ �k, construct the objective cut

(7.1) and set Jk¼ Jk�1[ {k}.

Step 2. If D(�k)¼ vk then stop (optimal dual solution has been found); otherwise

continue.

Step 3. Solve the master problem (7.2)–(7.4), denote by (�kþ 1, vkþ 1) its solution,

increase k by one, and go to Step 1.

Fig. 9. The dual cutting plane algorithm.
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On the other hand, after the dual problem has been solved, we need to
recover the optimal solution of the primal problem. In general, it will not be
composed of basic solutions of the scenario subproblems. Combinations of
basic solutions are needed.

To illustrate how such a combination can be constructed, let us assume that
the optimal solution l̂l of the dual problem has been found by the Dual
Cutting PlaneMethod at iteration k, and that it is an interior point of the set�.
It follows that

0 2 @D
k
ðl̂lÞ

(because l̂l is the maximizer of D
k
ð�Þ). Therefore, there exists a subset ĴJ of

cardinality at most mþ 1 among the constraints (7.3), which has the following
properties. First, these cuts are active at l̂l, i.e.,

Dðl̂lÞ ¼ Dð�jÞ þ hGx j , l̂l� �ji, j 2 ĴJ: ð7:5Þ

Secondly, the convex hull of their gradients contains 0, that is, there exist
nonnegative multipliers �j, j 2 ĴJ, such that

X
j2ĴJ

�jGx
j ¼ 0, ð7:6Þ

X
j2ĴJ

�j ¼ 1: ð7:7Þ

The multipliers �j are Lagrange multipliers associated with the cuts indexed
by j 2 ĴJ at the optimal solution to the master problem. Consider the point

x̂x ¼
X
j2ĴJ

�jx
j:

By (7.6) it satisfies the nonanticipativity condition Gx¼ 0.
Let us denote by f̂f the common optimal value of the primal and the dual

problem. Adding equations (7.5) multiplied by �j and using (7.6)–(7.7) we get

f̂f ¼
X
j2ĴJ

�j½Dð�
jÞ � hGx j, �ji� ¼

X
j2ĴJ

�jf ðx
jÞ � f ðx̂xÞ,

where in the last inequality we have used the convexity of f. Since x̂x satisfies
the nonanticipativity constraint (see (7.6)), it is optimal.
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The dual problem, however, is rather difficult to solve, because of the large
dimension of the dual vector �. It might be interesting to compare (6.10) with
the problem (1.3) arising in the primal approach to the two-stage problem.
Both involve sums of many polyhedral functions, but in the two-stage case the
dimension of the decision vector x does not grow with the scenario number S,
which allows for efficient solution techniques exploiting the notion of critical
scenarios. On the other hand, in (6.10) the dimension of � grows with the
number of scenarios.

We can use more sophisticated algorithms to solve the dual problem (6.10):
regularized (bundle) methods or trust region methods. Their analysis is the
same as in Sections 3 and 4.

8 The augmented Lagrangian method

8.1 The basic method

The high dimension of the dual vector � in (6.10) suggests another
approach to (6.2)–(6.3): the augmented Lagrangian method. Let us consider
the compact formulation (6.5) and define the augmented Lagrangian as
follows:

L�ðx, �Þ :¼ f ðxÞ þ h�, Gxi þ
�

2
kGðxÞk2, ð8:1Þ

where �>0 is a penalty coefficient. The Multiplier Method applied to (6.5)
carries out for k¼ 1, 2,. . . the following iteration:

(a) given �k, find xk ¼ argminL�ðx, �
kÞ;

(b) set �kþ1 ¼ �k þ �Gxk.

The convergence of this algorithm is analyzed in the following theorem.

Theorem 21. Assume that the dual problem (6.10) has an optimal solution.
Then the sequence {�k} generated by the Multiplier Method after finitely many
steps finds an optimal solution of (6.10).

Proof. We shall show that the Multiplier Method is equivalent to the
Proximal Point Method9 for solving the dual problem:

�kþ1 ¼ arg max Dð�Þ �
1

2�
k�� �kk2

� �
, k ¼ 1, 2, . . . : ð8:2Þ

9 The Proximal Point Method is discussed in Sections 3.2 and 9.2.
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The problem above can be written as a max-min problem:

Max
�

Min
x2X

f ðxÞ þ h�, Gxi �
1

2�
k�� �kk2

� �
:

Let us interchange the ‘Max’ and ‘Min’ operators (we shall soon show that it
is legitimate):

Min
x2X

Max
�

f ðxÞ þ h�, Gxi �
1

2�
k�� �kk2

� �
:

Now we can calculate the maximum with respect to � in a closed form:

�ðxÞ ¼ �k þ �Gx: ð8:3Þ

After substituting the optimal �, the min-max problem becomes equivalent to

Min
x2X

L�ðx, �
kÞ:

Its solution is the point xk calculated in Step (a) of the Multiplier Method. The
corresponding multiplier value follows from (8.3) and is equal to �kþ 1, as
defined in Step (b) of the Multiplier Method. Now we can provide a proof for
the validity of the interchange of the ‘Min’ and ‘Max’ operations, by verifying
that the pair (xk, �kþ 1) is a saddle point of the function

�kðx, �Þ ¼ f ðxÞ þ h�, Gxi �
1

2�
k�� �kk2:

Indeed, �k(xk, �kþ 1)¼L�(x
k, �k) and xk minimizes L�(x, �

k) in X, while �kþ 1

maximizes h�,Gxi�(1/2�)k���kk2, as shown in (8.3). Thus the saddle point
(xk, �kþ 1) is a solution of both ‘min-max’ and ‘max-min’ problems.

The convergence of the Multiplier Method follows now from Theorems
9 and 10. u

In fact, the same result is true for the convex case (but without finite
convergence, in general).

The utmost simplicity of the multiplier update (b) is the main advantage of
this approach. On the other hand, the minimization step (a) cannot be easily
decomposed into scenario subproblems, as it could be done in (6.6) for the
ordinary Lagrangian, because of the quadratic term kGxk2. We shall address
this issue in the next section.
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8.2 The separable approximation

One possibility to overcome the nonseparability of the augmented
Lagrangian is to apply an iterative nonlinear Jacobi method to the minimi-
zation of (8.1). This method uses, at iteration j, a certain approximation ~xxk, j of
the minimizer x k in (a), and solves for each scenario s simplified problems:

x k, jþ1,s ¼ arg min
x s2Xs

ps f
sðxsÞ þ h�k, Gsx siþ

�

2
Gsx s þ

X
� 6¼s

G� ~xxk, j, �

�����
�����
2( )
:

ð8:4Þ

In other words, the augmented Lagrangian (8.1) is minimized with respect to
the decisions associated with scenario s, while keeping the decisions associated
with other scenarios � 6¼ s fixed at ~xxk, j,�. This is done for all scenarios s. Then,
with some stepsize � 2 (0, 1), the reference point is updated

~xxk, jþ1 ¼ ð1� �Þ ~xxk, j þ �xk, j,

and the iteration continues. This general scheme converges for sufficiently
small stepsizes �, but the convergence may be slow. What makes it particularly
useful in our case is its application together with the construction of the
constraint matrix G in (6.4).

The quadratic term of the augmented Lagrangian has then the form

kGxk2 ¼
XT�1
t¼1

X	t

¼1

Xr
�1
s¼l


kxst � xsþ1t k
2:

The minimization in (8.4) involves at most two simple quadratic terms for each
subvector xst , t¼ 1,. . . ,T�1, relating it to the reference values at its neighbors:
~xxs�1t and ~xxsþ1t . Not only makes it the subproblems easier to manipulate
and solve, but it has a positive impact on the speed of convergence.

Denote the functions minimized at (8.4) by

~LLsðxs, ~xx, �Þ ¼ ps f
sðxsÞ þ h�, Gsxsi þ

�

2
Gsxs þ

X
� 6¼s

G� ~xx�

�����
�����
2

,

and let

~LLðx, ~xx, �Þ ¼
XS
s¼1

~LLsðxs, ~xx, �Þ �
�

2
ðS � 1Þ

XS
�¼1

G� ~xx�

�����
�����
2

:
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Clearly, ~LLð�, ~xx, �Þ is the function minimized in parallel in (8.4). The error of the
approximation to L� can be estimated as follows.

Lemma 22. For all x, ~xx and � the following inequality is true:

jL�ðx, �Þ � ~LLðx, ~xx, �Þj �
�

2

XS
s¼1

kGsðxs � ~xxsÞk2:

Proof. By direct calculation we obtain

L�ðx, �Þ � ~LLðx, ~xx, �Þ ¼
�

2

XS
s¼1

X
� 6¼s

hGsðxs � ~xxsÞ, G�ðx� � ~xx�Þi: ð8:5Þ

The scalar products above can be nonzero only for �¼ s�1 and �¼ sþ 1
(otherwise (Gs)TG�¼ 0). For such (s, �) pairs we have

hGsðxs � ~xxsÞ, G�ðx� � ~xx�Þi¼
Xn
i¼1

Xn
l¼1

hGs
i ðx

s
i � ~xxsi Þ, G

�
l ðx

�
l � ~xx�l Þi: ð8:6Þ

Let us denote by J(s, �) the set of variables linked by nonanticipativity
constraints in scenarios s and �. We have

jhGs
i , G

�
l ij ¼

1 if l ¼ i and i 2 Jðs, �Þ,
0 otherwise,

�

and

jhGsðxs � ~xxsÞ, G�ðx� � ~xx�Þij �
X

i2Jðs,�Þ

ðxsi � ~xxsi Þðx
�
i � ~xx�i Þ

�
1

2

X
i2Jðs,�Þ

½ðxsi � ~xxsi Þ
2
þ ðx�i � ~xx�i Þ

2
�:

Using this in (8.5) we obtain the inequality

jL�ðx, �Þ � ~LLðx, ~xx, �Þj �
�

4

XS
s¼1

X
� 6¼s

X
i2Jðs,�Þ

½ðxsi � ~xxsi Þ
2
þ ðx�i � ~xx�i Þ

2
�:
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Each term ðxsi � ~xxsi Þ
2 appears in this sum at most 2kGs

ik
2 times and we can

continue our estimate as follows:

jL�ðx, �Þ � ~LLðx, ~xx, �Þj �
�

2

XS
s¼1

X
i2Jðs,�Þ

kGs
ik

2ðxsi � ~xxsi Þ
2:

Noting that the columns Gs
i , i¼ 1,. . . , n, are orthogonal, we obtain the

required result. u

Our next result estimates the progress that is made within each subproblem.

Lemma 23. Suppose that xs minimizes in Xs the function ~LLsð�, ~xx, �Þ. Then

~LLsðxs, ~xx, �Þ � ~LLsð ~xxs, ~xx, �Þ � �
�

2
kGsðxs � ~xxsÞk2:

Proof. For every gs 2 @ ~LLsðxs, ~xx, �Þ we have

~LLsð ~xxs, ~xx, �Þ � ~LLsðxs, ~xx, �Þ � hgs, ~xxs � xsi þ
�

2
kGsðxs � ~xxsÞk2:

Since xs is a minimizer, there exists a subgradient gs of ~LLsð�, ~xx, �Þ at xs such that

hgs, ~xxs � xsi � 0,

and the result follows. u

We are now ready to prove the convergence of the Jacobi method.

Theorem 24. Assume that the sets Xs, s¼ 1,. . . ,S are bounded. Then

(a) For all s¼ 1,. . . ,S we have limj!1Gsðxs, j � ~xxs, jÞ ¼ 0;
(b) Every accumulation point of the sequence ~xxk, j, j¼ 1, 2,. . . , is a minimizer

of L�(x, �
k) over X.

Proof. Let us estimate the progress made for the true augmented Lagrangian
function. By Lemma 22 we have

L�ð ~xx
k, j þ �ðxk, j � ~xxk, jÞ, �kÞ � ~LLð ~xxk, j þ �ðxk, j � ~xxk, jÞ, �kÞ

�
1

2
��2

XS
s¼1

kGsðxk, j,s � ~xxk, j, sÞk2:
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By Lemma 23 and by the convexity of ~LL,

~LLð ~xxk, jþ�ðxk, j� ~xxk, jÞ, �kÞ� ~LLð ~xxk, j, �kÞ��
1

2
��
XS
s¼1

kGsðxk, j,s � ~xxk, j,sÞk2:

Combining the last two inequalities we obtain

L�ð ~xx
k, jþ1, �kÞ � L�ð ~xx

k, j, �kÞ �
1

2
��ð1� �Þ

XS
s¼1

kGsðxs � ~xxsÞk2: ð8:7Þ

This proves (a). At any accumulation point x* we then must have that x*,s

is a minimizer of ~LLsðxs,x*, �kÞ over Xs. Thus, x* minimizes L�(x, �
k), as

required. u

It follows from our analysis that the sparsity of the nonanticipativity
constraints allows for using relatively large stepsizes in the Jacobi method.
The best estimate of the speed of convergence is obtained in (8.7) for �¼ 1/2.

Another advantage is the minimal amount of communication between
scenario subproblems within the Jacobi method. In fact, each subproblem s
needs to communicate with at most two subproblems: s�1 and sþ 1, which is
very important for parallel and distributed computation.

Also, both iterative processes: the outer iterations for the multipliers and the
inner iterations of the Jacobi method, are very simple and they can be carried
out for a very large number of scenarios, and for large scenario subproblems.

9 Progressive hedging

9.1 The method

Let us write the multistage stochastic programming problem (6.5) in an
abstract form

Min
x2W

XS
s¼1

ps f
sðxsÞ, ð9:1Þ

where W denotes the linear subspace of nonanticipative policies, that is,
policies satisfying the nonanticipativity constraints Gx¼ 0. As before, xs

denotes the sequence of decisions associated with scenario s. Using

f ðxÞ ¼
XS
s¼1

ps f
sðxsÞ
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and the indicator function of the subspace of nonanticipative policies,

�WðxÞ ¼
0 if x 2W,
þ1 otherwise,

�

we can rewrite (9.1) as follows:

Minf f ðxÞ þ �WðxÞg: ð9:2Þ

Let us note that each of the components individually is easy to deal with: f by
decomposition into scenarios, and W by linear algebra. Problems of this form
are well understood and a number of operator splitting methods have been
suggested to exploit the properties of the two components in solving the
whole. One of the most general is the Douglas–Rachford method.

The method generates a sequence (xk, uk) such that

uk 2 @�Wðx
kÞ,

which means two things: xk is an element of W, and uk2W?. This is
accomplished in the following way (�>0 is a fixed parameter):

(a) find yk and gk2 @f ( yk) such that

yk þ �gk ¼ xk � �uk; ð9:3Þ

(b) find xkþ 1
2W and ukþ 1

2W? such that

xkþ1 þ �ukþ1 ¼ yk þ �uk: ð9:4Þ

Step (a) amounts to finding

yk ¼ arg min
y

f ð yÞ þ huk, yi þ
1

2�
ky� xkk2

� �
, ð9:5Þ

and gk is the subgradient of f that appears in the necessary conditions of
optimality for this problem. Problem (9.5) decomposes into individual
scenarios

Min
ys

ps f
sð ysÞ þ huk,s, ysi þ

1

2�
kys � xk,sk2

� �
:
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Their solutions yk,s form a policy yk which is feasible with respect to scenario
constraints, but not necessarily nonanticipative. The nonanticipativity is
restored in step (b).

Since both uk and ukþ 1 are in W?, step (b) implies that

xkþ1 � yk ?W:

Therefore,

xkþ1 ¼ �Wðy
kÞ,

where �W is the orthogonal projection on the subspace of nonanticipative
policies. To perform this operation, for each time stage t we consider
bundles B1

t , . . . ,B	tt of scenarios which cannot be distinguished up to
time t. They correspond to nodes of the scenario tree located at level t.
For each of these bundles, say B j

t , we replace all yst , s 2 B j
t , by their average

on Bj
t:

xkþ1,st ¼
1

jB j
t j

X
�2Bj

t

yk,�t : ð9:6Þ

Finally, directly from (b),

ukþ1 ¼ uk þ ��1ðyk � xkþ1Þ ¼ uk þ ��1�W?ðy
kÞ:

We can specialize and simplify this general technique by taking into account
the specific nature of our objective function f and of the subspace W. We
change the scalar product in the entire decision space to

hx, uiP ¼
XS
s¼1

pshx
s, usi: ð9:7Þ

This changes in a corresponding manner W? and the orthogonal projection
operation. Then problem (9.5) (with the new scalar product and the corres-
ponding norm) decomposes into scenario subproblems

Min
ys

f sð ysÞ þ huk,s, ysi þ
1

2�
kys � xk,sk2

� �
: ð9:8Þ
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Its solution, as before, will be denoted yk,s. The orthogonal projection on W
(in the new geometry) can be calculated in way similar to (9.6), but with the
conditional expectation on B j

t , instead of the plain average:

xkþ1,st ¼
1

PðB j
t Þ

X
�2Bj

t

p�y
k,�
t : ð9:9Þ

The formula for the multiplier,

ukþ1 ¼ uk þ ��1ðyk � xkþ1Þ, ð9:10Þ

remains the same. Note that uk is always orthogonal to xk in the new geometry:
huk,xkiP¼ 0. The Progressive Hedging Method is presented in Fig. 10.

The main difficulty associated with the application of the Progressive
Hedging Method is the absence of a merit function whose improvements can
be monitored from iteration to iteration. This makes adjustments in the
penalty parameter � harder than in the case of other decomposition methods.

9.2 Convergence

To prove the convergence of the Progressive Hedging Method, we need to
put it into a more abstract framework of the theory of maximal monotone
operators. For a multivalued operator M:Rn

!
!

R
n we define its domain as the

set of x for which M(x) 6¼ ;. Its graph is the set

GðMÞ :¼ fðx, yÞ : y 2MðxÞg:

An operator M is called monotone, if

hx0 � x, y0 � yi � 0, for all x, x0 2 dom M, y 2MðxÞ, y0 2Mðx0Þ:

Step 0. Set x0¼W and u0¼W?. Set k¼ 0.

Step 1. For s¼ 1,. . . ,S solve the scenario subproblems (9.8).

Step 2. For each stage t¼ 1,. . . ,T and for each bundle B j
t of scenarios which cannot be

distinguished up to stage t, calculate the corresponding components of xkþ1,st for s 2 B j
t

by (9.9).

Step 3. Calculate new multipliers by (9.10).

Step 4. Increase k by one, and go to Step 1.

Fig. 10. The progressive hedging algorithm.
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It is maximal monotone if its graph is not contained in the graph of another
monotone operator. An example of a maximal monotone operator is the
subdifferential of a proper convex function.

Together with a maximal monotone operator M we shall consider its
resolvent:

J�M :¼ ðI þ �MÞ�1,

where �>0. It is well defined on the whole space Rn, that is, for every z2Rn

there exists a unique x2 domM and a unique y2M(x) such that z¼ xþ�y.
Consider the inclusion

0 2MðxÞ:

If x is its solution, then

x ¼ J�MðxÞ,

i.e., x is a fixed point of the resolvent. The opposite is also true: every fixed
point of the resolvent is a zero of M.

Let us introduce yet another operator derived from M:

O�M :¼ 2J�M � I :

By the maximal monotonicity of M, every z2Rn can be uniquely represented
as z¼ xþ�y with y2M(x). Then J�M(z)¼ x and we get

O�Mðxþ �yÞ ¼ x� �y: ð9:11Þ

This identity can be used as follows. Let z¼xþ�y with y2M(x), z0 ¼ x0 þ�y0

with y0 2M(x0). We have

kO�MðzÞ �O�Mðz
0Þk2 ¼ kðx� �yÞ � ðx0 � �y0Þk2

¼ kðxþ �yÞ � ðx0 þ �y0Þk2 � 4�hx� x0, y� y0i:

By the monotonicity of M, we have hx�x0, y�y0i � 0, and the last displayed
inequality yields

kO�MðzÞ �O�Mðz
0Þk � kz� z0k for all z, z0 2 R

n:

This means that the operator O�M is nonexpansive.
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For any nonexpansive D : Rn
!R

n and every �2 (0, 1) the classical method

xkþ1 ¼ ð1� �Þxk þ �DðxkÞ, k ¼ 1, 2, . . . , ð9:12Þ

is convergent to a fixed point of D, if a fixed point of D exists. By setting
D¼O�M and �¼ 1/2, we get

zkþ1 ¼ ð1� �Þzk þ �O�Mðz
kÞ ¼ J�Mðz

kÞ: ð9:13Þ

The above iteration is called the Proximal Point Method for maximal
monotone operators. We have just proved that it is convergent to a fixed point
of O�M, which, by (9.11), must be a zero of M. In the special case when M is
the subdifferential of a convex function, algorithm (9.13) becomes identical
with the method analyzed in Section 3.2, with �¼ 1/�.

We can use all these observations in the analysis of the Douglas–Rachford
method. Consider

M ¼ Aþ B,

where A and B are maximal monotone. We define the operator D as the
functional composition of O�A and O�B:

D ¼ O�A �O�B:

It is nonexpansive, because both O�A and O�B are nonexpansive. The method
(9.12) for �¼ 1/2 takes on the form:

zkþ1 ¼
1

2
O�AðO�Bðz

kÞÞ þ
1

2
zk: ð9:14Þ

It is called the Douglas–Rachford method for finding a zero of AþB.
Iterations (9.14) can be carried out as follows. We find the unique

representation zk¼ xkþ�uk with uk2B(xk). Then, by (9.11),

O�Bðz
kÞ ¼ xk � �uk:

Next, we find the unique yk and gk2A(yk) for which

yk þ �gk ¼ xk � �uk: ð9:15Þ
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This gives us

O�AðO�Bðz
kÞÞ ¼ yk � �gk:

The next point zkþ 1
¼ xkþ 1

þ�ukþ 1 is defined as

zkþ1 ¼
1

2
ð yk � �gkÞ þ

1

2
ðxk þ �ukÞ ¼ yk þ �uk: ð9:16Þ

Theorem 25. Assume that A and B are maximal monotone and a zero of AþB
exists. Then the sequence {zk} generated by the Douglas–Rachford method
(9.14) is convergent to a point ẑz ¼ x̂xþ �ûu, ûu 2 Bðx̂xÞ, such that x̂x is a zero of
AþB.

Proof. Let us assume that a fixed point of D exists. Then, by the convergence
theory of method (9.12) we know that the sequence {zk} is convergent to a
fixed point ẑz ¼ x̂xþ �ûu of D, ûu 2 Bðx̂xÞ.

It remains to characterize fixed points of D. If z1 ¼ ẑz, operations (9.15)–
(9.16) generate for all k points xk ¼ x̂x, uk ¼ ûu, yk ¼ ŷy and gk ¼ ĝg. Since
zkþ 1

¼ zk we have x̂xþ �ûu ¼ ŷyþ �ûu, so x̂x ¼ ŷy. From (9.15) we see that ûu ¼ �ĝg.
In other words,

0 ¼ ûuþ ĝg,

where ûu 2 Aðx̂xÞ and ĝg 2 Bðx̂xÞ. Thus x̂x is a zero of AþB. The converse is also
true. If x is a zero of AþB, then there exists u2A(x)\ [�B(x)] and xþ�u is a
fixed point of D. Therefore, our assumption that a zero of AþB exists implies
the existence of fixed point of D. Consequently, the sequence {xk} converges to
a zero AþB. u

In fact, the operator 1
2
ðDþ IÞ is a resolvent of another maximal monotone

operator N and the entire Douglas–Rachford method can be interpreted as a
proximal point method for N.

Now it is easy to rephrase the Progressive Hedging Method in terms of the
abstract Douglas–Rachford method for maximal monotone operators. By
setting

AðxÞ ¼ @f ðxÞ, BðxÞ ¼ @�WðxÞ,

we immediately see that (9.3)–(9.4) are identical with (9.15)–(9.16). Therefore,
the method (9.3)–(9.4) generates a sequence {xk} which is convergent to a
point x̂x at which

0 2 @f ðx̂xÞ þ @�Wðx̂xÞ:
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It is an optimal solution of (9.1) if

@ð f þ �WÞ ¼ @f þ @�W ,

which can be guaranteed by the constraint qualification condition

ri dom f \W 6¼ ;: ð9:17Þ

The same analysis can be carried out for the final version of the Progressive
Hedging Method, developed with the new scalar product (9.7) and described
in Fig. 10. Let us define the matrix

P ¼ diagf ps, s ¼ 1, . . . , Sg:

The operator

APðxÞ ¼ P�1@f ðxÞ,

which is the subdifferential of f in the new geometry, is maximal monotone
with respect to the scalar product (9.7). The operator

BPðxÞ ¼
P�1W? if x 2W,
; otherwise,

�

is maximal monotone in the new geometry, too. For these two operators steps
(9.15)–(9.16) are equivalent to (9.8)–(9.9). Thus, under the constraint
qualification condition (9.17), the sequence {xk} is convergent to a solution
of (9.1), provided that a solution exists.

10 Bibliographic notes

The cutting plane method for two-stage linear programming is due to
Benders (1962). Wets (1966) analyzed two-stage stochastic linear program-
ming problems. Van Slyke and Wets (1969) developed for these problems the
cutting plane method. The multicut version was analyzed by Birge and
Louveaux (1988). Our proof of finite termination with nonbasic cuts is
original. The cutting plane method for stochastic programming is dual to the
decomposition method of Dantzig and Wolfe (1960). It was discussed by
Dantzig and Madansky (1961). The cutting plane method for convex
programming was invented by Kelley (1960). Our analysis of the general
convex case follows Hiriart-Urruty and Lemaréchal (1993). Solution methods
for many similar scenario subproblems were developed by Wallace (1986a,b),
Haugland and Wallace (1988) and Wets (1988). Zakeri et al. (2000) discuss the
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case of inexact cuts derived from approximate solutions of subproblems.
Importance sampling was discussed by Glynn and Iglehart (1989). Stochastic
cutting plane methods were developed by Higle and Sen (1996).

The Regularized Decomposition Method was proposed by Ruszczyński
(1986). The proximal point method is due to Martinet (1970). Rockafellar
(1976a) analyzed it in the context of monotone operators. Bundle methods
were developed by Lemaréchal (1978), Mifflin (1982) and Kiwiel (1983) (see
also the monographs by Hiriart-Urruty and Lemaréchal, 1993, and by Kiwiel,
1985). Algorithmic advances were discussed in Kiwiel (1990) and Ruszczyński
and Świe�tanowski (1997).

Trust region methods are standard techniques in nonlinear and nonsmooth
optimization (see, e.g., Moré, 1983; Kiwiel, 1996). In stochastic programming
a trust region method was proposed and implemented in parallel by Linderoth
and Wright (2001). Our version and its analysis are original.

Nested decomposition for multistage linear programming was introduced
by Glassey (1973) and Ho and Manne (1974). For multistage stochastic
programming problems the method was proposed by Birge (1985), Noël and
Smeers (1986, 1987). Parallel versions were analyzed by Ruszczyński (1993),
Birge et al. (1996), Nielsen and Zenios (1996) and Dempster and Thompson
(1998). Chen and Powell (1999) use statistical estimates within nested
decomposition. Cut sharing was discussed by Infanger and Morton (1996).
Algorithmic refinements, bounds and applications are discussed by
Frauendorfer (1992) and Infanger (1994).

Decomposition based on Lagrangian duality with bundle methods for
solving the dual was analyzed by Chun and Robinson (1995). Bacaud et al.
(2001) suggest a specialized preconditioning scheme in such approaches.
General augmented Lagrangian methods are due to Hestenes (1969), Powell
(1969) and Haarhoff and Buys (1970). For a modern theory with connections
to proximal point methods see Rockafellar (1976b) and Bertsekas (1982).
Augmented Lagrangian decomposition techniques were analyzed by
Stephanopoulos and Westerberg (1975) and Cohen (1980). Scenario
decomposition for stochastic programming is due to Mulvey and
Ruszczyński (1995). Parallel versions were developed by Berger et al. (1994).
Our analysis exploiting the sparsity of the nonanticipativity constraints
follows Ruszczyński (1995).

The Progressive Hedging Method is due to Rockafellar and Wets (1991).
The operator splitting method is due to Douglas and Rachford (1956). The
proximal point method is due to Martinet (1970). Relations with augmented
Lagrangians were analyzed by Lions and Mercier (1979) and Gabay (1983).
Relations of operator splitting and proximal point methods were analyzed by
Eckstein and Bertsekas (1992). The method (9.12) for nonexpansive operators
in Banach spaces was developed by Opial (1967). Lawrence and Spingarn
(1987) analyzed its application to operator splitting methods. For further
modifications of operator splitting and their relations to bundle methods see
Kiwiel et al. (1999).
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Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of polyhedral

functions. Mathematical Programming 35, 309–333.
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Abstract

When introducing integer variables into traditional linear stochastic programs
structural properties and algorithmic approaches have to be rethought from the
very beginning. Employing basics from parametric integer programming and
probability theory we analyze the structure of stochastic integer programs. In
the algorithmic part of the paper we review solution techniques from integer
programming and discuss their impact on the specialized structures met in
stochastic programming.

Key words: Stochastic integer programs, mixed-integer recourse, simple integer
recourse, multi-stage models, decomposition schemes, cutting planes,
Lagrangian relaxation, integer L-shaped algorithm, sampling methods.

1 Introduction

Like in other branches of mathematical optimization, integer variables are
indispensable in many stochastic programming models. Integrality either may
occur explicitly via indivisibles or Boolean decisions. Or it may occur in
implicit fashion as a modelling tool, for instance when handling disjunctions
and discontinuities, or when dealing with nonconvex piecewise linearity.

As an example let us reconsider the popular newsboy problem: a newsboy
can purchase from a publisher a number of newspapers with purchase costs

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
� 2003 Elsevier Science B.V. All rights reserved.
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ci and selling costs qi, i¼ 1,. . . , s. Each newspaper has a weight ai, and a
total weight b is available to the newsboy. The demand for newspapers,
which is unknown to the newsboy at the time of purchase, is described by a
random vector h(!)2Rs on some probability space (O,F,P). Unsold
newspapers cannot be returned to the publisher. The newsboy faces the
problem to purchase from the publisher in such a way that the profit after
selling is maximal. Maximizing the expected profit leads to the stochastic
program

minfcTxþ EP½Qðx, hð!ÞÞ� : 0 � aTx � bg ð1:1Þ

where

Qðx, hð!ÞÞ ¼ minf�qTy : 0 � y � hð!Þ, y � xg: ð1:2Þ

The newsboy problem is a specimen from a class of cost minimization (or
profit maximization) problems where planning decisions must be taken before
and operational decisions are taken after observation of a random demand. It
is quite common to model these problems under the assumption that the
commodities involved are infinitely divisible. As in (1.1), (1.2) this leads to
decision variables in the real numbers. However, when dealing with
indivisibles, as the newsboy obviously does, the precise modeling would
require integer variables. The model (1.1), (1.2) then has to be supplemented
by the conditions x 2 Z

s
þ and y 2 Z

s
þ.

Now let us assume that, for renting a newsstand, for instance, the newsboy
faces fixed charge costs f when selling the newspapers. Then, disregarding
divisibility or indivisibility of goods, the discontinuity of the cost structure
leads to an integer variable in (1.2):

Qðx, hð!ÞÞ ¼ minf�qTyþ fu : 0 � y � hð!Þu, y � x, u 2 f0, 1gg:

In the simple examples discussed above integrality, of course, does not
pose a real challenge. This changes drastically if the above modeling
paradigms occur in more complex situations. In principle, any integer or
mixed-integer programming model arising in operations research may be
affected by randomness and hence give rise to a stochastic programming
extension.

In the present chapter we will see that the appearance of integer
requirements has substantial structural and algorithmic consequences
for stochastic programming models as discussed in Chapters 1 and 2, for
instance.
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2 Structural properties

2.1 Two-stage models with complete integer recourse

Introducing integer requirements into the two-stage stochastic linear
program from Section 2 of Chapter 2 leads to the optimization problem

min
x
fcTxþ EP½Qðx, �ð!ÞÞ� : x 2 Xg ð2:3Þ

where Q(x, �(!)) is the optimal value of the second-stage problem

min
ðy,y0Þ
fqTyþ q0Ty0 : TxþWyþW 0y0 ¼ hð!Þ, y 2 Z

n2
þ , y

0 2 R
n0
2
þ g: ð2:4Þ

We assume that all ingredients above have conformable dimensions, that W,
W 0 are rational matrices, and that X � R

n1 is a nonempty closed polyhedron,
possibly involving integrality constraints on components of the vector x. For
ease of exposition, q, q0, W, W 0, T are deterministic, such that the random
variable �(!)¼ h(!), living on some probability space (O,F,P), is the only
stochastic ingredient. So far, most of the subsequent results on stochastic
integer programs were obtained for that special case. Where appropriate, we
will point to existing results under more general randomness.

As with the two-stage stochastic linear program, the second-stage value
function �: Rm2 ! R with

�ðtÞ :¼ min
ðy,y0Þ
fqTyþ q0Ty0 : WyþW 0y0 ¼ t, y 2 Z

n2
þ , y

0 2 R
n0
2
þ g ð2:5Þ

is of prime importance for the structure of (2.3). Recall that, without integer
requirements, � is convex on its domain of finiteness. To obtain a first
impression on the impact of integrality let us start with two illustrative
examples. They are both derived from

�ðtÞ ¼ minfyþ þ y� : yþ � y� ¼ t, yþ 2 Rþ, y
� 2 Rþg: ð2:6Þ

This is the classical simple-recourse situation. By duality one immediately
obtains that �(t)¼ jtj.
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Now we add another variable v which we require to be integral:

�ðtÞ ¼ min
1

2
vþyþþy� : vþ yþ � y�¼ t, v 2 Zþ, y

þ2 Rþ, y
� 2 Rþ

� �

¼ min
1

2
vþ jt� vj : v 2 Zþ

� �
:

Understanding v2Zþ as indices, the function � can be seen as the pointwise
minimum of staggered absolute values. Hence, � is no longer convex but still
continuous, even Lipschitz continuous on R.

The second example is basically derived by turning yþ and y� into integer
variables:

�ðtÞ ¼ minfvþ þ v� : yþ vþ � v� ¼ t, y 2 Rþ, v
þ 2 Zþ, v

� 2 Zþg

¼
0, t � 0

�t, t < 0:

�

Here d � e denotes the integer round-up operation. Obviously, � is no longer
continuous, but still lower semicontinuous. Moreover, discontinuities occur in
a set of Lebesgue measure zero only, and ‘‘jump heights’’ at discontinuities are
globally bounded.

From these observations it becomes quite clear that, with stochastic integer
programs, basic properties like convexity and duality, that are so important in
the purely linear case, cannot be maintained for reasonable problem classes.
Let us now study the mixed-integer value function in more detail.

Proposition 1. Suppose that the recourse in (2.3)–(2.4) is complete, i.e.,

WðZn2
þ Þ þW 0ðR

n0
2
þ Þ ¼ R

m2 , ð2:7Þ

and that the LP relaxation to the second-stage problem has a feasible dual, i.e.,

fu 2 R
m2 : WTu � q, W 0Tu � q0g 6¼ ;, ð2:8Þ

then the value function �( � ) is well-defined on R
m2 .

Proof. Let t 2 R
m2 . By (2.7), the mixed-integer program defining �(t) is

feasible. By the existence theorem of mixed-integer linear programming this
problem then is solvable provided it is bounded. The latter, however, follows
from the solvability of the LP relaxation to the mixed-integer program
defining �(t) which is a consequence of the primal feasibility implied by (2.7)
and the dual feasibility in (2.8). u
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Before proceeding further, let us have a quick look at the linear-
programming counterpart to � that has been studied in more detail in
Chapter 2:

�linðtÞ :¼ minfq0Ty0 : W 0y0 ¼ t, y0 2 R
n0
2
þ g: ð2:9Þ

If we assume that W 0ðR
n0
2
þ Þ is full-dimensional and that

fu 2 R
m2 : W 0Tu � q0g 6¼ ;,

then the latter set has vertices dk, k¼ 1,. . . ,K, and it holds by linear
programming duality that

�linðtÞ ¼ maxftTu : W 0Tu � q0g ¼ max
k¼1,...,K

dT
k t for all t 2W 0ðR

n0
2
þ Þ:

Hence, �lin is convex and piecewise linear on its (conical) domain of
definition.

Imposing the basic assumptions (2.7) and (2.8) we obtain

�ðtÞ ¼ minfqTyþ q0Ty0 : WyþW 0y0 ¼ t, y 2 Z
n2
þ , y

0 2 R
n0
2
þ g

¼ min
y
fqTyþmin

y0
fq0Ty0 : W 0y0 ¼ t�Wy, y0 2 R

n0
2
þ g : y 2 Z

n2
þ g

¼ min
y
f�yðtÞ : y 2 Z

n2
þ g, ð2:10Þ

where

�yðtÞ ¼ qTyþ max
k¼1,...,K

dT
k ðt�WyÞ for all t 2WyþW 0ðR

n0
2
þ Þ:

Here, dk, k¼ 1,. . . ,K are the vertices of fu 2 R
m2 : W 0Tu � q0g, and we have

applied the argument about �lin from the purely linear case. For t 62
WyþW 0ðR

n0
2
þ Þ the problem miny0 fq

0Ty0 : W 0y0 ¼ t�Wy, y0 2 R
n0
2
þ g is infeasible,

and we put �y(t)¼ þ1. It is convenient to introduce the notation
YðtÞ :¼ fy 2 Z

n2
þ : �yðtÞ < þ1g.

According to (2.10) the value function � is made up by the pointwise
minimum of a family of convex, piecewise linear functions whose domains
of definition are polyhedral cones arising as shifts of the cone W 0ðR

n0
2
þ Þ.

By our basic assumption WðZn2
þ Þ þW 0ðR

n0
2
þ Þ ¼ R

m2 , the cone W 0ðR
n0
2
þ Þ is full-

dimensional.
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Some first conclusions about the continuity of � may be drawn from the
above observations:

(1) Suppose that t 2 R
m2 does not belong to any boundary of any of the

sets WyþW 0ðR
n0
2
þ Þ, y 2 Z

n2 . Then the same is true for all points � in
some open ball B around t. Hence, Y(�)¼Y(t) for all � 2B. With an
enumeration (y�)�2N of Y(t) we consider the functions ��ð�Þ :¼
minf�y�ð�Þ : � � �g for all � 2B. Then lim�!1��ð�Þ ¼ �ð�Þ for all � 2B.
Since, for any function �y, its ‘‘slopes’’ are determined by the same,
finitely many vectors dk, k¼ 1,. . . ,K, the functions ��, �2N are all
Lipschitz continuous on B with a uniform Lipschitz constant. Thus, the
family of functions��, �2N is equicontinuous on B and has a pointwise
limit there. Consequently, this pointwise limit � is continuous on B, in
fact Lipschitz continuous with the mentioned uniform constant.

(2) Any discontinuity point of � must be located at the boundary of some
setWyþW 0ðR

n0
2
þ Þ, y 2 Z

n2 . Hence, the set of discontinuity points of � is
contained in a countable union of hyperplanes. Since W 0ðR

n0
2
þ Þ has only

finitely many facets, this union of hyperplanes subdivides into finitely
many classes, such that, in each class, the hyperplanes are parallel. By
the rationality of the matrices W andW0, within each class, the pairwise
distance of the hyperplanes is uniformly bounded below by some
positive number.

(3) Let t�! t and y 2 Z
n2 such that t� 2WyþW 0ðR

n0
2
þ Þ for all sufficiently

large �. Since the set WyþW 0ðR
n0
2
þ Þ is closed, this yields

t 2WyþW 0ðR
n0
2
þ Þ. Therefore, for sufficiently large �, Y(t�)�Y(t).

This paves the way for showing that lim inf t�!t �ðt�Þ � �ðtÞ, which is
the lower semicontinuity of � at t.

The above analysis can be extended into the following result that dates back
to a series of papers by Blair and Jeroslow, out of which we refer to Blair and
Jeroslow (1977), and to the monographs Bank et al. (1982) and Bank and
Mandel (1988).

Proposition 2. Let W, W0 be matrices with rational entries and assume that
WðZn2

þ Þ þW 0ðR
n0
2
þ Þ ¼ R

m2 as well as fu 2 R
m2 : WTu � q, W 0Tu � q0g 6¼ ;.

Then it holds

(1) � is real-valued and lower semicontinuous on R
m2 ,

(2) there exists a countable partition R
m2 ¼ [1i¼1 T i such that the restrictions

of � to Ti are piecewise linear and Lipschitz continuous with a uniform
constant L>0 not depending on i,

(3) each of the sets Ti has a representation T i ¼ fti þKgn [Nj¼1 ftij þKg
where K denotes the polyhedral cone W 0ðR

n0
2
þ Þ and ti, tij are suitable points

from R
m2 , moreover, N does not depend on i,

(4) there exist positive constants �, � such that j�(t1)��(t2)j ��kt1�t2kþ �
whenever t1, t2 2 R

m2 .
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Let us now consider the expected value function

�ðxÞ :¼ EP½Qðx, �ð!ÞÞ� ¼ EP½�ð�ð!Þ � TxÞ� ¼ E�½�ð� � TxÞ� ð2:11Þ

where � denotes the image measure P���1 on R
m2 . Thanks to the lower

semicontinuity in part (1) of Proposition 2, the integrand Q(x, � ) is
measurable for all x 2 R

n1 . Moreover, lower semicontinuity and continuity
are inherited according to the general principles displayed in Proposition 14
of Chapter 1 and Proposition 1 of Chapter 2. This is made precise in the
following proposition.

Proposition 3. Suppose that: (i) W,W0 are rational, (ii) WðZn2
þ Þ þW 0ðR

n0
2
þ Þ ¼

R
m2 , (iii) fu 2 R

m2 : WTu � q, W 0Tu � q0g 6¼ ;, (iv) E�½k�k� <1. Then the
expected value function � is lower semicontinuous on R

n1 . If, moreover,
�(E(x))¼ 0 where EðxÞ :¼ f� 2 R

m2 : � is discontinuous at � � Txg, then � is
continuous at x.

Proof. Let x 2 R
n1 and xk!x. Denote r :¼maxk2N kxkk. Assumptions (ii)

and (iii) in particular imply that �(0)¼ 0. Part (4) of Proposition 2 then yields
the estimate

�ð� � TxkÞ � �ð0Þ � j�ð� � TxkÞ ��ð0Þj � ��k� � Txkk � �

� ��k�k � �rkTk � �

such that, together with (iv), the function ��k � k��rkTk�� provides an
integrable minorant for the functions �( � �Txk), k2N. Fatou’s Lemma and
the lower semicontinuity of � now imply

�ðxÞ ¼

Z
R

m2

�ð� � TxÞ�ðd�Þ �

Z
R

m2

lim inf
k!1

�ð� � TxkÞ�ðd�Þ

� lim inf
k!1

Z
R

m2

�ð� � TxkÞ�ðd�Þ ¼ lim inf
k!1

�ðxkÞ

which proves the desired lower semicontinuity. For proving continuity we
again employ part (4) of Proposition 2 together with �(0)¼ 0. We obtain the
estimate

j�ð� � TxkÞj ¼ j�ð� � TxkÞ ��ð0Þj � �k�k þ �rkTk þ �
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which, in view of (iv), provides us with an integrable majorant for the
functions j�( � �Txk)j, k2N. By �(E(x))¼ 0, we have

lim
k!1

�ð� � TxkÞ ¼ �ð� � TxÞ for �-almost all � 2 R
m2 :

Now Lebesgue’s Dominated Convergence Theorem completes the proof:

lim
k!1

�ðxkÞ ¼ lim
k!1

Z
R

m2

�ð� � TxkÞ�ðd�Þ ¼

Z
R

m2

�ð� � TxÞ�ðd�Þ ¼ �ðxÞ:

u

Recall that, by conclusion (1.2) in front of Proposition 2, the set of
discontinuity points of�, and hence E(x), is contained in a countable union of
hyperplanes, which is a set of Lebesgue measure zero. Assume that � has a
density and that (i)–(iv) are fulfilled. Then �(E(x))¼ 0 for all x 2 R

n1 , and � is
continuous on R

n1 . The next statement addresses Lipschitz continuity. To
avoid further technicalities, we formulate the result for the case that � has a
density.

Proposition 4. Suppose that: (i) q, q0, W, W0 all have rational entries, (ii)
WðZn2

þ Þ þW 0ðR
n0
2
þ Þ ¼ R

m2 , (iii) fu 2 R
m2 : WTu � q, W 0Tu � q0g 6¼ ;, (iv)

E�[k�k]<1, (v) � has a density and for any nonsingular linear transformation
B 2 LðRm2 ,Rm2Þ all one-dimensional marginal distributions of ��B have
bounded densities which, outside some bounded interval, are monotonically
decreasing with growing absolute value of the argument. Then � is Lipschitz
continuous on any bounded subset of Rn1 .

Proof. Let x0, x00 belong to some bounded subset D of Rn1 . Denote

Sðx0, x00Þ :¼
[
i2N

ððTx0 þ T iÞ \ ðTx
00 þ T iÞÞ

where Ti are as in part (2) of Proposition 2. Note that for all �2S(x0, x00) we
then have the estimate

j�ð� � Tx0Þ ��ð� � Tx00Þj � L � kTx0 � Tx00k: ð2:12Þ
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Now

j�ðx0Þ � �ðx00Þj �

Z
Sðx0,x00Þ

j�ð� � Tx0Þ ��ð� � Tx00Þj�ðd�Þ

þ

Z
R

m
2 nSðx0,x00Þ

j�ð� � Tx0Þ ��ð� � Tx00Þj�ðd�Þ:

Employing (2.12) and part (4) of Proposition 2 gives the estimate

j�ðx0Þ � �ðx00Þj � ðLþ �Þ � kTk � kx0 � x00k þ � � �ðRm2nSðx0, x00ÞÞ:

We complete the proof by deducing a Lipschitz estimate for the second term
on the right. Let Hk, k¼ 1,. . . ,K be the hyperplanes containing the facets of
the cone W 0ðR

n0
2
þ Þ that arises in part (3) of Proposition 2 and is full-

dimensional by (ii). The set Rm2nSðx0, x00Þ then is contained in a finite union of
sets Hk, k¼ 1,. . . ,K each of which is a countable union of ‘‘sandwiches’’ Hk,i,
i2N. Each ‘‘sandwich’’ Hk,i is the region in between and including the affine
hyperplanes

ti þ Tx0 þHk and ti þ Tx00 þHk

where ti, i2N, are as in part (3) of Proposition 2. By a nonsingular linear
transformation Bk we map the hyperplane Hk to the hyperplane which is
orthogonal to the first coordinate vector. Then �(Hk) can be estimated using
the marginal density 	k of the first component with respect to the image
measure � � B�1k :

�ðHkÞ � c1 �
X
i2N

Z �i,kðx
00Þ

�i,kðx0Þ

	kð�Þ d�:

Here, c1>0 is some constant, and �i,k(x
0), �i,k(x

00) are the first components of
Bk(tiþTx0) and Bk(tiþTx00), respectively. Without loss of generality we
assume that �i,k(x

0)<�i,k(x
00). Clearly, there exists a constant c2>0 such that

�i,kðx
00Þ � �i,kðx

0Þ � c2 � kx
0 � x00k: ð2:13Þ

Using the rationality of q, q0, W, W0 one can show that the sequence
(�i,k(x

0))i2N has no accumulation points. Since x0, x00 belong to the bounded set
D, there exists an index i ¼ iðDÞ, independent of x0, x00, such that the intervals
[�i,k(x

0), �i,k(x
00)] (up to renumbering) meet the bounded interval from

assumption (v) at most of i � i.
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According to assumption (v) we have an upper bound 	k for 	k( � ). For
i > i, we denote by ~��i,k the left or right endpoint of [�i,k(x

0), �i,k(x
00)] depending

on whether 	k is decreasing or increasing on that interval. This allows the
estimate

X
i2N

Z�i,kðx00Þ
�i,kðx0Þ

	kð�Þ d� �
X
i�i

	k � ð�i,kðx
00Þ � �i,kðx

0ÞÞ

þ
X
i>i

	kð ~��i,kÞ � ð�i,kðx
00Þ � �i,kðx

0ÞÞ:

In view of (2.13), there exists a constant c3>0 such that the first sum on the
right is estimated above by c3kx

0�x00k. For the second sum we obtain the
upper estimate c2

P
i>i 	kð ~��i,kÞ � kx

0 � x00k. It remains to show that
P

i>i 	kð ~��i,kÞ
is finite.

Let us do so for the sum over all i > i belonging to those ~��i,k around which
	k is decreasing. For the remaining i > i a similar argument applies. Since the
~��i,k do not accumulate, it holds with some ">0

1 �
X
i

Z~��i,k
~��i,k�"

	kð�Þ d� �
X
i

Z~��i,k
~��i,k�"

	kð ~��i,kÞ d� ¼ " �
X
i

	kð ~��i,kÞ,

providing the desired finiteness. Repeating the above arguments for all Hk,
k¼ 1,. . . ,K, one confirms that there exists a constant c>0 such that

�ðRm2nSðx0, x00ÞÞ �
XK
k¼1

�ðHkÞ � c � kx0 � x00k,

and the proof is complete. u

The following examples show that the boundedness and the monotonicity
in assumption (v) of the above proposition are indispensable.

Example 5. Let �ðtÞ ¼ minfy : y � t, y 2 Zg ¼ dte and � be given by
the (unbounded) density 	, for which 	(�)¼ ��1/2 if 0<�� 1/4 and 	(�)¼ 0,
otherwise. Then �(x)¼ 1 for �3/4� x� 0 and �ðxÞ ¼ 1� 2

ffiffiffi
x
p

if 0� x� 1/4.
This function is not Lipschitz continuous on neighborhoods of x0¼ 0.

Example 6. Let �ðtÞ ¼ minfy : y � t, y 2 Zg ¼ dte and � be given by the
density 	, for which 	(�)¼ 1/� if � 2 ½�, �þ 1

�2
� c�, c :¼ ð

P1
k¼1 1=k3Þ�1, �2N,

and 	(�)¼ 0, otherwise. This density violates the monotonicity assumption in
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Proposition 4. We show that � is not Lipschitz continuous on neighborhoods
of x0¼ 0.

Assumptions (i)–(iii) of Proposition 4 are clearly met. Moreover, 	 is
bounded and assumption (iv) is fulfilled, since

Zþ1
�1

�	ð�Þ d� �
X1
�¼1

ð�þ 1Þ �
1

�
�
1

�2
� c ¼ c


2

6
þ 1:

For arbitrary x2R, 0<x<1, it holds

�ð0Þ � �ðxÞ ¼
X1
�¼1

Z�þx
�

	ð�Þ d� �
X�ðxÞ
�¼1

1

�
� x,

where �ðxÞ :¼ 8
ffiffi
c
x

p
9. Consider xk :¼

1
k2
� c, k2N. The above yields

1

xk
ð�ð0Þ � �ðxkÞÞ �

Xk
�¼1

1

�
:

For k!1, the left-hand side tends to infinity, proving that � is not Lipschitz
continuous on neighborhoods of x0¼ 0.

When studying the stability behaviour of the stochastic program (2.3)
with respect to perturbations of the underlying probability measure, see
the chapter ‘‘Stability of Stochastic Programming Problems’’ for an exposition
of stability analysis, it is crucial to detect the continuity of the expected
recourse function �, jointly in the decision vector x and the probability measure
�. As a prerequisite, then a suitable convergence notion for probability
measures is needed. Here, weak convergence of probability measures has
proven both sufficiently general to cover relevant applications and sufficiently
specific to enable substantial results. A sequence (�k)k2N in the space PðRm2Þ

of Borel probability measures onR
m2 is said to converge weakly to � 2 PðRm2Þ,

written �k!
w
�, if for any bounded continuous function g : Rm2 ! R we have

Z
R

m2

gð�Þ�kðd�Þ !

Z
R

m2

gð�Þ�ðd�Þ as k!1: ð2:14Þ

For establishing joint continuity of �¼�(x,�) a theorem on weak
convergence of image measures attributed to Rubin will be very useful. This
theorem says: Let gk, g (k2N) be measurable functions from R

m2 to R and
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denote E :¼ f� 2 R
m2 : 9�k! � such that gkð�kÞ 6! gð�Þg. If �k!

w
� and

�(E)¼ 0, then �k � g
�1
k !

w
� � g�1.

Proposition 7. Fix arbitrary p>1 and K>0, and denote �p,K ðR
m2Þ :¼

f� 2 PðRm2Þ : E�½k�k
p� � Kg. Let � 2 �p,K ðR

m2Þ be such that �(E(x))¼ 0.
Then the function � : Rn1 ��p,K ðR

m2Þ ! R is continuous at (x,�).

Proof. Let xk!x in R
n1 and �k!

w
� in �p,K ðR

m2Þ. Introduce measurable
functions gk, k2N, and g by gkð�Þ :¼ �ð� � TxkÞ and gð�Þ :¼ �ð� � TxÞ. For
the corresponding exceptional set E a simple continuity argument provides
E(x)c�E c or, equivalently, E�E(x). Hence, �(E)¼ 0, and Rubin’s Theorem
yields

�k � g
�1
k !

w
� � g�1: ð2:15Þ

Changing variables in the assertion

lim
n!1

Z
R

m2

gkð�Þ�kðd�Þ ¼

Z
R

m2

gð�Þ�ðd�Þ

yields the equivalent statement

lim
n!1

Z
R

��k � g
�1
k ðd�Þ ¼

Z
R

�� � g�1ðd�Þ:

For fixed a2Rþ , consider the truncation �a:R!R with

�að�Þ :¼
�, j�j < a
0, j�j � a:

�

Now

��� Z
R

��k � g
�1
k ðd�Þ �

Z
R

�� � g�1ðd�Þ
���

�

��� Z
R

ð� � �að�ÞÞ�k � g
�1
k ðd�Þ

���þ ��� Z
R

�að�Þ�k � g
�1
k ðd�Þ

�

Z
R

�að�Þ� � g
�1ðd�Þ

���þ ��� Z
R

ð�að�Þ � �Þ� � g
�1ðd�Þ

���: ð2:16Þ
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The proof is completed by showing that, for a given ">0, each of the three
expressions on the right becomes less than "/3 provided that n and a are
sufficiently large.

For the first expression we obtain

��� Z
R

ð� � �að�ÞÞ�k � g
�1
k ðd�Þ

��� � Z
f�:j�j�ag

j�j�k � g
�1
k ðd�Þ

¼

Z
f�:jgkð�Þj�ag

jgkð�Þj�kðd�Þ: ð2:17Þ

Since p>1,

Z
R

m2

jgkð�Þj
p�kðd�Þ �

Z
f�:jgkð�Þj�ag

jgkð�Þj � jgkð�Þj
p�1�kðd�Þ

� ap�1
Z

f�:jgkð�Þj�ag

jgkð�Þj�kðd�Þ: ð2:18Þ

Therefore, the estimate in (2.17) can be continued by

� a1�p
Z
R

m2

jgkð�Þj
p�kðd�Þ: ð2:19Þ

Proposition 2, part (4), and gk(0)¼ 0 imply

jgkð�Þj
p � ð�k�k þ �kxkk � kTk þ �Þ

p:

Since (xk)k2N is bounded and all �k belong to �p,K ðR
m2Þ, there exists a

positive constant c such that

Z
R

m2

jgkð�Þj
p�kðd�Þ � c for all k 2 N:

Hence, (2.19) can be estimated above by c/ap�1 which becomes less than "/3 if
a is sufficiently large.
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We now turn to the second expression in (2.16). Since every probability
measure on the real line has at most countably many atoms, we obtain that
� � g�1ðf� : j�j ¼ agÞ ¼ 0 for (Lebesgue-) almost all a2R. Therefore, �a is a
measurable function whose set of discontinuity points D�a has ��g

�1-measure
zero for almost all a2R. We apply Rubin’s Theorem to the weakly convergent
sequence �k � g

�1
k !

w
� � g�1, cf. (2.15), and the identical sequence of functions

�a. The role of the exceptional set then is taken by D�a, and Rubin’s Theorem
is working due to ��g�1(D�a)¼ 0. This yields the conclusion

�k � g
�1
k � �

�1
a !

w
� � g�1 � ��1a for almost all a 2 R: ð2:20Þ

Consider the bounded continuos function � :R!R given by

�ð�0Þ :¼

�a, �0 � �a

�0, �a � �0 � a

a, �0 � a:

8>><
>>:

By the weak convergence in (2.20), we obtain for n!1

Z
R

�ð�0Þ�k � g
�1
k � �

�1
a ðd�

0Þ !

Z
R

�ð�0Þ� � g�1 � ��1a ðd�
0Þ: ð2:21Þ

Changing variables provides

Z
R

�ð�0Þ�k � g
�1
k � �

�1
a ðd�

0Þ ¼

Z
��1a ðRÞ

�ð�að�ÞÞ�k � g
�1
k ðd�Þ

¼

Z
R

�að�Þ�k � g
�1
k ðd�Þ:

Analogously,

Z
R

�ð�0Þ� � g�1 � ��1a ðd�
0Þ ¼

Z
R

�að�Þ� � g
�1ðd�Þ:
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The above identities together with (2.21) confirm that the second expression
on the right-hand side of (2.16) becomes arbitrarily small for sufficiently large
n and almost all sufficiently large a.

Let us finally turn to the third expression in (2.16). Analogously to (2.17),
(2.18) and (2.19) we obtain

��� Z
R

ð�að�Þ � �Þ� � g
�1ðd�Þ

��� � a1�p
Z
R

m2

jgð�Þjp�ðd�Þ:

The integral
R
R

m2 jgð�Þj
p�ðd�Þ is finite due to part (4) of Proposition 2 and

E�[k�k
p]�K. Hence, the third expression in (2.16) becomes less than "/3 if a is

large enough. u

Employing well-established arguments of parametric optimization
Proposition 7, together with standard assumptions such as boundedness of
the unperturbed solution set, leads to (qualitative) continuity of the (multi-)
functions assigning to the underlying probability measure the optimal value
and the set of optimal solutions to (2.3), respectively. Quantitative continuity
of �( � , � ) and quantitative stability of (2.3) require the identification of
suitable distances on the space PðRm2Þ of probability measures.

2.2 Simple integer recourse

Simple recourse models are two-stage stochastic programs where deviations
of a first-stage bid Tx against the random outcome h(!) have to be
compensated at certain costs in the second-stage. In simple integer recourse
this compensation must be integer. In (2.6) we had already seen a second-stage
value function � corresponding to a simple recourse model in case h(!) maps
to R

1.
A two-stage stochastic program with simple integer recourse is given by

min
x
fcTxþ E�½�ð� � TxÞ� : x 2 Xg ð2:22Þ

where

�ðtÞ :¼ minfðqþÞTyþ þ ðq�ÞTy� : yþ � t, y� � �t, yþ 2 Z
s
þ, y

� 2 Z
s
þg:

ð2:23Þ
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It is easy to see that the optimization problem in (2.23) is feasible for any
t2Rs, so the model has complete recourse. If, moreover, we assume that
qþ � 0 and q�� 0, then the LP relaxation to the second-stage problem has a
feasible dual, and �(t)2R for all t2Rs. Finally, the assumption E�[k�k]<1
will guarantee that the expectation in (2.22) is finite such that (2.22) becomes a
well-defined optimization problem.

The crucial fact, allowing for a much richer analysis in simple integer
recourse than in the general situation of (2.3)–(2.4), is the expressibility of the
value function �(t) in closed form, namely

�ðtÞ ¼
Xs
i¼1

qþi dtie
þ þ q�i d�tie

þ
� �

ð2:24Þ

where d � eþ :¼max{d � e, 0}. For the expected value function this implies the
following separable representation

�ðxÞ ¼ E�½�ð� � TxÞ�

¼
Xs
i¼1

qþi E�i
d�i � ðTxÞie

þ
� �

þ
Xs
i¼1

q�i E�i
dðTxÞi � �ie

þ
� �

where �i is the probability measure corresponding to the marginal distribution
of the i-th component of �. Studying �(x) thus is studying the functions

uið�iÞ :¼ E�i
d�i � �ie

þ
� �

and við�iÞ :¼ E�i
d�i � �ie

þ
� �

ð2:25Þ

reflecting expected surplus and expected shortage, respectively. Both these
functions in one variable are quite similar, such that we will restrict
further considerations to the expected surplus function. The following
proposition reveals a close relationship with the cumulative distribution
function Fið�Þ :¼ �iðf�i : �i � �gÞ of �i. For notational convenience, we drop
the index i from now on.

Proposition 8. In the above setting it holds for all �2R

uð�Þ ¼
X1
k¼0

ð1� Fð�þ kÞÞ: ð2:26Þ
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Proof. We have

X1
k¼0

ð1� Fð�þ kÞÞ ¼
X1
k¼0

�ð� � � > kÞ

¼
X1
k¼0

X1
j¼kþ1

� d� � �eþ ¼ j
� �

¼
X1
j¼1

Xj�1
k¼0

� d� � �eþ ¼ j
� �

¼
X1
j¼1

j � � d� � �eþ ¼ j
� �

¼ E� d� � �e
þ

� �
¼ uð�Þ,

and the proof is complete. u

Continuity and smoothness properties of u now result from those of the
distribution function F or, existence provided, from those of a suitable
probability density function of �. In particular, it can be shown that u is
Lipschitz continuous on R if there exists a density of � with bounded
variation. Moreover, u is differentiable on R if there exists a continuous
density of �.

The function u is convex if � has a probability density function that is
piecewise constant on every interval ]þ j,þ jþ 1[, j2Z for some 2 [0, 1[.
Hence, when relating with arbitrary probability measures piecewise constant
densities depending on the shift parameter , one obtains convex functions
related with the in general nonconvex function u. Given �2P(R), its
cumulative distribution function F, and 2 [0, 1[ we denote 8�9 :¼ 8��9þ
and relate the following probability density function with �

	ð�Þ :¼ F 8�9 þ 1ð Þ � F 8�9ð Þ, � 2 R:

In the literature, the density 	 and the corresponding measure � as well as
the resulting convex function related with u are called -approximations. We
will adopt this here although it is quite clear that the ‘‘distance’’ of � and �,
and thus the approximation error in terms of the functions, in general cannot
be made arbitrarily small.

Ch. 4. Stochastic Integer Programming 229



Proposition 9. For any 2 [0, 1[ the -approximation

uð�Þ :¼ E� d� � �e
þ

� �
of the expected surplus function u is a convex function on R.

For the expected shortage function v an analogous statement is valid.
Interestingly, the resulting convex -approximation for

~��ð�Þ :¼ qþuð�Þ þ q�vð�Þ, qþ þ q� > 0,

then, up to an additive constant, arises as an expected value function of a
simple recourse model with continuous variables where the underlying
probability measure has been properly modified:

Proposition 10. Let 2 [0, 1[, qþ þ q�>0, and u, v denote the -approxima-
tions for the expected surplus and shortage function u and v, respectively. Then it
holds for all �2R:

~��ð�Þ :¼ qþuð�Þ þ q�vð�Þ

¼ qþE� d� � �e
þ

� �
þ q�E� d�� �e

þ
� �

þ
qþq�

qþ þ q�

where v is a discrete probability measure such that for all k2Z

�ðfþ kgÞ :¼
qþ

qþ þ q�
ðFðþ kÞ � Fðþ k� 1ÞÞ

þ
q�

qþ þ q�
ðFðþ kþ 1Þ � Fðþ kÞÞ:

The results outlined above are derived in detail in van der Vlerk (1995), see
also the articles mentioned in the Bibliographical Notes below.

2.3 Multi-stage models

The models discussed so far assume a two-stage setting for the gain of
information. Uncertainty is unveiled at once and decisions subdivide into
those before and those after the unveiling. Often, a more complex view is
appropriate at this place. Multistage stochastic programs address the situation
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where uncertainty is unveiled stepwise with intermediate decisions that must
not anticipate future information. We refer to Chapters 1 and 2 for basic
statements about modeling principles and structure in the multi-stage
situation. In what follows, we will adopt a fairly general modeling perspective,
similar to Section 3.3 of Chapter 1. We will go beyond the setting of that
section by adding integer requirements, and we will study some first
implications of such a model extension.

Consider a finite horizon sequential decision process under uncertainty
where the decision xt 2 R

nt at stage t2 {1,. . . ,T} is based on information
available up to time t only. Information is modeled as a discrete time
stochastic process f�tg

T
t¼1 on some probability space (O,F,P) with �t taking

values in R
mt . The random vector �t :¼ (�1,. . . , �t) then reflects the information

available up to time t. Nonanticipativity, i.e., the requirement that xt must not
depend on future information, is formalized by saying that xt is measurable
with respect to the �-algebra Ft�F which is generated by �t, t¼ 1,. . . ,T.
Clearly, Ft�Ftþ 1 for all t¼ 1,. . . ,T�1. As in the two-stage case, the first-
stage decision x1 usually is deterministic. Therefore, F1¼ {;,O}. Moreover,
we assume that FT¼F.

The constraints of our multi-stage models are subdivided into three groups.
The first group comprises conditions on xt arising from the individual time
stages:

xtð!Þ 2 Xt, Btð�tð!ÞÞxtð!Þ � dtð�tð!ÞÞ

P-almost surely, t ¼ 1, . . . , T : ð2:27Þ

Here, Xt � R
nt is a set whose convex hull is a polyhedron. In this way, integer

requirements to components of xt are allowed for. For simplicity we assume
that Xt is compact. Note that, by the integrality in Xt, we go beyond the setting
of all the multi-stage models analyzed in Chapters 1 and 2. As in the two-stage
case, convexity will no longer be available. In particular, the arguments based
on duality and conjugacy that led to Proposition 30 in Chapter 2, stating that
the multi-stage stochastic program is convex, are not working anymore, and,
in fact, the models become nonconvex.

The next group of constraints models linkage between different time stages:

Xt
�¼1

At�ð�tð!ÞÞx�ð!Þ�gtð�tð!ÞÞ P-almost surely, t ¼ 2, . . . , T : ð2:28Þ

Finally, there is the nonanticipativity of xt, i.e.,

xt is measurable with respect to F t, t ¼ 1, . . . , T : ð2:29Þ
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In addition to the constraints we have a linear objective function

XT
t¼1

ctð�tð!ÞÞxtð!Þ:

The matrices At�( � ), Bt( � ) as well as the right-hand sides dt( � ), gt( � ) and the
cost coefficients ct( � ) all have conformable dimensions and depend affinely
linearly on the relevant components of �.

The decisions xt are understood as members of the function spaces
L1ðO,F ,P; RntÞ, t¼ 1,. . . ,T. The constraints (2.27), (2.28) then impose
pointwise conditions on the xt, whereas (2.29) imposes functional constraints,
in fact, membership in a linear subspace of �T

t¼1 L1ðO,F ,P; RntÞ.
The multistage extension of (2.3) is the minimization of expected minimal

costs subject to nonanticipativity of decisions:

min

Z
O

min
xð!Þ

XT
t¼1

ctð�tð!ÞÞxtð!Þ : ð2:27Þ, ð2:28Þ

( )
Pðd!Þ : x fulfilling ð2:29Þ

8<
:

9=
;

ð2:30Þ

The minimization in the integrand of (2.30) being separable with respect to
!2O, it is possible to interchange integration and minimization, and the
problem can be restated as

min

Z
O

XT
t¼1

ctð�tð!ÞÞxtð!ÞPðd!Þ : x fulfilling ð2:27Þ, ð2:28Þ, ð2:29Þ

8<
:

9=
;:
ð2:31Þ

Due to the mentioned interplay of pointwise and functional constraints it
remains to check whether (2.31) is well defined, cf. Section 3.3 of Chapter 1
where this is addressed for a noninteger counterpart of (2.31).

Recall that Xt is compact and assume that �t 2 L1ðO,F ,P; RmtÞ for
t¼ 1,. . . ,T. For each !2O we define the subset Y(!) of X :¼ �T

t¼1 R
nt

Yð!Þ :¼ y 2 X : yt 2 Xt, Btð�tð!ÞÞyt � dtð�tð!ÞÞ, t ¼ 1, . . . , T ,

(

Xt
�¼1

At�ð�tð!ÞÞy� � gtð�tð!ÞÞ, t ¼ 2, . . . , T

)
ð2:32Þ
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and the extended real-valued function ’

’ð y1, . . . , yT , !Þ :¼

XT
t¼1

ctð�tð!ÞÞyt, ð y1, . . . , yT Þ 2 Yð!Þ,

þ1, otherwise

8><
>: ð2:33Þ

from X�O to (�1, þ1]. With these notations, (2.31) is equivalent to

minfEP½’ðx1, . . . , xT , !Þ� : xt measurable w:r:t: F t, t ¼ 1, . . . , Tg:

ð2:34Þ

The real-valued function ð y,!Þ�
PT

t¼1 ctð�tð!ÞÞyt is continuous in y for each
!2O and measurable in ! for each y2X, and the set-valued mapping
Y from O to X is closed-valued and measurable (cf. Theorem 14.36 in
Rockafellar and Wets, 1997). With B(X ) denoting the �-algebra of Borel sets
in X, the function ’ is B(X )	F-measurable (cf. Example 14.32 in Rockafellar
and Wets, 1997). Furthermore, the following estimate is valid for each
y 2 �T

t¼1 Xt and !2O:

j’ð y1, . . . , yT , !Þj �
XT
t¼1

kctð�tð!ÞÞk sup
yt2Xt

kytk ð2:35Þ

Hence, EP½’ðx1, . . . ,xT ,!Þ� is finite for each decision x¼ (x1,. . . , xT) such that
x(!)2Y(!) for P-almost all !2O.

As in Evstigneev (1976), we construct recursively two sequences of
functions by putting  Tþ 1 :¼ ’ and

’tð y1, . . . , yt, !Þ :¼ E
r
P½ tþ1ð y1, . . . , yt, �Þ j F t�ð!Þ, ð2:36Þ

 tð y1, . . . , yt�1, !Þ :¼ inf
y
’tð y1, . . . , yt�1, y, !Þ, ð2:37Þ

for t¼T, . . . , 1, and for each !2O and y� 2X�, �¼ 1, . . . ,T.
Here, Er

P½� jF t� denotes the regular conditional expectation with respect to
Ft. By definition, the regular conditional expectation is a version of the
conditional expectation (i.e., Er

P½� jF t� ¼ EP½� jF t�, P-a.s.) with the property
that the mapping ðz,!Þ��ðz,!Þ :¼ E

r
P½�ðz, �Þ jF t�ð!Þ from Zt�O to

(1, þ1] is B(Zt)	Ft-measurable if � is B(Zt)	F-measurable. Here, Zt is
allowed to be an arbitrary closed subset of a Euclidean space. The regular
conditional expectation exists if � is B(Zt)	F-measurable and uniformly
integrable, i.e., there exists a (real) random variable � with finite first moment
such that j�(z,!)j � �(!) for z2Zt and!2O (seeDynkin andEvstigneev, 1976).
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Due to condition (2.35), relation (2.36) is well defined for t¼T and leads to a
B(Z)	FT-measurable function �T, where Z :¼ �T

t¼1 Xt. It is shown in
Evstigneev (1976) that the relations (2.36) and (2.37) are well defined for all
t¼T,. . . , 1. Furthermore, the following optimality criterion and existence
result for (2.34) or, equivalently, for (2.31) is valid.

Proposition 11. Adopt the above setting for (2.31) and assume that (2.31) has a
feasible solution. Then fxtg

T
t¼1 is an optimal solution of (2.31) iff

’tðx
tð!Þ, !Þ ¼  tðx

t�1ð!Þ, !Þ, P� a:s:, t ¼ 1, . . . , T : ð2:38Þ

Moreover, there exists a solution x1 of the first-stage optimization problem

minf’1ðx1Þ ¼ EP½ 2ðx1, !Þ� : x1 2 X1, B1ð�1Þx1 � d1ð�1Þg, ð2:39Þ

and given F�-measurable functions x� for �¼ 1,. . . , t�1, there exists an F�-
measurable function xt such that ’tðx

tð!Þ,!Þ ¼  tðx
t�1ð!Þ,!Þ, P-a.s.

Relations (2.36) and (2.37) define the mixed-integer analogon to the nested
formulation developed in Section 3.1 of Chapter 1 for the purely linear case,
see also the general nested problem in continuous variables in Section 3.3 of
Chapter 1. In particular, the optimal value  tð y1, . . . , yt�1,!Þ is the cost-to-go,
cf. (3.3) in Chapter 2, and (2.38) states the fact that an optimal solution to
(2.31) has to fulfil the dynamic programming equation, cf. (3.4) and
Proposition 30 in Chapter 2. As in (3.5) of Chapter 1, in problem (2.39) all the
subsequent stages are absorbed into the function ’1(x1). Hence, (2.39) is a
well-defined mixed-integer extension of (3.5) in Chapter 1, with the only
difference that (3.5) has staircase whereas (2.39) triangular form.

In Proposition 30 of Chapter 2 convexity of the noninteger counterpart to
’1( � ) is shown. With integer requirements, this convexity already breaks down
for two-stage problems and hence cannot be expected to hold. However, lower
semicontinuity of ’1( � ) still can be established.

Proposition 12. Adopt the above setting for (2.31) and assume that the matrices
At�( � ), Bt( � ) as well as the cost coefficients ct( � ) all are deterministic. Then the
objective function ’1( � ) of the first-stage optimization problem (2.39) is lower
semicontinuous on its domain of definition.

Proof. (Outline) The proof is done by induction over the time stages
t¼T,T�1,. . . , 1. According to the definitions in (2.33) and (2.37), at each
stage an infimum of a parameter dependent function over a mixed-integer set
constrained by linear inequalities is taken. Moreover, the latter set has
parameters in the right-hand sides of the inequalities. At each stage, it can be
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shown that the set-valued mapping assigning to the relevant right-hand side
parameter the relevant mixed-integer constraint set is upper semicontinuous.

At stage T, the objective function of the above parametric optimization
problem is linear and does not depend on a parameter. In fact, we have a
mixed-integer linear program with right-hand side parameters, whose value
function is lower semicontinuous according to the argument given in item (3)
in front of Proposition 2. A conditional expectation of this value function, cf.
(2.36), which, by Fatou’s Lemma for conditional expectations, is again lower
semicontinuous, enters the objective at stage T�1, cf. (2.37).

Therefore, at stage T�1, as well as in all subsequent stages t¼T�2,. . . , 2,
we have a parametric program where, with respect to the relevant parameter,
the objective function is lower semicontinuous and the constraint set mapping
is upper semicontinuous. Basic results from parametric optimization, such as
Theorem 1.17 of Rockafellar and Wets (1997) then imply that the value
function of the optimization problem at stage T�1 is lower semicontinuous
with respect to the relevant parameters. Fatou’s Lemma for conditional
expectations then inherits lower semicontinuity to the objective in stage T�2,
and the above arguments can be repeated. u

Structural properties for problem (2.31) beyond the above propositions are
widely open and a field of current research.

3 Algorithms

3.1 Decomposition schemes

Consider a classical deterministic integer program

ðIPÞ minfcTx : x 2 Xg: ð3:40Þ

For simplicity, we consider the pure integer case, where X�Z
n, although most

of the definitions and properties presented here extend to the mixed integer
case. In practice, the set X is described through a finite set of linear
constraints, defining a polyhedron P ¼ fx 2 R

n : Ax � bg and through inte-
grality restrictions.

A polyhedron P�R
n is a formulation for X�Z

n iff X¼P\Zn. The ideal
formulation would be to replace IP by the equivalent linear program

minfcTx : x 2 convðXÞg ð3:41Þ

as all extreme points of the convex hull of X belong to X. Such a formulation
naturally gives an integer solution to the linear programming relaxation
of (3.41).
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An inequality 
Tx�
0 is a valid inequality for X�R
n if 
Tx�
0 for all

x2X. The Chvatal–Gomory procedure to construct a valid inequality for
X¼P\Zn is to consider a vector u 2 R

m
þ of nonnegative weights for the rows

of A, take the linear combination of the rows

uTAx � uTb,

round down the coefficients in the l.h.s,

Xn
j¼1

8uTaj9xj � uTb

where aj is the jth column of A, then round-down the r.h.s.

Xn
j¼1

8uTaj9xj � 8uTb9: ð3:42Þ

The first transformation is justified by u� 0, the second by
Pn

j¼1 8uTaj9xj �Pn
j¼1 uTajxj, and the third as

Pn
j¼1 8uTaj9xj is integer. Thus, for all u� 0,

(3.42) is a valid inequality for X. More surprisingly, every valid inequality for
X can be obtained by applying the Chvatal–Gomory procedure a finite
number of times.

The separation problem SP associated with IP is the following : given
x 2 R

n, is x 2 convðXÞ? If not, find a valid inequality 
Tx�
0 for X such that

Tx > 
0. As the Chvatal–Gomory procedure is not a constructive one, a
considerable amount of research has been devoted to characterize strong valid
inequalities, which define facets of P, and related separation algorithms (SA).
Among the popular SA, we may cite lifted cover inequalities for knapsack
constraints, mixed integer rounding inequalities (a generalization of Gomory
mixed integer cuts) and disjunctive inequalities. Separation algorithms are not
always efficient, as sometimes the separation problem itself is NP-hard. Even
when the separation algorithm is efficient, it may not be wise to generate all
possible valid inequalities as the linear program would tend to become huge.
Early attempt to use Gomory cuts appeared to be disappointing as successive
cuts tend to be less and less efficient and the corresponding LP harder and
harder to solve. Cutting planes are thus very often combined with a branch &
bound scheme. Branching on a fractional value xj consists of defining two
subregions X \ fx : xj � 8xj9g and X \ fx : xj � 8xj9þ 1g. These subregions
can in turn be subdivided by later branchings. This generates a number of
nodes N�, �¼ 1,. . . ,R, that form a partition of Rn, i.e., Rn

¼U�¼ 1,. . . ,RN
� and

N�\N�¼;, � 6¼ �.
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Clearly,

minfcTx : x 2 Xg ¼ min
�¼1,..., R

fminfcTx : x 2 X \N�gg

The branch & bound procedure is finite as only finitely many nodes can be
generated when X is compact. Nodes are fathomed for three reasons: when
they have integer solution, when they have an optimal value, which is worse
than an already known integer solution, and when they are infeasible. As
already said, modern codes combine cut generation and branching in so called
branch & cut procedures. Another basic technique in integer programming is
Lagrangian relaxation. Its main idea is to relax ‘‘complicating’’ constraints to
end up with manageable subproblems that are coordinated by a nonsmooth
dual optimization. In general, integer requirements imply the lack of duality
such that, typically, heuristics have to be employed for finding promising
primal solutions on the basis of the results of the dual optimzation. We now
show how stochastic programming decomposition techniques could be
designed using cutting planes and branch & bound in the second-stage as
well as Lagrangian relaxation of nonanticipativity constraints.

Decomposition by cutting planes
Let the two stage stochastic integer problem be

ðSIPÞ minfcTxþ E�½�ð� � TxÞ� : x 2 Xg ð3:43Þ

with

�ðtÞ :¼ minfqTy : Wy ¼ t, y 2 Yg ð3:44Þ

and Y � Z
n2
þ . All notations are as in Section 2. The deterministic equivalent

program is

ðDEPÞ minfcTxþQðxÞ : x 2 Xg ð3:45Þ

where Q(x)¼E�[�(��Tx)]. For all practical purposes, it can be transformed
into

minfcTxþ 	 : x 2 X , 	 � QðxÞg ð3:46Þ

In view of the properties presented just above, the difficulty of solving (3.46)
precisely lies in having a formulation to replace 	�Q(x). Any valid constraint
in the R

n1þ1 space of (x, 	) is called an optimality cut. It takes the form of a
constraint 	� f(x) that holds for every x2X, and 	�Q(x).
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Definition 13. A set of s optimality cuts {	� fl(x), l¼ 1,. . . , s} is said to be
sufficient at x2X if

	 2 f	 : 	 � flðxÞ, l ¼ 1 � � � sg ) 	 � QðxÞ:

In the classical L-shaped algorithm where the second-stage only involves
continuous variables and � has a finite support, the linear programming
duality theory implies that a sufficient set of optimality cuts can be found for
all x2X.

We now show how optimality cuts could be generated through a cutting
plane solution of the second-stage program. For simplicity of presentation,
we assume complete recourse for the second-stage so that feasibility cuts
can be left aside. Take the case when the assumptions of Proposition 4 are
satisfied. We also assume Y � Z

n2 . For each outcome �k2�, the second-stage
problem is

�ð�k � TxÞ ¼ minfqTy : Wy � �k � Tx, y 2 Z
n2g ð3:47Þ

Let F be the set of dual price functions. Although more general classes can be
considered, take F to be the class of functions F : Rm2 ! R that are
nondecreasing, subadditive and satisfy F(0)¼ 0. The dual problem of (3.47) is

max
F
fFð�k � TxÞ : FðwjÞ ¼ qj, j ¼ 1, . . . , n2, F 2 Fg ð3:48Þ

where wj is the jth column of W.

Proposition 14. Suppose F̂Fk, k¼ 1,. . . ,K, are optimal dual price functions
obtained by solving (3.48) with x¼ x� for each �k2�. Then, an optimality cut at
x� is given by

	 �
XK
k¼1

pkF̂Fkð�k � TxÞ ð3:49Þ

Proof. For each k¼ 1,. . . ,K, let yk and F̂Fk be optimal solutions of (3.47) and
(3.48), respectively, corresponding to x¼ x�. By integer duality, they satisfy
qTyk ¼ F̂Fkð�k � Tx�Þ. For each feasible F2 F and each feasible y 2 Z

n2 , we
have Fð�k � Tx�Þ � F̂Fkð�k � Tx�Þ ¼ qTyk � qTy. Now, for each x2X and
corresponding optimal dual price F

k
, we have

QðxÞ ¼
XK
k¼1

pkF
k
ð�k � TxÞ �

XK
k¼1

pkF̂Fkð�k � TxÞ,
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with

Qðx�Þ ¼
XK
k¼1

pkF̂Fkð�k � Tx�Þ: u

In a cutting plane procedure, the LP-relaxation of the integer program is
considered. Valid inequalities are successively generated and added to the
formulation, until the LP-relaxation optimal solution spontaneously meets the
integrality restrictions. The valid inequalities can be written as

Xn2
j¼1

F ðlÞðwjÞyj � F ðlÞðqÞ, l ¼ 1, . . . , s, ð3:50Þ

where F(l)
2 F, l¼ 1,. . . , s. Let ðu1, . . . , um2

, um2þ1, . . . , um2þsÞ be the dual
variables associated to the optimum of the final LP-relaxation. We construct
the function F : Rm2 ! R as

FðtÞ :¼
Xm2

i¼1

uiti þ
Xs
i¼1

um2þiF
ðiÞt ð3:51Þ

By construction, F2 F and is an optimal solution to (3.48).
As an example, consider the case where valid inequalities are generated by

the Gomory’s fractional cutting plane algorithm.
Let h¼ �k�Tx� in (3.47).
Let

yBi
þ
X
j2NB

wijyj ¼ hi for i ¼ 1, . . . , m2 ð3:52Þ

be the optimal basis for second-stage problem (3.47) associated with a
given k and given x�. This optimal basis can be rewritten in such a way that
wij � 0, j2NB, hi � 0, i¼ 1, . . . ,m2. NB is the set of nonbasic variables, while
Bi is the variable basic in row i. Let y* be the corresponding optimal solution.
If y* does not meet the integrality requirements, there is at least one row i with
hi 62 Z

1. Choosing such a row, the Chvatal–Gomory cut for row i is

yBi
þ
X
j2NB

8wij9 yj � 8hi9

Ch. 4. Stochastic Integer Programming 239



which, by eliminating yBi
, can be rewritten as

X
j2NB

ðwij � 8wij9Þyj � hi � 8hi9

or X
j2NB

fijyj � fi ð3:53Þ

where fij ¼ wij � 8wij9, fi ¼ hi � 8hi9. By construction, 0� fij<1 and 0<fi<1.
As y*i ¼ 0, i2NB at the optimal LP solution, this inequality cuts off y*.

Now let � be the row in the basis inverse corresponding to the row which
generated the cut (3.53). Let g¼��8�9. Then, the Gomory cut (3.53) can be
rewritten in terms of the original variables as the Chvatal–Gomory inequality

Xn
j¼1

8gwj9 yj � 8gh9,

namely

Xn
j¼1

8gwj9 yj � 8gð�k � Tx�Þ9: ð3:54Þ

Thus, expressed in terms of the first-stage variable, the optimality cuts involve
8g(�k�Tx)9 terms, i.e., rounding-down of combinations of x. Each one of
these rounding down operations requires an additional constraint and an
additional integer variable in the first-stage. The left-hand-side of (3.54) does
not depend on x, so that similar cuts could be generated for various
realizations of �2�. At the moment, it is not known how to use this property
efficiently. The approach remains impracticable as the number of auxiliary
variables and constraints will equal the total number of round down
operations needed to generate the cuts.

Decomposition by branch & bound
We now indicate how optimality cuts can be obtained through a branch &

bound solution procedure in the second-stage. Consider a given first-stage
iterate point x� and a given realization �k of �. Based on a full branching on
the second-stage problem (3.47) for x¼ x�, one obtains a partition of Rn2 into
R terminal nodes Y� ¼ fy : a� � y � b�g, � ¼ 1, . . . ,R. The optimal objective
value of the second-stage program over Y� is

Q�ðx�, �kÞ ¼ minfqTy : Wy ¼ �k � Tx�, a� � y � b�g

240 F.V. Louveaux and R. Schultz



By linear programming duality, it is also

Q�ðx�, �kÞ ¼ ð
�ÞT ð�k � Tx�Þ þ ð
�ÞTa� þ ð
�ÞTb�

where 
�, 
� and 
� are the optimal dual variables associated with the original
constraints, lower and upper bounds on y2Y�, respectively.

To simplify notations, we represent this expression as

Q�ðx�, �kÞ ¼ ð��kÞ
Tx� þ ��k

with ð��kÞ
T
¼ �ð
�ÞT � T and ��k ¼ ð


�Þ
T�k þ ð
�ÞTa� þ ð
�ÞTb�.

Duality theory also implies that Q�ðx, �kÞ � ð��kÞ
Tx� þ ��k .

Also, by construction of the branch & bound,

Qðx, �kÞ ¼ min
�¼1,...,R

Q�ðx, �kÞ:

Thus,

	k � pk min
�¼1,...,R

fð��kÞ
Txþ ��kg ð3:55Þ

is a valid optimality cut for Q(x, �k). It can thus be embedded in a multicut
representation 	 ¼

P
k¼1,...,K 	

k. When SIP has not complete recourse, some of
the terminal nodes may be infeasible, in which case their dual solutions
contain unbounded rays with dual objective values going to �1, so that the
minimum is restricted to the feasible terminal nodes.

The optimality cut (3.55) is a sufficient set of optimality cuts at x� for 	k.
Unfortunately, as it is well known, (3.55) is a nonlinear expression. R auxiliary
binary variables and Rþ 1 constraints are required to describe (3.55) in a
polyhedral representation with mixed integer variables. This, plus solving a
full branch & bound for each x� and each k, makes a decomposition by branch
& bound of little practical value.

Scenario decomposition
In a general setting, scenario decomposition can be understood as a

solution method for the multi-stage stochastic integer program (2.31) where,
out of the constraints (2.27), (2.28), (2.29), the nonanticipativity condition
(2.29) is subjected to Lagrangian relaxation. We will demonstrate scenario
decomposition at the following two-stage model:

minfcTxþ E�½�ð� � TxÞ� : x 2 Xg ð3:56Þ
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with

�ðtÞ :¼ minfqTy : Wy ¼ t, y 2 Yg

where X � R
n1 , Y � R

n2 are polyhedra, possibly involving integer require-
ments to components of x and y. We assume that all problem data have
conformable dimensions, that W is rational, and that � follows a discrete
distribution with realizations (or scenarios) �1,. . . , �N and probabilities

1,. . . ,
N. Then problem (3.56) can be written as the following mixed-integer
linear program

min
x,yj

cTxþ
XN
j¼1


jq
Tyj : TxþWyj ¼ �j, yj 2 Y , x 2 X

( )
: ð3:57Þ

Due to the sheer size, general purpose mixed-integer linear programming
solvers quickly fail at these problems. We reformulate (3.57) by introducing
copies xj, j¼ 1,. . . ,N, and adding the explicit nonanticipativity constraints
x1¼ � � � ¼ xN, or an equivalent system. For notational convenience, the latter
is written as

PN
j¼1 Hjxj ¼ 0 with proper (l, n1)-matrices Hj, j¼ 1,. . . ,N.

Problem (3.57) then becomes

min
XN
j¼1


jðc
Txj þ qTyjÞ : Txj þWyj ¼ �j, xj2X , yj 2Y ,

XN
j¼1

Hjxj¼0

( )
:

ð3:58Þ

For �2Rl we consider the functions

Ljðxj, yj, �Þ :¼ 
jðc
Txj þ qTyjÞ þ 
j�

THjxj, j ¼ 1, . . . , N, ð3:59Þ

and form the Lagrangian

Lðx, y, �Þ :¼
XN
j¼1

Ljðxj, yj, �Þ:

Later on, the Lagrangian will have to be minimized over a mixed-integer
polyhedral set, which will be accomplished by mixed-integer linear program-
ming solvers. To avoid nonlinearities, our Lagrangian is very much standard
in that it is based on linear expressions and does not involve nonlinear
augmentation terms.
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Given that the objective in (3.58) is an expectation, it is natural to base the
Lagrangian at a probabilistic inner product which, in (3.59), leads to the
factors 
j in front of the terms �THjxj. Conceptually, this follows the lines
of dualization as developed in Rockafellar and Wets (1978). Furthermore,
ill-conditioning in the Lagrangian dual when disregarding the probabilities in
the second term of (3.59) is avoided this way, see Bacaud et al. (2001) and
Gröwe-Kuska et al. (2002) for respective observations.

The Lagrangian dual of (3.58) is the optimization problem

maxfDð�Þ : � 2 R
l
g ð3:60Þ

where

Dð�Þ¼min
XN
j¼1

Ljðxj, yj , �Þ : Txj þWyj ¼ �j , xj 2 X , yj 2 Y

( )
: ð3:61Þ

The above minimization is separable, and we have

Dð�Þ ¼
XN
j¼1

Djð�Þ ð3:62Þ

where

Djð�Þ ¼ minfLjðxj, yj, �Þ : Txj þWyj ¼ �j, xj 2 X , yj 2 Yg: ð3:63Þ

Dj (�) is the pointwise minimum of affine functions in �, and hence piecewise
affine and concave. Therefore, (3.60) is a nonsmooth concave maximization
(or convex minimization) problem that can be solved by bundle methods from
nondifferentiable optimization, see Hiriart-Urruty and Lemaréchal (1993) and
Kiwiel (1990). At each iteration, these methods require the objective value and
one subgradient of D. These are obtained by solving the optimization problem
in (3.61) which, thanks to the separability in (3.62), reduces to solving N
problems of single-scenario size. The latter are mixed-integer linear programs
and very often within the reach of advanced general purpose solvers.
Altogether, the optimal value ’LD of (3.60) provides a lower bound to the
optimal value ’ of problem (3.57). Specifying a well-known result in
Lagrangian relaxation of mixed-integer linear programs, see e.g., Nemhauser
and Wolsey (1988), leads to the following proposition.

Proposition 15. It holds ’� ’LD. If for some multiplier �2Rl the optimal
solutions (xj, yj), j¼ 1,. . . ,N, to the optimization problem in (3.61) fulfilPN

j¼1 Hjxj ¼ 0, then ’¼’LD and (xj, yj), j¼ 1,. . . ,N, are optimal for (3.58).
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With ’LP denoting the optimal value of the linear programming relaxation to
(3.58) it holds ’LD� ’LP.

Equality of ’ and ’LD in Proposition 15 being a rare exception,
‘‘promising’’ feasible points for the original primal problem (3.58) are derived
by heuristics using the results of the dual optimization. Since, in our situation,
the relaxed constraints (x1¼ � � � ¼ xN) are particularly simple, ideas for such
heuristics arise quite naturally. For example, examine the xj-components,
j¼ 1,. . . ,N, of solutions to (3.63) for optimal or nearly optimal �, and decide
for the most frequent value arising or average and round if necessary. If the
heuristic provides a feasible solution to (3.58), then the objective value of the
latter yields an upper bound ’ for ’.

The difference ’� ’LD then indicates the quality of the feasible solution
found. If desired, this quality certificate can be improved by embedding the
procedure described so far into a branch & bound scheme for (3.56) seen as a
nonconvex global optimization problem. Recall from (2.11) the notation
�ðxÞ :¼ E�½�ð� � TxÞ�. Let P denote the list of current problems and
’LD¼ ’LD(P) the Lagrangian lower bound for P2P. The scheme then
consists of the following steps.

Scenario decomposition algorithm
Step 1 Initialization: Set ’ ¼ þ1 and let P consist of problem (3.58).
Step 2 Termination: If P¼; then the solution x̂x that yielded ’ ¼ cT x̂xþ �ðx̂xÞ is

optimal.
Step 3 Node selection: Select and delete a problem P from P and solve its

Lagrangian dual. If the optimal value ’LD(P) hereof equals þ1 (infeasi-
bility of a subproblem) then go to step 2.

Step 4 Bounding: If ’LDðPÞ � ’ go to step 2 (this step can be carried out as
soon as the value of the Lagrangian dual rises above ’).

(i) The scenario solutions xj, j¼ 1,. . . ,N, are identical: if cTxj þ �ðxjÞ < ’
then let ’ ¼ cTxj þ �ðxjÞ and delete from P all problems P0 with
’LDðP

0Þ � ’. Go to step 2.
(ii) The scenario solutions xj, j¼ 1,. . . ,N differ: compute the average

x ¼
PN

j¼1 
jxj and round it by some heuristic to obtain xR. If cTxRþ
�ðxRÞ < ’ then let ’ ¼ cTxR þ �ðxRÞ and delete from P all problems
P0 with ’LDðP

0Þ � ’. Go to step 5.

Step 5 Branching: Select a component x(k) of x and add two new problems
to P obtained from P by adding the constraints xðkÞ � 8xðkÞ9 and xðkÞ �
8xðkÞ9þ 1, respectively (if x(k) is an integer component), or xðkÞ � xðkÞ � "
and xðkÞ � xðkÞ þ ", respectively, where ">0 is a tolerance parameter to
have disjoint subdomains.

This scheme is obviously finite if X is bounded and all x-components have
to be integers. If x is mixed-integer some stopping criterion to avoid endless
branching on the continuous components has to be employed.

244 F.V. Louveaux and R. Schultz



As neither of the classical approaches for IP can provide a comprehensible
decomposition for SIP, research has been devoted to a number of cases which
receive a nice treatment. Subsequently, some of these cases will be addressed.

3.2 Simple integer recourse

A two-stage stochastic program with simple integer recourse was defined in
Section 2.2 as

min
x
fcTxþ E�½�ð� � TxÞ� : x 2 Xg

where

�ðtÞ ¼ minfðqþÞTyþ þ ðq�ÞTy� : yþ � t, y� � �t, yþ 2 Z
s
þ, y

� 2 Z
s
þg:

We again use the notation

uið�iÞ :¼ E�i
d�i � �ie

þ
� �

and við�iÞ :¼ E�i
8�i � �i9

þ
� �

to represent the expected surplus and the expected shortage, respectively.
Letting

�ið�iÞ ¼ qþi uið�iÞ þ q�i við�iÞ ð3:64Þ

the two-stage stochastic program with simple integer recourse can be trans-
formed into

min
x

cTxþ
Xs
i¼1

�ið�iÞ : � ¼ Tx, x 2 X

( )
: ð3:65Þ

To make the presentation simpler, we now consider the case with expected
shortage only. It is defined as

min
x

cTxþ
Xs
i¼1

qþi uið�iÞ : � ¼ Tx, x 2 X

( )
: ð3:66Þ

Note that all results available for the expected shortage easily translate to the
expected surplus, and therefore also to the functions �i (�i), i¼ 1,. . . , s. For
notational convenience, we will drop the index i whenever it is not required.
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Proposition 16. u(�þ 1)�u(�) is a nondecreasing function of �.

Proof. From Proposition 8, we have

uð�Þ ¼
X1
k¼0

ð1� Fð�þ kÞÞ:

It follows that, for all n2Zþ , we have

uð�þ nÞ ¼ uð�Þ �
Xn�1
k¼0

ð1� Fð�þ kÞÞ: ð3:67Þ

Taking n¼ 1, we get

uð�þ 1Þ � uð�Þ ¼ Fð�Þ � 1:

The proposition holds as F( � ) is a cumulative distribution function. u

If we consider � values which are integer apart, we may draw a piecewise
linear function through successive points (�
 k, u(�
 k)), k integer. This
piecewise linear function is convex by Proposition 16. It may sometimes be the
convex hull of u(�). A sufficient condition for that is that the support of �
is a subset of Z. But in general, it is not. Take the simple example where
�¼ 1/2 or 3/2 with probability 1/2 each, and observe that uð1=4Þ ¼ 3=2 >
1
2
ðuð0Þ þ uð1=2ÞÞ, as u(0)¼ 3/2 and u(1/2)¼ 1/2. In any case, as this piecewise

linear function is convex, we can derive valid inequalities in the (�, u(�)) space
which are supporting half-lines of this function.

Proposition 17. Let �2Z. Define 
¼ u(�)�u(�þ 1) and e¼ (�þ 1)u(�)�
�u(�þ 1). Then, for all �2Z,

uð�Þ � e� 
�: ð3:68Þ

Moreover

uð�Þ ¼ e� 
 � �: ð3:69Þ

Proof. Consider the case where �� �. Then

uð�Þ � uð�Þ ¼
X����1
k¼0

½uð�� kÞ � uð�� k� 1Þ�:
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By Proposition 16, each term in the sum is bounded below by u(�þ 1)�u(�).
Hence u(�)�u(�)� (���)(u(�þ 1)�u(�)).

The inequality (3.68) follows. The case where �� � is similar. Finally, (3.69)
is obtained by straightforward computation of e�
�. u

We now propose an exact algorithm for the case where � is integer.

Algorithm SPSIR
Step 1 Initialization: � :¼ 0, ri :¼ 0, i¼ 1,. . . , s.
Step 2 Current problem: Let � :¼ �þ 1. Solve the program

min
x

cTxþ
Xs
i¼1

qþi 	i : �¼Tx, x 2 X, 
lðiÞ�i þ 	i � elðiÞ, lðiÞ ¼ 1, . . . , ri

( )
:

ð3:70Þ

Let ðx�, 	�1, . . . , 	
�
s Þ be an optimal solution to (3.70). If ri¼ 0 for some i, 	�i is

set to �1 and is not considered in the computation of x�.
Step 3 Termination: Let ��¼Tx�. If 	�i ¼ uið�

�
i Þ for i¼ 1,. . . , s, then x� is an

optimal solution. Stop.
Step 4 Cut generation: For any i, i¼ 1,. . . , s, such that 	�i < uið�

�
i Þ, compute


riþ1 ¼ uið�
�
i Þ � uið�

�
i þ 1Þ

and

eriþ1 ¼ ð�
�
i þ 1Þuið�

�
i Þ � �

�
i uið�

�
i þ 1Þ:

Set ri :¼ riþ 1. Go to step 2.

Proposition 18. Assume X is bounded. Also assume �2Zs for all x2X. Then,
the SPSIR algorithm finds an optimal solution to (3.66) in a finite number of
steps, provided ui(�i) can be obtained through a finite computation, i¼ 1,. . . , s.

Proof. X being bounded, there are only finitely many different values of �i,
i¼ 1,. . . , s. For each �i, only one cut can be generated. Thus, ri is finite. By
(3.69), the same cut can only be generated once in step 4. u

Example 19. Newsboy Problem Revisited. Assume now that the newsboy can
purchase a number of publications (newspaper, magazines, . . . ). Each
publication i, i¼ 1,. . . , s, has a purchase cost ci, a selling cost si and a demand
which is a random variable �i with cumulative distribution function Fi. For
simplicity, we assume unsold publications cannot be returned to the vendor.
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Each publication has a weight (or volume) ai. A total weight (or volume) b is
available to the newsboy.

The problem is naturally an integer program as publications sell by the
unit. It reads as follows

min
Xs
i¼1

cixi þ E� �
Xs
i¼1

siyið�iÞ

" #
:
Xs
i¼1

aixi � b,

(

0 � yið�iÞ � �i, yið�iÞ � xi, x 2 Z
s
þ, yð�Þ 2 Z

s
þ

)
:

Letting yþi ð�iÞ ¼ �i � yið�iÞ, one obtains an equivalent formulation

min
Xs
i¼1

cixi þ E�

Xs
i¼1

siy
þ
i ð�iÞ

" #
� E�

Xs
i¼1

�i

" #
:

(

Xs
i¼1

aixi � b, yþi ð�iÞ � �i � xi, x 2 Z
s
þ, y

þð�Þ 2 Z
s
þ

)
:

Omitting the constant term and using the notation ui(xi) previously defined for
the expected surplus, the newsboy problem becomes

min
Xs
i¼1

cixi þ
Xs
i¼1

siuiðxiÞ :
Xs
i¼1

aixi � b, x 2 Z
s
þ

( )
:

This problem obviously satisfies the assumptions in Proposition 18: X is
bounded through the upper limit on the total weight and �¼ x is integer by
definition.

It now remains to study a number of cases where the computation of u(�) is
finite.

(i) � has a finite range.
This case includes random variables with finite support, but also
continuous random variables on a finite range. For instance, if � has a
uniform density on [0, a], then for 0� x� a,

uðxÞ ¼
Xda�xe�1
k¼0

½1� Fðxþ kÞ�:

(ii) Closed form expressions can be found.
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Let � have a negative exponential density with parameter �>0. Then, for
x� 0,

uðxÞ ¼
X1
k¼0

ð1� Fðxþ kÞÞ ¼
X1
k¼0

e��ðxþkÞ

¼
e��x

1� e��

(iii) The support of � is a subset of Z.
By (3.67), we have

uð�þ nÞ ¼ uð�Þ �
Xn�1
k¼0

ð1� Fð�þ kÞÞ:

Observe that FðtÞ ¼ F 8t9ð Þ for all t2R, as the support of �2Z. Thus,
uðtÞ ¼ u 8t9ð Þ for all t2R. Consider x� 0. Apply (3.67) with �¼ 0 and
n¼ 8x9. It follows that

uðxÞ ¼ uð0Þ � nþ
Xn�1
k¼0

FðkÞ:

Now, as the support of � is a subset of Z, uð0Þ ¼ E½d�eþ� ¼ E½�þ� ¼
E½maxð�, 0Þ�. In particular, for such distributions with �� 0, u(0)¼E[�]. Such
is the case for a Poisson distribution, for instance.

Example 20. Newsboy Problem Continued. Take the newsboy problem with
s¼ 2, cT¼ (1, 2), s1¼ 3, s2¼ 7, aT¼ (2, 3), b¼ 12. Assume the demand for both
publications follows a Poisson distribution with parameter 3. Assume a
starting point of xT¼ (0, 0). The initial cuts are found as follows.

By definition, u(0)¼ 3. Compute u(1)¼ u(0)þF(0)�1¼ 2.0498. Then

1¼ 0.9502 and e1¼ 3.

The next iterate will be xT¼ (0, 4), with one extra cut generated, then
xT¼ (3, 2) with two new cuts, then xT¼ (3, 2) again, which is optimal. Observe
that the mean value optimum is xT¼ (1, 3).

Note, finally, that even for such continuous densities as the normal
distribution, it is possible to compute u(x) within a fixed tolerance in a finite
number of steps (see Theorem 3.30 in Birge and Louveaux, 1997). This
tolerance can be chosen equal to the machine tolerance so that the
computation can be considered exact.
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3.3 Binary first-stage variables

When the first-stage variables are binary, it is possible to obtain a sufficient
set of optimality cuts at each x 2 X \ f0, 1gn1 . A finite algorithm, called the
integer L-shaped, has been designed. It can be made efficient for hard
problems when lower bounding functionals are available.

Assumption 21. There exists a finite lower bound L satisfying

L � min
x
fQðxÞ : x 2 Xg:

Assumption 22. For x2X, Q(x) is computable in a finite number of steps.

At a given stage of the algorithm, we consider the current problem (CP)

ðCPÞ� min
x,	
fcTxþ 	 : x 2 P \N�, 	 � L, 	 � flðxÞ, l ¼ 1, . . . , sg

where P is a formulation of X, N� is node � of the first-stage branching
scheme, Rn1 ¼ [�¼1,...,R N�. L is a finite lower bound as in Assumption 21 and
	� f�(x), l¼ 1,. . . , s, are the optimality cuts. We now present a general scheme.

Integer L-shaped algorithm
Step 1 Initialization: Let s¼ 0, �¼ 0, �¼ 1, z ¼ 1, 	 :¼L. A list is created that

contains one single node corresponding to the initial problem, i.e.,
N1 :¼ R

n1 .
Step 2 Selection: Select one node � in the list, if none exists, stop.
Step 3 Solution: Set � :¼ �þ 1. Solve (CP)�. If it is infeasible, fathom node N�

and go to step 2. Otherwise, let (x�, 	�) be an optimal solution. If
cTx� þ 	� � z, fathom node N� and go to step 2.

Step 4 Branch & cut: Check for integrality restrictions. If some restriction is
violated, apply a separation algorithm to find a valid inequality. If some is
found, adapt P, then return to step 3. If not, create two new nodes
following the usual branching. Append the nodes to the list, fathom node
N� and go to step 2.

Step 5 Second-stage value. Compute Q(x�) and z�¼ cTx�þQ(x�). If z� < z,
update z :¼ z�.

Step 6 Optimality cuts: If 	��Q(x�), fathom node N� and go to step 2.
Otherwise, find some optimality cut, set s :¼ sþ 1 and go to step 3.

The integer L-shaped method yields an optimal solution (when one exists)
in a finite number of steps when a sufficient set of optimality cuts exists for
each x2X. As X � f0, 1gn1 , step 6 can only be performed a finite number
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of times. All other steps of the method are finite, as the branch & cut
procedure is finite.

When needed, the integer L-shaped can be used in a multicut version. Then,
	 is replaced by

P
k¼1,...,K 	

k, and the restriction 	�Q(x) becomes
	k�Q(x, �k), k¼ 1,. . . ,K. In this case, step 6 becomes

Step 6 Optimality cuts in the multicut version: If (	k)��Q(x�, �k), for all
k¼ 1,. . . ,K, fathom node N� and go to step 2. Otherwise, for each k such
that (	k)�<Q(x�, �k), find some optimality cut, adapt sk and go to step 3.

Based on the fact that the first-stage variables are binary, we easily obtain a
sufficient set of optimality cuts.

Proposition 23. Let xi¼ 1, i2S, and xi¼ 0, i 62S, be some first-stage feasible
solution. Let qS¼Q(x) be the corresponding recourse function value. Define the
optimality cut as

	 � ðqS � LÞ
X
i2S

xi �
X
i 62S

xi

 !
� ðqS � LÞðjSj � 1Þ þ L: ð3:71Þ

Then, the optimality cut (3.71) is sufficient at x.

Proof. Let �ðx,SÞ ¼
P

i2S xi �
P

i 62S xi. We have �(S)� jSj. �(S)¼ jSj only if
xi¼ 1, i2S, and xi¼ 0, i 62S. In that case, the right-hand side of (3.71) takes
the value qS and 	� qS is valid as qS is precisely Q(x). In all other cases,
�(S)� jSj�1. Then the right hand side of (3.71) takes a value smaller than or
equal to L and 	�L is valid by Assumption 21. This single cut is sufficient at x
since Q(x)¼ qS. u

An alternative is to consider the integer L-shaped as a particular case of the
cutting plane decomposition of Section 3.1.1, with

FðtÞ ¼
�ðtÞ for t � � � Tx�,

L otherwise:

(

To avoid sending too many optimality cuts, it is helpful to add a number of
lower bounding functionals on Q(x). One general possibility is to add cuts
from the continuous L-shaped. Let

�ðx, �Þ ¼ minfqTy : Wy ¼ � � Tx, y 2 R
n2
þ g
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and �ðxÞ ¼ E�½�ðx, �Þ�. Then,

	 � �ðx�Þ þ @�ðx�ÞT ðx� x�Þ ð3:72Þ

is a valid lower bounding functional. We now present two different situations
where the optimality cuts can be improved and the integer L-shaped becomes
more efficient.

s-Neighbors
When more information is available on Q(x), improvements on (3.71) can

be obtained. Let

Nðs, SÞ ¼ fx : �ðx, SÞ ¼ jSj � s, x 2 Xg

be the s-neighbors of S. Assume we can find

�ðs, SÞ � minfQðxÞ : x 2 Nðs, SÞg, s ¼ 0, . . . , jSj,

or at least a series of �(s,S), s� t. Observe that �(0,S)¼ qS.

Proposition 24. Let xi¼ 1, i2S, xi¼ 0, i 62S, be a feasible solution to SIP, with
qS¼Q(x). Define a ¼ maxfqS � �ð1,SÞ, ðqS � LÞ=2g. Then

	 � a�ðx, SÞ þ qS � ajSj ð3:73Þ

is a sufficient optimality cut at x.

Proof. For x2N(s,S), the right-hand side of (3.73) is equal to qS�as. We
show that this value is a valid lower bound on Q(x). This is obvious for s¼ 0.
When s¼ 1, the r.h.s. is qS�a. By definition of a, qS�a is bounded above by
qS � ðqS � �ð1,SÞÞ ¼ �ð1,SÞ, which is by definition a lower bound on one
neighbors of S. When s¼ 2, q� 2a � qS � 2ðqS � LÞ=2 ¼ L. Finally, for s� 3,
qS � as � qS � 2a � L. (3.73) is sufficient at x as 	� qS for s¼ 0. u

Geometrically, (3.73) defines a half-space in the (�, 	) space, above a line
passing through the two points (jSj, qS) and (jSj�1, �(1,S)) when
a¼ qS��(1,S), or the two points (jSj, qS) and (jSj�2,L) where a¼ (qS�L)/2.

Proposition 25. Let xi¼ 1, i2S, xi¼ 0, i 62S, be a feasible solution, with
qS¼Q(x). Let 1� t� jSj be some integer. Then (3.73) holds with

a ¼ maxfmax
s�t
ðqS � �ðs, SÞ=s; ðqS � LÞ=ðtþ 1Þg: ð3:74Þ
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Proof. If x2N(s,S), the right-hand-side of (3.73) is qS�as. By (3.74), for all
s� t, qS � as � qS � ðqS � �ðs,SÞÞ ¼ �ðs,SÞ which is a lower bound on Q(x)
by definition. For s>t, qS � as � qS � aðtþ 1Þ � qS � ðqS � LÞ ¼ L which is
also valid. u

Proposition 26. Assume qS>�(1,S). If �(s�1,S)��(s,S) is nonincreasing in s
for 1 � s � 8ðqS � LÞ=ðqS � �ð1,SÞÞ9, then (3.73) holds with a¼ qS��(1,S).

Proof. It suffices to show that in (3.74), the maximum in the right-hand side is
obtained when s¼ 1. Let t ¼ 8ðqS � LÞ=qS � �ð1,SÞ9. For s� t, we have
qS � �ðs,SÞ ¼

Ps
i¼1 ð�ði � 1,SÞ � �ði,SÞÞ. By assumption, each term of the

sum is smaller than the first term of the sum, so the total is less than s times
qS��(1,S). By definition of t, we have tþ 1 � ðqS � LÞ=ðqS � �ð1,SÞÞ or
qS � �ð1,SÞ � ðqS � LÞ=ðtþ 1Þ. u

Example 27. Let QðxÞ ¼
Pm2

j¼1 QjðxÞ with

Qjðx, �Þ ¼ min rjyj : djyj � dj �
X
i2Tð jÞ

�ijxi, yj 2 f0, 1g

( )

and

QjðxÞ ¼ E�½Qjðx, �Þ�:

Assume xi2 {0, 1}, i2T, with T ¼ [j¼1,...,m2
Tð jÞ and Tð jÞ \ TðkÞ ¼ �, j 6¼ k.

This can be seen as a number of investments xi, i2T, which are made in a first
stage. They have a random yield �ij in product j. Any deficiency in attaining
the target dj for product j results in a penalty rj. The second-stage value is then
simply

QðxÞ ¼
Xm2

j¼1

rjP
X
i2Sð jÞ

�ij < dj

 !
ð3:75Þ

where

SðjÞ ¼ fi 2 Tð jÞ : xi ¼ 1g, j ¼ 1, . . . , m2, at the current solution x:

To apply Proposition 26, take S ¼ [j¼1,...,m2
Sð jÞ. By definition, qS¼Q(x) and

is easily computed from (3.75) when the sum of the random variables �ij,
i2S( j), has a known distribution, j¼ 1,. . . ,m2. Such is case for standard
distributions as the Poisson or normal distribution. There are two ways
1-neighbors can be obtained. First, for one j, 1� j�m2, one xi, i2S( j), goes
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from one to zero (and all other xi’s are unchanged). In that case, Q(x) is
increased and any value smaller than or equal to qS is a valid lower bound.
Second, we may have one single xi, i 62S, going from zero to one, and again all
other xi’s unchanged. As the T( j), j¼ 1,. . . ,m2, form a partition, one single
term is modified in (3.75). We easily obtain a lower bound by simply assuming
this term vanishes. Thus

qS � �ð1, SÞ � max
j¼1,...,m2

rj P
X
i2Sð jÞ

�ij < dj

 !( )

Without loss of generality, order the j’s in decreasing order of
rj Pð

P
i2Sð jÞ �ij < djÞ. Repeating the argument above, we get

qS � �ðs, SÞ �
Xs
j¼1

rj P
X
i2Sð jÞ

�ij < dj

 !

and Proposition 26 applies.

Vehicle routing problems
The integer L-shaped method can be used to solve hard problems for

specific applications. We now illustrate this on an example of a routing
problem. The capacitated vehicle routing problem, is defined on an undirected
graph G¼ (V,E) where V¼ {v1,. . . , vn} is a vertex set and E ¼ fðvi, vjÞ :
vi, vj 2 V , i < jg is an edge set. Vertex v1 is a depot at which are based m
identical vehicles of capacity D, while the remaining vertices are customers. A
symmetric travel cost matrix C¼ (cij) is defined on E. With each customer vi is
associated a nonnegative demand to be collected or delivered, but not both.
Without loss of generality, we consider the first case here. In the classical
VRP, each vi has a known demand di. The problem then consists of designing
m vehicle routes: (i) each starting and ending at the depot, (ii) such that every
customer is visited only once by one vehicle, (iii) the total demand of any route
does not exceed D, and (iv) the total routing cost is minimized. The VRP is
known to be NP-hard.

In the stochastic case, each customer vi has a stochastic demand �i. The
consequence of having stochastic demands is that a planned vehicle route may
fail at a given customer location whenever the accumulated demand exceeds
D. In such a case, a failure is said to occur and a recourse action must be
implemented. The stochastic VRP can easily be represented as

minfcxþQðxÞ : x 2 Xg
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where X defines the usual restrictions on the routes (degree constraints at the
nodes, no subtour, and expected demand of any route does not exceed the
vehicle capacity). x¼ (xij) is defined as the arc variables, with xij¼ 1 if (vi, vj)
belongs to a route and xij¼ 0 otherwise, and Q(x) is the expected cost of
recourse actions in case of failure. This expected cost is separable in the routes
and must be computed for each of its two orientations

QðxÞ ¼
Xm
k¼1

minfQk,1, Qk,2g

where Qk,� denotes the expected cost of recourse corresponding to route k
and orientation �¼ 1 or 2. For a given route k defined by Vk ¼ ðvi1 ¼
v1, vi2 , . . . , vitþ1 ¼ v1Þ, one orientation corresponds to following the route with
customers visited in the natural order. The other orientation corresponds to
visiting them in backward order. Observe that orientation does matter in a
stochastic setting, while it does not in a deterministic one. Assume the recourse
action simply consists of the following steps: return to the depot, unload the
vehicle then resume the route at the customer where failure occurs. This
recourse action is called a return trip to the depot. Then, the expected recourse
cost for the first orientation is

Qk,1 ¼ 2
Xt
j¼2

X1
l¼1

P
Xj�1
s¼2

�is � lD �
Xj
s¼2

�is

 !
c1ij : ð3:76Þ

It can be rewritten as

Qk,1 ¼ 2
Xt
j¼2

X1
l¼1

½Fj�1ðlDÞ � FjðlDÞ�c1ij ð3:77Þ

where FjðlDÞ ¼ Pð
Pj

s¼2 �is � lDÞ. If �i�D a.s. for all i, then the upper limit
in the second summation in (3.76) and (3.77) can be brought down to j�1.

(i) Lower bounding functionals on Q(x) can be obtained at fractional first-
stage solutions. They are based on the concept of ‘‘partial routes’’. A
partial route h is specified by two ordered vertex sets Sh ¼ fv1, . . . , vshg
and Th ¼ fv1, . . . , vthg satisfying Sh\Th¼ {v1}, and a third set Uh

satisfying Sh\Uh¼ {vsh} and Th\Uh¼ {vth}.
For simplicity, we write (vi, vj)2Sh or Th if vi and vj are consecutive

in Sh or Th. The partial route h induced by these sets is made up of the
two chains ðv1, . . . , vshÞ, ðv1, . . . , vthÞ and of the unstructured set Uh. Let
Rh ¼ Sh [ Th [Uh. Define

WhðxÞ ¼
X
ðvi ,vj Þ2Rh

xij � jRhj þ 1:
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Let P be a lower bound on any solution containing the partial routes
and, as usual, L a lower bound on Q(x).

Proposition 28. The constraint

	 � Lþ ðP� LÞ
Xr
h¼1

WhðxÞ � rþ 1

 !
ð3:78Þ

is a valid inequality for SVRP.

Proof. By construction Wh(x)� 1. Hence,
Pr

h¼1 WhðxÞ � rþ 1 � 1. It is only
1 when Wh(x)¼ 1 for all h. In this case, (3.78) becomes 	�P. Otherwise (3.78)
is redundant. u

A greedy heuristic to find out partial routes proves to be an efficient
separation algorithm to detect violated inequalities (3.78). We construct
P ¼

Prþ1
h¼1 Ph as follows. For h� r, we create an artificial customer va with

demand �a ¼
P

vi2Uhnfvsh , vth g
�i and c1a ¼ minvi2Uhnfvsh , vth g

fc1ig. Then construct
route k equal to fv1, . . . , vsh , va, vth , . . . , v1g and compute Ph ¼ minfQk,1,Qk,2g

as before for this artificial route. Prþ 1 is a lower bound on the expected
recourse restricted to the customer set VnUr

h¼1 Rh and m�r vehicles. It is
similar to the computation of L for Q(x), that is now described in the next
paragraph.

(ii) Lower bound on Q(x). Relabel all customers in nondecreasing order of
their distance to the depot. Denote by Xk the random demand on route
k, k¼ 1,. . . ,m, and let Fk( � ) be its distribution function. Let XT be the
total random demand and FT( � ) its distribution function.

Proposition 29. Let 
(Fk,D) be a lower bound on the probability of having at
least one failure on a route whose demand is defined by Fk. A valid lower bound
on Q(x) is given by

L ¼ inf
ðF1,...,FmÞ

(
2
Xm
k¼1

c1,kþ1
ðFk, DÞ :Z
� � �

Z
x1þ ��� þxm�x

dF1ðx1Þ � � � dFmðxmÞ ¼ FT ðxÞ for all x,

Fk 2 Fk, k ¼ 1, . . . , m

)
ð3:79Þ

where Fk is a family of distribution functions to be specified. In particular, it
must be such that E�[Xk]�D.
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Proof. From (3.77), the expected cost Qk,� of route k with orientation �
is obtained by computing the cost of having the lth failure at the jth
customer, then summing up over all l and j. Each of these terms contribute
to Qk,� by a nonnegative amount. A valid lower bound is obtained by only
considering the first failure, l¼ 1. By definition of 
(Fk,D), we obtain
QðxÞ � 2

Pm
k¼1 �k � 
ðFk,DÞ for any lower bound �k on the distance of a

customer in route k to the depot. We may then replace �1,. . . , �m by the m
least distances to the depot, to obtain the objective function in (3.79). u

Apply this proposition to the case where Fk is the set of normal
distributions. Let xk¼E[Xk] and yk¼Var[Xk]. Let also �T¼E[XT] and
�2T ¼ Var½XT �. Let x¼ (x1,. . . ,xm), y¼ (y1,. . . , ym).

Then (3.79) reduces to

L ¼ min
x,y

2
Xm
k¼1

c1,kþ1 1� G
D� xkffiffiffiffiffi

yk
p

	 
� �
:
Xm
k¼1

xk ¼ �T ,

(

Xm
k¼1

yk ¼ �
2
T , y � 0, x � 0

)
: ð3:80Þ

where GðtÞ ¼ PðZ � tÞ, Z � Nð0, 1Þ.
As the objective function is neither convex nor concave, we obtain a

more workable problem by replacing yk by some lower bound y0. We know
that for each route xk � x0 :¼ maxf�T � ðm� 1ÞD; mini¼2,..., n E½�i�g. Then,
y0 ¼ minZf

Pn
i¼2 Var½�i�zi :

Pn
i¼2 E½�i�zi � x0, zi 2 f0, 1gg is a lower bound on

yk. We may thus replace (3.80) by

L ¼ min
x

2
Xm
k¼1

c1,kþ1 1� G
D� xkffiffiffiffiffi

y0
p

	 
� �
:
Xm
k¼1

xk ¼ �T , x � 0

( )
:

ð3:81Þ

The objective function in (3.81) is convex in xk for xk�D, so that (3.81) can
be solved by applying the Karush–Kuhn–Tucker conditions. Let � be the
multiplier on

Pm
k¼1 xk ¼ �T . Define b ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffi

y0=2
p

. Then

xk ¼
D if c1,kþ1 � b

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y0 lnðc1,kþ1=bÞ

p
if c1,kþ1 � b:

(

As xk, k¼ 1,. . . ,m, is a nondecreasing function of b, they can be determined
recursively up to the moment where

Pm
k¼1 xk ¼ �T within some tolerance.

Similar results apply for other cases, such as the Poisson distribution.
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The combination of lower bounding functionals on partial routes and the
calculation of a lower bound L based on (3.81) for the normal case prove to be
very efficient.

3.4 Second-stage integer variables

We now consider the case where Y � Z
n2
þ . Assume again T andW are fixed.

Suppose also that the second-stage program for a given � can be represented
as

�ð�, �ð!ÞÞ ¼ minfqTy : Wy � � � �, y 2 Yg

where Y � Z
n2
þ . Assume also that � has a finite support.

Proposition 30. Let W be integer. Assume fu 2 R
m2 : WTu � qg 6¼ ;. For every

�2� and j¼ 1,. . . ,m2, �(�j, �) is lower semicontinuous and nondecreasing in �j.
Moreover, for any h2Z, �(�j, �) is constant over �j 2 ðh� �j � 1, h� �j�,
� 2 �, j ¼ 1, . . . ,m2.

Proof. The first part of the proposition comes from Proposition 2. Any
solution y 2 argminfqTy : Wy � � � �0, y 2 Yg belongs to fy : Wy � � � �,
y 2 Yg when �0 ��. So �ð�, �ðwÞÞ � �ð�0, �ðwÞÞ. Define h ¼ d�j � �

0
je. With

integral W, the jth constraint (Wy)j� �j��j implies (Wy)j� hj. Hence
�(�j, �(!)) is constant over (h��j�1, h��j]. u

It is thus possible to partition the � space in an orthogonal complex C,
where each cell C2 C is of the form

Q
j¼1,...,m2

ðaj, bj�. On each of these cells,
�(�) is constant. The closure of a nonempty cell forms a full-dimensional
hyper-rectangle. The nonempty cells form a partition of R

m2 . A branch &
bound algorithm can be constructed, where the branching consists of
considering other cells of this orthogonal complex than those already
considered.

Define, as usual,

�ð�Þ ¼ E�½�ð�, �ð!ÞÞ�

Define the current problem associated to a set S as

CPðSÞ z ¼ inf
x,�,	
fcxþ 	 : x 2 X , � 2 S, Tx ¼ �, 	 � flðxÞ, l ¼ 1, . . . , sg

where, as before, 	� fl(x) are optimality cuts or lower bounding functionals.
Typically, (3.72) can be used here.
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Algorithm for second-stage integer variables
Step 1 Initialization: Set �¼ 0, z ¼ 1. Choose s and find s valid inequalities
	� fl(x), l¼ 1,. . . , s. A list is created that contains the single node N1 :¼�.
Set �¼ 1.

Step 2 Selection: Select a node N� in the list; if none exists, stop.
Step 3 Current solution: Set � :¼ �þ 1. Solve CP(N�). If N� is infeasible,

fathom node N�, go to step 2. Otherwise, let (x�,��, 	�) be an optimal
solution. If cx� þ 	� � z, fathom the current node and go to step 2.

Step 4 Cell: Find the cell C ¼
Q

j¼1,...,m2
ðaj, bj� s.t. �

�
2C. Let b ¼ ðb1, . . . , bm2

Þ.
Compute �(b, �) for all � 2� and let �� ¼ E�½�ðb, �Þ�.

Step 5 Solution value: Solve

v ¼ inf
x,�
fcTx : x 2 X , � 2 C, Tx ¼ �g:

Let x, � be an optimal solution. Compute z� ¼ cxþ��. If z < z�, update
z :¼ z�.

Step 6 Branch: Select a component j, 1� j�m2. Create two new nodes
N� \ f� : �j � ajg and N� \ f� : �j > bjg. Fathom node N� and go to step 2.

The algorithm is finite as the number of cells of the complex is finite since X
is compact. Additional valid inequalities can be found along the way in step 3.
In practice, open sets and inf would be replaced by closed sets and min,
through a well-chosen tolerance on open sets. In the following case, the
definition of the cells is easier. When the discrete random variable is such that
all realizations of component �j, j¼ 1,. . . ,m2, are of the form hjþ k, k2Z for
some hj. Then, all cells can be defined as

Q
j¼1,...,m2

ðaj , ajþ1�.

Sampling
In many cases, the second-stage value function may be hard or impossible

to compute, even for a fixed value of the first-stage solution. It is natural then
to design methods based on some form of sampling. Such methods are
currently used in continuous stochastic programming and are described
elsewhere in this handbook. We provide here an introduction to some specific
aspects of stochastic discrete programs.

Stochastic branch & bound
At a given stage of the algorithm, one considers a current problem

ðCPÞ� z*ðN�Þ ¼ minfcTxþ E�½�ðx, �Þ� : x 2 P \N�g ð3:82Þ

where P is a formulation of X, N�, is a node of the first-stage branching
scheme, Rn

¼ [�¼1,...,R N� and

�ðx, �Þ ¼ minfqT ð�Þy : Wð�Þy � hð�Þ � Tð�Þx, y 2 Yg: ð3:83Þ
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As z*(N�) is too difficult to compute, the stochastic branch & bound does try
to find a lower bound function L(N�) and an upper bound function U(N�)
which satisfy the following two conditions

(i) for every N� 6¼ ;, LðN�Þ � z*ðN�Þ � UðN�Þ

(ii) for every singleton x2X, LðfxgÞ ¼ z*ðfxgÞ ¼ UðfxgÞ.As usual,
z* ¼ min�¼1,...,Rz*ðN

�Þ. Also, z* � z ¼ min�¼1,...,R UðN�Þ. Thus, a node
N� can only be fathomed when LðN�Þ � z. Alternatively, a node Nl¼;

can also be fathomed.

There are various ways to obtain lower and upper bound functions in
stochastic discrete programs. One such way is to use the classical wait-and-see
(WS) and expected result of using the EV solution (EEV) values. Let
xð�Þ 2 argminfcTxþ�ðx, �Þ : x 2 P \N�g be the WS solution for a given
�2� and node N�. Similarly, let x* 2 argminfcTxþ E�½�ðx, �Þ� : x 2 P \N�g

be a solution of the current problem (CP)�. For any �2�, cTxð�Þþ
�ðxð�Þ, �Þ � cTx* þ�ðx*, �Þ. The lower bound function is obtained by taking
the expectation of the left-hand-side of this inequality:

LðN�Þ :¼ E�½minfcTxþ�ðx, �Þ : x 2 P \N�g�:

By definition, the expectation of the right-hand of the same inequality is
precisely z*(N�), which proves the condition L(N�)� z*(N�) holds. Moreover,
for every singleton x, we have LðfxgÞ ¼ z*ðfxgÞ ¼ cTxþ E�½�ðx, �Þ�.

Similarly, let x� 2 argminfcTxþ�ðx,E�½��Þ : x 2 P \N�g be the solution of
the EV problem on node N�. We define

UðN�Þ :¼ E�½c
Tx� þ�ðx�, �Þ�

which is the EEV value for node N�. As x� is a feasible solution to (CP)�, it
follows that z*(N�)�U(N�) holds. Clearly, for every singleton,
U({x})¼ z*({x}). We now illustrate why finding U(N�) and, especially,
L(N�) is still a hard problem.

Example 31. Project Financing. Assume we can invest in n projects. Project j
can be started at a cost cj. In the second stage, projects which have been
started can be continued or not. If project j is continued, it provides a revenue
�qj (�). Project j requires tij units of resource i in the first stage and an
additional wij (�) units to be continued. A total of hi(�) units of resource i will
be available over the two stages. The two-stage stochastic program reads as
minfcTxþ E�½�ðx, �Þ� : x 2 Pg where P is a formulation of some first-stage
constraints and

�ðx, �Þ ¼ minfqT ð�Þy : Wð�Þy � hð�Þ � Tx, y � x, y 2 f0, 1gng: ð3:84Þ
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The current problem is as (3.82). To obtain an upper bound on N�, we solve
the expected value problem

minfcTxþ E½qT ð�Þ�y : Txþ E½Wð�Þ�y � E½hð�Þ�,

y � x, y 2 f0, 1gn, x 2 P \N�g: ð3:85Þ

This is a multiknapsack problem. For simplicity, assume P� {0, 1}n. Now, N�

will include additional restrictions on x. If x2N� implies xj¼ 0 for some j,
then xj and yj can be removed from the computation in (3.84). If x2N�

implies xj¼ 1 for some j, then xj is also removed from the computation in
(3.84). Finally, if x2N� implies xj2 {0, 1}, then it follows that (3.84) can be
simplified as yj¼xj in any deterministic solution. Thus, finding x� is relatively
easy. Yet, finding U(N�) still requires computing E�½�ðx�, �Þ�. This involves
solving a multiknapsack problem for each �2�. Unless the support of � is
discrete with low cardinality, E�½�ðx�, �Þ� cannot be computed exactly, but
only estimated through sampling. Similarly, computing L(N�) amounts to
solving a deterministic multiknapsack for each �2�. The same simplifications
as above are available, yet L(N�) cannot be computed exactly but only
estimated through sampling.

A stochastic lower bound function can be obtained by Monte Carlo
simulation. For i.i.d. observations �k, k¼ 1,. . . ,S, one obtains

�ðn�Þ ¼
1

S

XS
k¼1

minfcTxþ�ðx, �kÞ : x 2 P \N�g:

For the same sample, one obtains a stochastic upper bound

�ðN�Þ ¼
1

S

XS
k¼1

ðcTx� þ�ðx�, �
kÞÞ

where, as before, x� is the solution of the EV problem on node N�.
When the lower and upper bounds are random variables, fathoming

of the nodes becomes more problematic. Deletion of a node on the basis
of the statistical estimates may lead to the loss of the optimal solution.
On the other hand, the stochastic lower and upper bounds �(N�) and �(N�)
can be updated each time a new sample is drawn, in a manner similar
to the one which updates cuts in a stochastic decomposition method. As
limS!1 �ðN

�Þ ! LðN�Þ, a.s. and limS!1 �ðN
�Þ ¼ UðN�Þ a.s., the errors

j�(N�)�L(N�)j and j�(N�)�U(N�)j can be bounded in probability. Then,
deletion can only occur after a sufficiently larger number of iterations where
the estimations of the bounds are improved. Convergence of the stochastic
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branch & bound relies on two arguments. As just mentioned, repeated
sampling lets the stochastic bounds tend to the lower and upper bounds L(N�)
and U(N�). On the other hand, repeated partitioning lets the nodes tend to
singletons for which, by construction, L({x})¼ z*({x})¼U({x}). A detailed
description can be found in Norkin et al. (1998).

Sample average approximation
Consider a sample �k, k¼ 1,. . . ,S, of sample scenarios generated from !

according to the probability distribution P. The Sample Average
Approximation problem is the following

ðSAAÞ zS ¼ min cTxþ
1

S

XS
k¼1

�ðx, �kÞ : x 2 P

( )

where P is a formulation of X. It is a stochastic program with discrete
distribution. It can be solved by the classical L-shaped method if the second-
stage is continuous, combined with a branch & cut scheme to recover
integrality in the first-stage. The SAA method proceeds by solving problem
(SAA) repeatedly. Assume M independent samples, each of size S, are
generated and, for each, the corresponding (SAA) problem is solved. We
obtain optimal values z1S, z

2
S, . . . , z

M
S and associated candidate solutions

x̂x1, x̂x2, . . . , x̂xM . It is then natural to pick-up one of these as the (estimated)
optimal solution. This would require finding the one which minimizes
cTxþE�[�(x, �)]. As this calculation is again impossible to carry out, this
value is estimated by

ẑzNðxÞ ¼ cTxþ
1

N

XN
n¼1

�ðx, �nÞ

where {�1,. . . , �N} is a sample of size N. Typically, N is chosen to be quite large
and must be independent of the M samples generated above.

The estimated optimal solution is

x̂x* 2 arg min fẑzNðxÞ : x 2 fx̂x
1, x̂x2, . . . , x̂xMgg:

Now, for any x, ẑzNðxÞ is an unbiased estimator of cTxþE�[�(x, �)], and
therefore, for any feasible x, we have E�½ẑzNðxÞ� � z*. On the other hand, we
may also consider the average of the M optimal values of the SAA problems

zS ¼
1

M

XM
m¼1

zmS :
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As E½zS� ¼WS, it follows that E½zS� � z*. Thus, the quality of the solution x̂x*
can be evaluated by computing the optimality gap estimate ẑzNðx̂x*Þ � zS. As
this quantity is random, it is helpful to estimate its variance. As the samples
used to compute those quantities are independent, the variance of the gap is
simply the sum of the variances of the two terms. These are

�̂�2zS ¼
1

ðM � 1ÞM

XM
m¼1

ðzmS � zSÞ
2

and

�̂�2ẑzN ðx̂x* Þ ¼
1

ðN � 1ÞN

XN
n¼1

ðcT x̂x* þ�ðx̂x, �nÞ � ẑzNðx̂x*ÞÞ
2:

The above procedure for statistical evaluation of a candidate solution was
suggested inMak et al. (1999). Convergence properties of the SAAmethodwere
studied in Kleywegt et al. (2001) and Ahmed and Shapiro (2002). An example
of application to routing problems can be found in Verweij et al. (2003).

3.5 Bibliographical notes

The systematic investigation of stochastic integer programs started during
the 1990s, only. Survey and introductory articles were published by Klein
Haneveld and van der Vlerk (1999) and Römisch and Schultz (2001). An
annotated bibliography was compiled by Stougie and van der Vlerk (1997).
The textbook Birge and Louveaux (1997) has a chapter on stochastic integer
programs. Integer programming basics are laid out in the textbooks
Nemhauser and Wolsey (1988) and Wolsey (1998), for instance.

The first continuity result for the expected recourse function of a stochastic
linear program with integer recourse is due to Stougie (1985). The sufficient
conditions for lower semicontinuity, continuity, and Lipschitz continuity of
Propositions 3 and 4, with extensions to random technology matrix T in (2.4),
were derived in Schultz (1993, 1995). Joint qualitative (semi-) continuity of the
expected recourse as a function of the first-stage decision and the integrating
probability measure together with conclusions towards stability were addressed
in Artstein andWets (1994), Schultz (1992, 1995). Quantitative joint continuity
of the expected recourse function and quantitative stability of the problem (2.3)
were studied in Rachev and Römisch (2002) and in Schultz (1996).

For the first time, stochastic programs with simple integer recourse were
investigated in Louveaux and van der Vlerk (1993). The analysis was pushed
ahead in Klein Haneveld and van der Vlerk (1994), Klein Haneveld et al.
(1996, 1997), see also the dissertation van der Vlerk (1995).
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So far, very little is known about the structure of multi-stage stochastic
integer programs. An introduction into this problem class was given in
Römisch and Schultz (2001). Our exposition in Section 2.3 essentially follows
parts of that paper. Power problems leading to multi-stage stochastic integer
programs and specialized methods for their solution were discussed in
Dentcheva and Römisch (1998), Nowak (2000), Nowak and Römisch (2000)
and Takriti et al. (1996).

More details on the definitions and properties presented in Section 3.1 can
be found in Wolsey (1998).

The first use of decomposition methods in stochastic programs having
discrete decisions in the second-stage is the integer L-shaped method of
Laporte and Louveaux (1993) for the case of first-stage binary variables. This
method has been applied to solve a variety of location and routing problems.
The example considered in Section 3.3.2 is taken from Laporte et al. (2002).
The generalization of the integer L-shaped to mixed integer first-stage was
done by Carøe (1998) in his doctoral dissertation and presented in Carøe and
Tind (1997, 1998).

The first attempt to design a method based on first-stage integer variables
branching is due to Ahmed et al. (2000), see the exposition in Section 3.4. In
Schultz et al. (1998) a solution procedure based on enumeration and bounding
in the first-stage while handling the second-stage by algebraic methods
exploiting problem similarities has been proposed. Another application of
algebraic methods to stochastic integer programming has been carried out in
Hemmecke and Schultz (2003). The paper deals with test set decomposition. It
identifies building blocks that enable generation of improving vectors for the
stochastic program and that can be computed by a completion procedure
from computational algebra.

The scenario decomposition method displayed in Section 3.1.3 stems from
Carøe and Schultz (1999). In Løkketangen and Woodruff (1996) a scenario
decomposition method employing Augmented Lagrangians for the dualiza-
tion and tabu search for the resulting quadratic mixed-integer subproblems
has been developed.

Recently, Alonso-Ayuso et al. (2003) have proposed a branch-and-fix
coordination approach to solving multi-stage stochastic integer programs.
Their idea is to formulate the stochastic program in a splitting variable
representation, to perform scenario-wise an LP-based branch & bound, and to
establish the nonanticipativity in the course of the branching. The latter is
achieved by a coordinated fixing of variables that puts variables for different
scenarios at identical values provided a nonanticipativity condition requires
the identity.
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Chapter 5

Probabilistic Programming

András Prékopa
RUTCOR, Rutgers Center for Operations Research, 640 Bartholomew Road, Piscataway,

NJ 08854-8003, USA

Abstract

Probabilistic programming means two strongly connected models as well as the
study of their mathematical properties, solutions of the relevant optimization
problems and their applications. The two models are: maximizing (or mini-
mizing) a probability under constraints and programming under probabilistic
constraints. There are a number of variants and special cases of these models
and we present them in Section 1. In Section 2 we summarize those mathe-
matical theories which can be used to prove the convexity of large classes of our
problems and we also show how they can be applied in this context. In Section 3
we present solution algorithms of our stochastic programming problems. Since
we are handling probabilities of sets in higher dimensional spaces, it is necessary
to use bounding and other approximation algorithms to find these probabilities
with satisfactory precision. This is the subject of Section 5. In Section 4 we
present two-stage and multi-stage problems which are combined with
probabilistic constraints. Some duality and stability theorems are presented
in Section 6. Finally, in Section 7, we present applications of our model
constructions.

1 Model constructions

1.1 Statistical decisions

Stochastic programming is a science that solves problems in connection
with stochastic systems, where the mathematical form of the problem is of
optimization type. It follows from this that the main ingredients of this science
are: statistical decision principles, optimization methods and computer
science. If decision is taken only once in time, then the model is static.

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
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If decisions are taken subsequently in such a way that between two subsequent
decisions an observation of a random variable takes place, then the model is
dynamic.

Looking at the problem from another angle, a stochastic programming
model can be of a type where the functioning of the system is paramount and
we maximize the probability of the system functioning or optimize another
objective function subject to a probabilistic constraint. Another case is, where
we allow violations of the constraints that describe the system but penalize
them in such a way that the system cost plus the expected penalty of violations
should be as small as possible. Both of these principles can be used in static
and dynamic model constructions.

One of the simplest and most classical examples of statistical decisions is the
testing of statistical hypotheses. Assume, for the sake of simplicity, that we
have two probability distributions P¼ { pk} and Q¼ {qk} on the set of integers
and we want to test the hypothesis that P is the true distribution, against the
alternative that it is Q. The way the test is constructed is as follows: find a set
of integers, the critical set, such that its probability with respect to P is smaller
than or equal to ">0 (where " is a previously given fixed number) and the
probability of this set with respect to Q should be maximal. The problem can
be formalized in the following way:

max
X
k

qkxk

subject toX
k

pkxk � ", ð1:1Þ

where xk2 {0, 1} for every k. The critical set C is then given by

C ¼ fk j xk ¼ 1g:

The probability P(C) is called the first kind error, while the probability QðCÞ is
the second kind error.

After the construction of the test we work with it in such a way that we take
a sample, a random integer, and reject the hypothesis P if the integer is in C
otherwise we accept it (or at least say that the sample does not contradict the
hypothesis.) Problem (1.1) can be termed the Neyman-Pearson problem.
Problem (1.1) can also be described in such a way that the first kind error
(rejecting the true hypothesis) should be smaller than or equal to the small
number ", and, given this, the second kind error (accepting a false hypothesis)
should be as small as possible.

The above statistical decision is static one. An example for dynamic type
statistical decision situation is provided by Wald’s sequential analysis, where
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we want to decide in favor or against the hypothesis by given probabilities,
respectively, by the use of a sequential decision process.

In the above examples we see that optimization under probabilistic
constraints and maximizing a probability under constraints are classical
statistical decision principles.

1.2 Static stochastic programming models: programming under probabilistic
constraints and maximizing a probability under constraints

A general formulation of the first problem mentioned in the title is the
following:

min hðxÞ

subject to

h0ðxÞ ¼ Pðg1ðx, �Þ � 0, . . . , grðx, �Þ � 0Þ � p0

h1ðxÞ � p1, . . . , hmðxÞ � pm, ð1:2Þ

where x is the decision vector, � is a random vector, h(x), h1(x),. . . , hm(x) are
given functions, 0<p0� 1, p1,. . . , pm are given numbers.

A special case of problem (1.2) is the following:

min cTx

subject to

PðTx � �Þ � p

Ax � b, x � 0: ð1:3Þ

Sometimes we have no special objective function that expresses some
cost and we only want to maximize a probability. The general form of this
problem is

max Pðg1ðx, �Þ � 0, . . . , grðx, �Þ � 0Þ

subject to

h1ðxÞ � p1, . . . , hmðxÞ � pm: ð1:4Þ

A stochastic programming problem is frequently formulated in such a way
that we have a ‘‘deterministic underlying problem’’ also called ‘‘base
problem’’. Then we observe that some of the parameters in it are not constants
but random variables and therefore the problem is meaningless in its original
form. The use of a statistical decision principle takes us to a stochastic
programming problem which can be problem (1.1) or (1.2).
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Note that the use of a probabilistic constraint does not exclude the use of
another principle: penalizing constraint violations. In fact, both principles can
be used simultaneously, thereby arriving at a hybrid model. For example, a
hybrid model constructed from problem (1.3) is the following:

min cTxþ
Xr
i¼1

qiEð½�i � Tix�þÞ

( )

subject to

PðTx � �Þ � p

Ax � b, x � 0, ð1:5Þ

where T1,. . . ,Tr are the rows of the matrix T, �1,. . . , �r are the components of
the random vector � and q1,. . . , qr are nonnegative constants, penalizing
violations of T1x� �1,. . . ,Trx� �r, respectively.

1.3 Related measures of violation

In connection with the stochastic constraints Tix� �i, i¼ 1,. . . , r, some
measure of violation has been incorporated into the objective function in
problem (1.5). There are, however, other measures of violation that can be
used in practice. We present two of them.

The first one, introduced in Prékopa (1973a), is the collection of the
conditional expectations E(�i�Tix j �i�Tix>0), i¼ 1,. . . , r. We can incorpo-
rate them into problem (1.5) but we prefer to use them among the constraints,
rather than in the objective function. The new constraints that we supplement
to problem (1.5) are:

Eð�i � Tix j �i � Tix > 0Þ � di i ¼ 1, . . . , r, ð1:6Þ

where di, i¼ 1,. . . , r are some given constants. We call them conditional
expectation constraints. Problem (1.5), together with the constraints (1.6)
prescribes that if we decide on x and after that observe the random vector �,
then in at least p100% of the cases no violation occurs in Tx� �, further, if we
single out the cases where �i�Tix>0, then the average magnitude of the
violation should be less than or equal to di, i¼ 1,. . . , r. Subject to these
constraints we minimize the system cost cTx plus the expected penalized sum
of the violations.

Another measure of violation is the integrated chance or probabilistic
constraint. For the case of r¼ 1 it is defined as

Eð½� � Tx�þÞ � d: ð1:7Þ
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For the case of r� 1 the integrated chance constraint is

E max
i
½�i � Tix�þ

� �
� d: ð1:8Þ

In (1.7) and (1.8) d is a constant.
A more general form of this kind of constraint can be formulated as

follows. Suppose that in the underlying problem we have the stochastic
constraints

giðx, �Þ � 0, i ¼ 1, . . . , r,

where g1,. . . , gr are some functions. Then in the stochastic programming
problem we may include the constraint

E max
i
½giðx, �Þ�þ

� �
� d: ð1:9Þ

A practical interpretation of the integrated chance constraint is the
following. If � designates the demand for power in an area on a given day and
Tx is the total generating capacity (r ¼ 1 now), then E([��Tx]þ ) is the
expected unserved energy. In power system engineering this measure is
considered equally important to loss of load probability (LOLP), accounted
for in probabilistic constraints.

1.4 Bibliographical notes

Historically the first paper that used the programming under probabilistic
constraint principle was the one by Charnes et al. (1958), where, however,
probabilistic constraints are imposed individually on each constraint involving
random variables. This formulation called ‘‘chance constrained program-
ming’’ by the authors may be correct in some cases, especially when the
random variables, appearing in different stochastic constraints, are indepen-
dent. In general, however, it has the serious defect of ignoring joint probability
distribution, i.e., the type of stochastic dependence of the random variables
involved. A paper by Miller and Wagner (1965) takes the probabilistic
constraint jointly on the stochastic constraints but handles only independent
random variables appearing on the right hand sides of the stochastic
constraints. Prékopa (1970, 1973a) initiated the model and its research, where
the probabilistic constraint is taken jointly for the stochastic constraints and
the random variables involved are stochastically dependent, in general.

Constraints of type (1.6) were introduced in Prékopa (1973a) and those in
(1.8) by Klein Haneveld (1986).
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2 Convexity theory

2.1 Basic theory of logconcave and �-concave measures

Logconcave measures have been introduced in the stochastic programming
framework but they became widely used also in statistics, convex geometry,
mathematical analysis, economics, etc.

Definition 2.1. A function f(z)� 0, z2Rn is said to be logarithmically concave
(logconcave), if for any z1, z2 and 0<�<1 we have the inequality

f ð�z1 þ ð1� �Þz2Þ � ½ f ðz1Þ�
�
½f ðz2Þ�

ð1��Þ: ð2:1Þ

If f(z)>0 for z2Rn, then this means that log f(z) is a concave function in R
n.

Definition 2.2. A probability measure defined on the Borel sets of Rn is said to
be logarithmically concave (logconcave) if for any convex subsets of Rn: A, B
and 0<�<1 we have the inequality

Pð�Aþ ð1� �ÞBÞ � ½PðAÞ��½PðBÞ�1��, ð2:2Þ

where �Aþ (1��)B¼ {z¼ �xþ (1��)y j x2A, y2B}. The basic theorem of
logconcave measures is the following.

Theorem 2.1. If the probability measure P is absolutely continuous with respect
to the Lebesgue measure and is generated by a logconcave probability density
function then the measure P is logconcave.

Remark 2. The proof of Theorem 2.1 provides us with a more general
assertion: if P is an absolutely continuous probability measure (that can be
extended in a trivial way to all measurable subsets of R) and A, B�R

n are two
Borel sets then we have the inequality (2.2) for any 0<�<1. In this assertion
we used the fact that Borel measurability of A and B implies the (Lebesgue)
measurability of �Aþ (1��)B. Even though this more general assertion holds
true, Theorem 2.1 provides us with enough basis to derive our convexity
theory of stochastic programming.

Theorem 2.2. If P is a logconcave probability distribution and A�R
n is a

convex set, then P(Aþ x), x2Rn is a logconcave function.

Theorem 2.3. If �2Rn is a random variable, the probability distribution of
which is logconcave, then the probability distribution function F(x)¼P(�� x) is
a logconcave function in R

n.
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Theorem 2.4. If n¼ 1 in Theorem 2.3 then also 1�F(x)¼P(�>x) is a
logconcave function in R

1.
Theorems 2.2, 2.3 and 2.4 are easy consequences of the notion of a

logconcave measure. Less obvious are the following

Theorem 2.5. If g1(x, y),. . . , gr(x, y) are quasi-concave functions of the variables
x2Rn, y2Rm and �2Rm is a random variable that has logconcave probability
distribution, then the function G(x)¼P(g1(x, �)� 0,. . . , gr(x, �)� 0), x2Rn is
logconcave.

Theorem 2.6. If f(x, y), x2Rn, y2Rm is a logconcave function, then

Z
R

m

f ðx, yÞ dy, x 2 R
n

is also a logconcave function. The above theorem implies

Theorem 2.7. If f(x), g(x), x2Rn, are logconcave functions then their
convolution

Z
R

m

f ðx� yÞgðyÞ dy, x 2 R
n

is also logconcave.

Theorem 2.8. If the random vector � has logconcave probability distribution and
A is a constant matrix of appropriate size, then �¼A� also has a logconcave
distribution.

Definition 2.3. A function f(z), z2Rn is said to be �-concave if for any
x, y2Rn, such that f(x)>0, f(y)>0 we have the inequality

f ð�xþ ð1� �ÞyÞ � ½�f �ðxÞ þ ð1� �Þf �ðyÞ�
1
�, ð2:3Þ

where �1��<1. The expression on the right hand side is defined by
continuity for the cases of �¼�1, �¼ 0.

Inequality (2.3) for different � values means the following:

(a) �¼�1. In this case we have f(�xþ (1��)y)�min( f(x), f ( y)), i.e., the
function is quasi-concave.

(b) �1<�<0. Then we have f �(�xþ (1��)y)� �f a(x)þ (1��) f a(y), i.e.,
f a(x) is convex on the set {x j f(x)>0}.
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(c) �¼ 0. We have the inequality f(�xþ (1��)y)� [ f(x)]�[ f( y)]1��, and the
function is logconcave.

(d) 0<�<1. This case is similar to case (b) but now f a(x) is concave on
the set {x j f(x)>0}.

Definition 2.4. The probability measure P defined on the Borel sets of Rn is
said to be �-concave, if for any convex subsets of Rn: A, B for which P(A),
P(B)>0 and<�<1 we have the inequality

Pð�Aþ ð1� �ÞBÞ � ð�½PðAÞ�� þ ð1� �Þ½PðBÞ��Þ
1
�, ð2:4Þ

where �1��<1. The expression on the right hand side is defined by
continuity for the cases �¼�1, �¼ 0. The inequality (2.4) has similar
interpretation in the special cases as the inequality (2.3). If �¼�1, then the
measure P is said to be quasi-concave. If �¼ 0, then P is a logconcave
measure.

Theorem 2.9. If the probability measure P is generated by an �-concave
probability density function, then P is �-concave, where � ¼ �=ð1þ n�Þ.

Theorem 2.10. If the probability measure P is generated by the probability
density function f(z), z2Rn which has the property that f �1=nðzÞ, z 2 R

n is
convex, then the probability measure P is quasi-concave, i.e., for any convex
subsets A, B of Rn and 0<�<1, we have the inequality

Pð�Aþ ð1� �ÞBÞ � minðPðAÞ, PðBÞÞ: ð2:5Þ

Note that in this case there is no need to assume that P(A)>0, P(B)>0
because if at least one of them is 0 then (2.5) holds trivially.

Theorem 2.9 holds in a stronger form, too. That form, however, requires
the probability measure P to be defined on all (Lebesgue) measurable sets of
R
n. If P is defined on the �-algebra of all Borel sets of Rn, then there is a trivial

extension of P to all measurable sets provided that P is generated by a
probability density function. In fact, any measurable set can be obtained from
a Borel set by adding to it or removing from it a measurable set of measure 0.
Thus if we assign P(C)¼ 0 to all measurable set C with measure 0, then the
required extension can be obtained.

It is well-known, that if A, B are Borel sets in R
n and 0<�<1, then

�Aþ (1��)B is a Lebesgue measurable set.
The extension of Theorem 2.9 asserts that if P is generated by an �-convex

probability density function and A, B are Borel sets in R
n, 0<�<1 then (2.4)

holds with � replaced by � ¼ �=ð1þ n�Þ. In the applications, however, we use
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our Theorem 2.1 and 2.9 in their original forms, rather than their more general
forms.

Theorem 2.5 has a counterpart for �-concave measures.

Theorem 2.11. If g1(x, y), . . . , gr(x, y) are quasi-concave functions of the
variables x2Rn, y2Rm and �2Rm is a random variable that has continuous
probability distribution and �-concave probability density with 1þm�� 0, then
the function G(x)¼P(g1(x, �), . . . , gr(x, �)� 0) satisfies (2.3) with � replaced
by � ¼ �=ð1þm�Þ, where the inequalities for �¼�1, � ¼ 0 are interpreted by
continuity.

It follows that if �¼ 0, then G(x) is logconcave (as asserted in Theorem 2.5)
and if � ¼ �ð1=mÞ, then G(x) is quasi-concave.

2.2 Examples of multivariate probability distributions

(1) Uniform distribution. Let D be a convex subset of R
n with finite,

positive measure jD j Then

f ðxÞ ¼

1
jDj

if x 2 D

0 if x 62 D

(

is a lonconcave probability density function.
(2) Normal distribution. Its probability density function is defined by

f ðxÞ ¼
1ffiffiffiffiffiffiffi
jCj
p
ð2�Þ

n
2

e�
1
2ðx��Þ

TC�1ðx��Þ, x 2 R
n,

where � is the expectation vector and C the covariance matrix of the
distribution; jC j designates the determinant of C. The matrix C is
supposed to be positive definite. It follows that C�1 is also positive
definite, hence the quadratic form (x��)TC�1(x��) is a convex
function (as it is well-known and easy to prove). This implies that
f(x) is a logconcave function.

(3) Wishart distribution. The probability density function of it is defined by

f ðXÞ ¼
jXj

N�p�2
2 e�

1
2SpC

�1X

2
N�1
2 p �

pðp�1Þ
4 jCj

N�1
2

Yp
i¼1

�
N � i

2

� �

if X is positive definite, and f(X)¼ 0 otherwise. Here C and X are p� p
matrices, C is fixed and positive definite while X contains the variables.
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Since X is assumed to be symmetrical, there are n ¼ 1
2
pðpþ 1Þ

independent variables. We also assume that N� pþ 2. Since the p� p
matrices form a convex set in the n-dimensional space and it is well-
known that for any two p� p positive definite matrices we have the
inequality

j�X1 þ ð1� �ÞX2j � jX1j
�jX2j

1��,

where 0<�<1, the function f is logconcave.
(4) Beta distribution. Its probability density function is defined by

f ðXÞ ¼
cðn1, pÞcðn2, pÞ

cðn1 þ n2, pÞ
jXj

1
2ðn1�p�1Þ jI � Xj

1
2ðn2�p�1Þ,

if X, 1�X are positive definite p� p matrices and f(X)¼ 0 otherwise,
where

1

cðk, pÞ
¼ 2

pk
2 �

pðp�1Þ
2

Yp
i¼1

�
k� i þ 1

2

� �
:

It is supposed that n1� pþ 1, n2� pþ 1. The number of independent
variables in X is n ¼ 1

2
pð pþ 1Þ. The logconcavity of the function f

follows the same way as that of f in example (3).
(5) Dirichlet distribution. Its probability density function is defined by

f ðxÞ ¼
�ð p1 þ � � � þ pnþ1Þ

�ð p1Þ � � � �ð pnþ1Þ
x
p1�1
1 � � � xpn�1n ð1� x1 � � � � � xnÞ

pnþ1�1

for x1>0, . . . , xn>0, x1þ � � � þ xn<1 and f(x)¼ 0 otherwise, where
p1, . . . , pnþ 1 are positive constants. If p1� 1, . . . , pnþ 1� 1, then f is a
logconcave function in R

n. If, however, p1<1, . . . , pnþ 1<1, then f is
logconvex, i.e., the inequality (2.1) holds always in reversed form. The
logconvexity of f does not hold in the entire space Rn but it holds in the
open simplex x1>0, . . . , xn>0, x1þ � � � þxn<1.

(6) Cauchy distribution. It is the joint distribution of the random variables

	i ¼

ffiffiffi


p
�i
�

, i ¼ 1, . . . , n,

where (�1,. . . , �n) has standard normal distribution (each component
is N(0, 1)-distributed), (�1,. . . , �n) is independent of � which has
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�-distribution with 
 degrees of freedom. The probability density
function is

f ðxÞ ¼
� 1

2
ð
þ nÞ

� �
ð�
Þ

n
2� 1

2 

� �
jRj

1
2

1þ
1



xTR�1x

� ��1
2ð
þnÞ

for x2Rn. If n¼ 1 and 
¼ 1 this reduces to the well-known univariate
Cauchy density

f ðxÞ ¼
1

�

1

1þ x2
, �1 < x <1:

The n-variate Cauchy density has the property that f �
1
n is convex in R

n,
hence Theorem 2.10 applies and the distribution is quasi-concave.

(7) Pareto distribution. Its probability density function is

f ðxÞ ¼ aðaþ1Þ � � � ðaþ n�1Þ
Yn
j¼1

�j

 !�1 Xn
j¼1

��1j xj�nþ1

 !�ðaþnÞ

for xi>�i, i¼ 1,. . . , n and f(x)¼ 0 otherwise; �1,. . . ,�n are positive
constants. Since f �

1
n is convex in R

n, Theorem 2.10 applies and the
probability distribution is quasi-concave.

(8) Gamma distribution. A univariate probability distribution is said to be
gamma distribution if its probability density has the form

f ðzÞ ¼
�#z#�1e��z

�ð#Þ
if z > 0

and f(z)¼ 0 for z� 0; �>0, #>0 are constants. If �¼ 1, then the
distribution is said to be standard. If � has gamma distribution, then #�
has standard gamma distribution. Both the expectation and the
variance of a standard gamma distribution are equal to #.

An r-variate gamma distribution can be defined in the following
way. Let A be the r� (2r�1) matrix the columns of which are all 0–1
component vectors of size r except for the 0 vector. Let �1,. . . , �s,
s¼ 2r�1 be independent standard gamma distributed random variables
and designate by � the vector of these components. Then we say that
the random vector

� ¼ A�

has an r-variate standard gamma distribution.
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Let #1,. . . ,#s be the expectations of �1,. . . , �s, respectively and
designate by # the vector of these components. Then E(�)¼AE(�) and
the components of E(�) are, simultaneously, the variances of the
components of �. A practical method for fitting this distribution to
empirical data is the following.

Suppose we have the random variables 	i ¼
1
�i
�i, �i > 0, i ¼ 1, . . . , r,

where we assume that � can be written as �¼A�. Suppose that we
estimated E(�) and the covariances cik of the pairs �i, �k, i<k. Let
a1,. . . , ar be the rows of A and aiak the componentwise product of ai
and ak. Then we write up the problem:

find #

such that

cik ¼ ðaiakÞ#, i � k

# � 0:

Note that cii¼Var(�i)¼E(�i), i¼ 1,. . . , r. The problem can be solved by
the first phase of the simplex method. The joint probability distribution
function of the components of � is logconcave. If #1� 1,. . . ,#s� 1, then
the assertion follows from the fact that any linear combination of
independent random variables having logconcave density is logcon-
cave. If #i<1 for some i’s then the logconcavity of the joint distribution
still holds but it needs a separate proof.

(9) The posynomial distribution. This distribution has support
{z j 0� zi� 1, i¼ 1,. . . , r} and its distribution function is defined by

Fðz1, . . . , zrÞ ¼
1XN

i¼1

ciz
�i1
1 � � � z�irr

, 0 < zi � 1, i ¼ 1, . . . , r,

where �i1� 0,. . . , �ir� 0, �i1þ ,. . . ,þ�ir<0, and ci>0, i¼ 1,. . . ,N are
constants. Since the denominator is the sum of logconvex functions and
logconvexity carries over for sums, it follows that F(z1,. . . , zr) is
logconcave in the support of the distribution. There is no general rule,
however, to decide that under what parameter values is F in fact a
probability distribution function. It is easy to see that F is non-
decreasing in each variable and is 0 if at least one variable is�1, and is 1,
if all variables are þ1. Thus, we only need to know that under what
condition do we have

@rFðz1, . . . , zrÞ

@z1, . . . , @zr
� 0:
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It is proved that if r¼ 2 and �11��12� , . . . , ��1r, �21��22� , . . . , ��2r,
then the above inequality is satisfied and F(z1, z2) is a probability distribution
function.

2.3 Discrete distributions

There is no discrete counterpart of the theory of logconcave and �-concave
measures described in Section 2.1. Already the logconcavity and �-concavity
has many forms in the literature. There is no problem, however, in the
univariate case.

Definition 2.5. The discrete distribution { pn} defined on the integer lattice
points of the real line is said to be logconcave if

p2n � pn�1pnþ1, n ¼ 0, � 1, . . . :

It follows from this that if n, i, j are three integers such that n¼ �iþ (1��)j,
where 0<�<1, then

pn � p�i p
1��
j : ð2:6Þ

The convolution theorem (Theorem 2.7) has a counterpart for univariate
discrete distributions and is the following.

Theorem 2.12. If { pn} and {qn} are two logconcave distributions on the lattice
points of R, then their convolution

rn ¼
X1

k¼�1

pn�kqk, n ¼ 0, � 1, . . .

is also a logconcave distribution on the same lattice.

The above theorem implies that if { pn} is logconcave, then for any fixed k
the sequence of nonnegative numbers

Xn
i¼n�k

pi
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is also logconcave (satisfies the inequality in Definition 2.5). This, in turn,
implies that both sequences

FðnÞ ¼
Xn
i¼�1

pi, 1� FðnÞ ¼
X1
i¼nþ1

pi

are logconcave.
Examples for univariate logconcave distributions are the binomial, Poisson,

geometric, hypergeometric, uniform and other known distributions.
Simple examples show that Theorem 2.12 does not carry over to the

multivariate case. This is one indication why logconcavity and �-concavity
properties of discrete distributions remain largely unexplored.

There are a few definitions to call a multivariate discrete distribution,
defined on the lattice points, logconcave. One way is to write up (2.6) for
vectors with integer components i, j, n. Similar definition is possible for
�-concavity (see, e.g., Dentcheva et al. (2000)). However, there is no general
theorem that would infer from logconcavity or �-concavity of the probability
function to the same property of the distribution function, say.

Still, there is one definition of discrete logconcavity which enables us to
enunciate some results.

Definition 2.6. The multivariate discrete distribution p(k) defined on the lattice
points of Rn is said to be logconcave if there exists a logconcave function f(x),
x2Rn such that p(k)¼ f(k) for any lattice point k of Rn.

Our assertion concerns trinomial distributions on the nonnegative lattice
points of R

2. A triangular distribution is the distribution of a sum of
independent bivariate random variables �1, . . . , �r where the support of each �i
is {(0, 0), (0, 1), (1, 0)} but their distributions may be different. The following
theorem holds true.

Theorem 2.13. Any triangular distribution is logconcave and the convolution of
two triangular distributions is logconcave.

The second assertion follows from the first one because the sum of two
triangularly distributed random vectors is also triangularly distributed.

2.4 Applications to stochastic programming and other convexity statements

Theorem 2.5 and 2.11 give direct answers to the convexity questions that
arise in connection with problems (1.2) and (1.4). Recall that a nonlinear
programming problem is said to be convex if the set of feasible solutions is
convex and the objective function to be minimized is convex (or to be
maximized is concave).
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Any logconcave function is quasi-concave, hence if �2Rq has a continuous
distribution and logconcave density or a density which is � 1

q
-concave

then h0(x) in problem (1.2) is quasi-concave. Hence, h0(x) allows for the
convex programming property of problem (1.2). If h is convex and we assume
that h1, . . . , hm are quasi-concave, then the problem is in fact convex.

As regards problem (1.4), if � 2Rq has logconcave probability density
function, then the objective function is logconcave. The function can be
replaced by its logarithm, without changing the problem, and then it allows
for a convex programming problem. To have a convex problem, the functions
h1, . . . , hm have to be quasi-concave.

Problem (1.3) and the problem

max PðTx � �Þ

subject to

Ax � b, x � 0 ð2:7Þ

are special cases of problems (1.2) and (1.4), respectively, so the convexity of
these problems can be derived from the above discussion.

It is noteworthy, however, that if F(z)¼P(�� z) is the distribution function
of the random vector � which is assumed to have continuous distribution and
logconcave density, then, by Theorem 2.3, F(z) is a logconcave function. This
implies that F(Tx) is a logconcave function of x2Rn, and thus, the constraint

PðTx � �Þ ¼ FðTxÞ � p

determines a convex set of x vectors for any fixed p. Also, the objective
function of problem (2.7) is logconcave.

There are practical problems where the random vector � in problem (1.3)
has a probability distribution which is a mixture of logconcave distributions.
Since logconcavity does not carry over from terms to sums, we may need the
stronger concavity property of the probability distributions involved, in order
to obtain convex nonlinear programming problems. For the case of the
normal distribution we have the following

Theorem 2.14. Let �(z, R) be the n-variate standard normal distribution
function. This function is concave on the set fz j zi �

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

, i ¼ 1, . . . , ng.
Some further results can be mentioned in connection with bivariate normal

distributions. First we introduce a notion and mention a general theorem.

Definition 2.7. Let F(z), z2Rn be a probability distribution function,
where the variables are partitioned as z¼ (xT, yT)T. Suppose that x, y have
k1 and k2 components, respectively, 1� k1, k2� n�1. We say that F(x, y) is
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concave with respect to x in the positive direction on the convex set E�R
n, if

for any pair

z1 ¼
x1
y1

� �
2 E, z2 ¼

x2
y2

� �
2 E

for which x1� x2, the function F is concave on the line segment connecting
z1 and z2.

Theorem 2.15. If F(z) is concave in the positive direction in a
closed n-dimensional interval E, with respect to any subset of its variables
having at most n�1 elements, then F is quasi-concave in all variables in the same
interval E.

Let �(z1, z2; %) be the bivariate standard normal probability distribution
function. It is easy to see that

@2�ðz1, z2; %Þ

@z21

¼ �
z2 � %z1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� %2

p
 !

�%ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� %2

p ’ðz1Þ ��
z2 � %z1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� %2

p
 !

z1’ðz1Þ

and a similar formula holds for the second derivative with respect to z2, where
’(z) is the univariate standard normal probability density function. If %� 0
and E¼ {z j z1� 0, z2� 0}, then �(z1, z2; %) is concave on E with respect to any
of the variables z1, z2. Hence, by Theorem 2.15, we have

Theorem 2.16. If %� 0, then �(z1, z2; %) is concave in the positive direction and
it is quasi-concave in E.

For the case of the non-positive correlation we have

Theorem 2.17. If %� 0, then the function �(z1, z2; %) is concave in each
variable on

E ¼ z j zi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’ð1Þ

2�ð1Þ þ ’ð1Þ

s
¼ 0:346, i ¼ 1, 2

( )
:

Also, the function is quasi-concave on E.
If %¼ 0 or %¼�1, then �(z1, z2; %) is easily seen to be a concave function on

the nonnegative orthant.
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The conditional expectation constraints (1.6) can easily be converted into
equivalent linear constraints if the random variables �1,. . . , �r have
(individually) continuous distributions and logconcave density functions.
Let r¼ 1 for the sake of simplicity. This case already captures the result in this
respect. First we mention

Theorem 2.18. If � is a univariate random variable that has continuous
distribution and logconcave density function, then

gðzÞ ¼ Eð� � z j � � z > 0Þ ð2:8Þ

is a decreasing function of z.

Proof. If P(��z>0)¼ 0, then the conditional expectation (2.8) is 0, by
definition. Let P(��z>0)>0. If F(z)¼P(�� z) is the probability distribution
function of �, then

gðzÞ ¼ Eð� � z j � � z > 0Þ ¼

Z 1
z

ð1� FðtÞÞ dt

1� FðzÞ

¼
�1

d
dz

log

Z 1
z

ð1� FðtÞÞ dt

: ð2:9Þ

By Theorem 2.4, 1�F(t) is a logconcave function and the same theorem
implies that

Z 1
z

ð1� FðtÞÞ dt

is also logconcave. This already implies that (2.9) is a decreasing function. u

The constraint

gðTxÞ ¼ Eð� � Tx j � � Tx > 0Þ � d

can be written in the equivalent form:

Tx � g�1ðdÞ

which is a linear one.
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So far we have looked at stochastic programming problems where random
variables appear only on the right hand sides of the constraints. Now we turn
our attention to stochastic constraints where there are random variables also
in the technology matrix. We state some results for the case where the random
variables have joint normal or related distribution.

One of the most interesting case is connected with Kataoka’s model that
has important applications in finance, among others:

max d

subject to

P
Xn
i¼1

�ixi � d

 !
� p

Xn
i¼1

xi ¼M, x � 0 ð2:10Þ

We assume that �¼ (�1,. . . , �n)
T has an n-variate (nondegenerate or degenerate)

normal distribution with

�i ¼ Eð�iÞ, i ¼ 1, . . . , n, � ¼ ð�1, . . . , �nÞ
T

C ¼ E½ð� � �Þð� � �ÞT �:

Problem (2.10) can be converted into a problem that turns out to be convex
provided that p � 1=2. Note that p and M are constants and the decision
variables are x1, . . . , xn, d. Since E(�x)¼�

Tx, Var(�Tx)¼ xTCx, if for an x we
have xTCx>0, then

Pð�Tx � dÞ ¼ P
ð� � �ÞTxffiffiffiffiffiffiffiffiffiffiffiffi

xTCx
p �

d � �Txffiffiffiffiffiffiffiffiffiffiffiffi
xTCx
p

� �

¼ 1��
d � �Txffiffiffiffiffiffiffiffiffiffiffiffi

xTCx
p

� �
,

hence the probabilistic constraint in (2.10) is equivalent to

�Txþ��1ð1� pÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
xTCx
p

� d:
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If, on the other hand, xTCx¼ 0, then the above constraint is also equivalent to
the probabilistic constraint. This implies that (2.10) can be written in the
equivalent form:

max �Txþ��1ð1� pÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
xTCx
pn o

subject toXn
i¼1

xi ¼M, x � 0: ð2:11Þ

Since C is a positive semidefinite matrix, the function
ffiffiffiffiffiffiffiffiffiffiffiffi
xTCx
p

is convex. On
the other hand, p � 1

2
, hence ��1(1�p)� 0 and (2.11) turns out to be a convex

programming problem.
Few convexity results are known for the case where randomness is in the

technology matrix and the number of constraints is more than one. We take
the stochastic constraints in the form Tx� 0, where T is an r� n random
matrix and consider the set of x2Rn vectors that satisfy the probabilistic
constraint

PðTx � 0Þ � p: ð2:12Þ

If the original stochastic constraint is of the form Tx� �, where � may be
constant or random, then we introduce the new matrix (T,��) and the new
decision vector (xT, xnþ 1)

T. The set of x vectors satisfying

PðTx � �Þ � p ð2:13Þ

is the same as those, satisfying

P ðT , � �Þ
x

xnþ1

� �� �
� 0

� �
� p

xnþ1 ¼ 1: ð2:14Þ

The constraint in the first line of (2.14) is already of the form (2.12) and the
second constraint determines a convex set of the decision vectors. Hence, a
statement for the constraint (2.12) can easily be carried over to the constraint
(2.13). Let Ti* and T*j designate the ith row and the jth column of T,
respectively. Let further �i* and �*j designate the corresponding expectation
vectors.
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Theorem 2.19. Suppose that the entries of T have a joint normal distribution and
for the cross-covariance matrices of the columns of T we have that

E½ðT
*j
� �

*j
ÞðT

*k
� �

*k
Þ
T
� ¼ sjkC,

where C is a fixed covariance matrix and the sjk¼ skj, j, k¼ 1,. . . , n are con-
stants, then the set of x vectors satisfying (2.12) is convex, provided that p � 1

2
.

If there is just one random column in T, then the above condition is clearly
satisfied.

Theorem 2.20. Suppose that the entries of T have a joint normal distribution and
for the cross-covariance matrices of the rows of T we have that

E½ðTi* � �i*Þ
T
ðTk* � �k*Þ� ¼ sikC,

where C is a fixed covariance matrix and the sik¼ ski, i, k¼ 1, . . . , r, then the set
of x vectors satisfying (2.12) is convex.

In our last convexity theorem we assume that the random entries in T are
nonnegative and are lognormally distributed. While in Theorems 2.19 and
2.20 it is unimportant if we write up the stochastic constraint in the form
Tx� 0 or Tx� 0, because the entries of T have joint normal distribution iff the
same holds for their negatives, in the next theorem it is otherwise. The result is
stated for the probabilistic constraint

GðxÞ ¼ PðTx � dÞ � p, ð2:15Þ

where d is a constant vector.

Theorem 2.21. Suppose that the random entries ti,k, (i, k)2 I, of the matrix T
are positive valued and the joint probability distribution of �ik¼ log tik, (i, k)2 I
is logconcave. Assume, for the sake of simplicity, that the random entries of T
are in the first s columns and that all non-random entries of T in these columns
are nonnegative.

Under these conditions the function

Gðex1 , . . . , exs , xsþ1, . . . , xnÞ

is logconcave in x2Rn.

The above theorem tells us that if we replace exi for xi, i¼ 1, . . . , s in the
probabilistic constraint (2.15), then the set of x¼ (x1, . . . , xs, xsþ 1, . . . , xn)

T

vectors that satisfy this new form of the constraint is convex.

286 A. Prékopa



2.5 Bibliographical notes

The notion of a logconcave measure was introduced in Prékopa (1971),
where also Theorem 2.1 and its simple consequences (Theorems 2.2–2.4) were
also proved. Theorems 2.5 was proved in Prékopa (1972a, 1973c) for the case of
concave gi(x, y), i¼ 1, . . . , r. Tamm (1977) has observed that in the proof it is
enough to assume that these functions are quasi-concave. Theorem 2.6 is from
Davidovich et al. (1969) and Prékopa (1973b). Borell (1975) and Brascamp and
Lieb (1976) introduced the �-concave measures (as generalizations of
logconcave measures) and proved Theorem 2.9 and its special case Theorem
2.10. Theorem 2.11 can be proved in the same way as Theorem 2.5. It is
mentioned in Prékopa (1995). Theorem 2.8 is a simple consequence of the
logconcavity inequality written up for the probability measure associated with
the random vector �. The logconcavity of the distributions in Examples (1)–(5)
in Section 2.2 were shown in Prékopa (1971). Borell (1975) has shown the
quasi-concavity of the probability distributions in Examples (6)–(7) of the same
section. The gamma distribution in Example (8) is from Prékopa and Szántai
(1978a). The posynomial distribution in Example (9) is from Prékopa (1988).

Theorem 2.12 is due to Fekete (see Fekete and Pólya (1912)). The notion of
a discrete multivariate logconcave distribution (Definition 2.6) is due to
Barndorff–Nielsen (1973). Theorem 2.13 is due to Pedersen (1975).

Theorem 2.14 was proved in Prékopa (2001). Theorems 2.15–2.17 are taken
from Prékopa (1970). Theorem 2.18 has been known in reliability theory and
actuarial science, where the value g(z) is called expected residual lifetime and
remaining life, respectively. In the stochastic programming context Prékopa
(1973a) has mentioned it first.

The model (2.10) and its equivalent (2.11) was introduced, independently,
by Kataoka (1963) and van de Panne and Popp (1963). The last mentioned
paper applies it to an animal feed problem while the first one to finance.
Theorems 2.19 and 2.21 are from Prékopa (1974). A special case of Theorem
2.20, assuming the rows of T to be stochastically independent, was proved in
the same paper. Its present generality is due to Burkauskas (1986).

3 Numerical solution of probabilistic constrained stochastic

programming problems

3.1 The case of continuously distributed random variable

We will consider the following special cases of problems (1.2) and (1.4):

min hðxÞ

subject to

GðxÞ ¼ PðTx � �Þ � p

Ax ¼ b, x � 0, ð3:1Þ
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max GðxÞ ¼ PðTx � �Þ

subject to

Ax ¼ b

x � 0: ð3:2Þ

The methods that we describe in this section apply to more general
problems too. However, we restrict ourselves to problems (3.1) and (3.2)
because these are the problems which can be solved by existing codes.

There are two separate issues to solve these problems: (1) to adapt or create a
nonlinear programming technique and (2) to adapt or develop a suitable
method to compute the values and gradients (if necessary) of the functionG(x).
First we concentrate on issue (1). However, we remark that if � has logconcave
probability density function then both problems (3.1) and (3.2) are convex.

The method of feasible directions
Historically it was the first technique to solve problem (3.1). The method

can be described as follows. Assuming that an initial feasible solution x has
been found, the method works as follows. Let x0¼ x.
Step 1. Solve the following direction finding problem:

Minimize z

subject to

rhðxkÞðx� xkÞ � z � 0

rGðxkÞðx� xkÞ þ�z � 0, if GðxkÞ ¼ p

Ax ¼ b

x � 0, ð3:3Þ

where � is a positive constant, fixed throughout the procedure. Let
(zopt, x*) be an optimal solution of problem (3.3). If zopt¼ 0 then x* is an
optimal solution of problem (3.1). If zopt>0 then go to Step 2.

Step 2. Solve the steplength determining problem:

max �

subject to

� � 0 and

xk þ �ðx* � xkÞ is feasible: ð3:4Þ

Go to Step 1.
The convergence of this procedure was proved by Prékopa (1970) under the

following conditions: h, G are quasi-concave and have continuous gradients;
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there exists an x0 such that G(x0)>p (Slater’s condition); the set {x jAx¼ b,
x� 0} is bounded.

To find an initial feasible solution we may use a simple gradient method to
maximize G(x) subject to the constraints Ax¼ b, x� 0. It is needless to carry
out the whole procedure, we may stop when an x0 is encountered that satisfies
G(x0)>p.

The advantage of this method, when solving problem (3.1), is that it
provides us with a possibility to handle the determination and use of G(x) as
well as rG(x) in a stable manner. The effect of noise when these values are
approximated by simulation or bounding methods, can be controlled and, if
the result is not satisfactory, the sample size can be increased or the bounds
can be improved. This remark applies to all other solution methods too, that
we present here concerning problem (3.1).

The Logarithmic Barrier Function Method (SUMT)
If G(x) is a logconcave function in R

n then so is G(x)�p on the set
{x jG(x)� p}. This fact suggests the application of the Sequential Uncon-
strained Minimization Technique (SUMT) to solve problem (3.1).

The method works in such a way that we take a sequence of positive
numbers {sk} such that sk>skþ 1, k¼ 0, 1,. . . , lim

k!1
sk ¼ 0 and solve the

problem

min fhðxÞ � sk logðGðxÞ � pÞg

subject to

Ax ¼ b

x � 0, ð3:5Þ

in principle for each k. If xk is an optimal solution of (3.5) then, under some
conditions, we have that

lim
k!1

hðxkÞ ¼ min
GðxÞ � p

Ax ¼ b, x � 0

hðxÞ: ð3:6Þ

The conditions are satisfied if h is a continuous, convex and G is a continuous
logconcave function; G(x0)>p for some x02 {x jAx¼ b, x� 0} and
{x jAx¼ b, x� 0} is a bounded set. Under these conditions the objective
function in problem (3.5) is convex for any s. For a more general convergence
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theory of the SUMT method we refer to the book by Fiacco and McCormick
(1968).

The supporting hyperplane method
It is assumed that h, G are quasi-concave and have continuous gradients;

there exists a vector x0 such that G(x0)>p, x02 {x jAx¼ b, x� 0}; there exists
a bounded convex polyhedron K1 containing the set of feasible solutions of
problem (3.1).

In a first phase we find a feasible x0 satisfying Slater’s condition. This can
be done by maximizing G(x) subject to Ax� b, x� 0, by use of the method
described below. The second phase consists of the following steps.
Step 1. Solve the problem:

min hðxÞ

subject to

x 2 Ks: ð3:7Þ

Let xs be an optimal solution. If xs is feasible, then Stop, xs is an optimal
solution of problem (3.1). Otherwise, go to Step 2.
Step 2. Let �s be the largest �� 0 such that x0þ�(xs�x0) is feasible and

ys ¼ x0 þ �sðxs � x0Þ:

Choose any constraint that is satisfied with equality sign for ys. If it is
G( ys)¼ p, then we define

Ksþ1 ¼ fx j x 2 Ks, rGð ysÞðx� ysÞ � 0g:

If it is a linear constraint then Ksþ 1 is defined as the intersection of Ks and the
set determined by this linear constraint. Go to Step 1.

The reduced gradient method
Let hðxÞ ¼ cTx in problem (3.1) that we intend to solve. We assume that

GðxÞ is logconcave, rGðxÞ is Lipschitz-continuous, Slater’s condition holds
and the set of feasible solutions is bounded.

In the kth iteration we are given a feasible xk, a tolerance "k, the
partitioning xk ¼ ð yk, zkÞ, A ¼ ðB,RÞ, c ¼ ðcB, cRÞ, where B is a nonsingular
square matrix and ð ykÞj � 1 for all j. We perform the following steps.
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Step 1. Solve the direction finding problem

min t

subject to

cTBuþ cTRv � t

rGðxkÞuþ rGðxkÞv � �t, if GðxkÞ � pþ "k

Buþ Rv ¼ 0

vj � 0 if zj � "
k

vj � 1 all j, ð3:8Þ

where u, v and t are the decision variables and � is a positive constant. An
equivalent form of this problem is

min t

subject to

rTv � t

sTv � �t, if GðxkÞ � pþ "k

vj � 0 if zj � "
k

vj � 1 all j, ð3:9Þ

where r ¼ cR � cTBB
�1R and s ¼ rzGðx

kÞ � ryGðx
kÞB�1R are the reduced

gradients of the objective function and the probabilistic constraint,
respectively. Let (v*, t*) be an optimal solution of problem (3.9). There
are two cases.
Case 1.We have t* > "k. Then we compute u* ¼ �B�1Rv* and go to Step 2.
Case 2. We have t* � "k. Then "k is halved. If the new "k is smaller than a

zero tolerance then we accept xk as optimal solution. Otherwise we solve
problem (3.8) with the new "k and go to Step 2.
Step 2. Let �1 be the largest � � 0 such that xk þ �w* satisfies the linear

constraints, where w* ¼ ðu*, v*Þ. Let �2 be any � satisfying

p � Gðxk þ �w*Þ � pþ "k

and �* ¼ minð�1, �2Þ. Define xkþ1 ¼ xk þ �*w* and go to Step 3.
Step 3. If ð ykþ1Þj � "

k for some j then the nondegeneracy assumption is
violated. Find a new partition for which the nondegeneracy assumption
holds. If necessary, reduce "k to meet this assumption. Go to Step 1.
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A primal–dual method
A primal–dual method has been developed to solve the following problem

min cTx

subject to

Fð yÞ � p

Tx � y

Dx � d, ð3:10Þ

where F is the probability distribution function of the random vector n:
Fð yÞ ¼ Pðn � yÞ. Problem (3.10) comes from the problem

min cTx

subject to

PðTx � nÞ � p

Dx � d, ð3:11Þ

to which it is equivalent. Let x 2 R
n, y 2 R

r and suppose F is a strictly
logconcave probability distribution function, i.e., for every pair y1, y2 2 R

r,
y1 6¼ y2, and 0 < � < 1, we have

Fð�y1 þ ð1� �Þy2Þ > ½Fð y1Þ�
�
½Fð y2Þ�

1��:

The advantage of problem (3.10) over problem (3.11) is that the probabilistic
constraint involves only the probability distribution function of n and not the
composite function FðTxÞ.

Starting to solve problem (3.10) we associate with it a dual problem

max min
FðyÞ�p

uTyþ vTd

� �
subject to

TTuþDTv ¼ c

u � 0, v � 0: ð3:12Þ

The procedure works in the following manner. First we assume that a pair of
vectors ðuð1Þ, vð1ÞÞ is available, for which

uð1Þ, vð1Þ
� �

2 V ¼ ðu, vÞ j TTuþDTv ¼ c, v � 0
� 	

:
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Suppose that ðuðkÞ, vðkÞÞ has already been chosen where uðkÞ � 0. Then we
perform the following steps.
Step 1. Solve the problem

minðuðkÞÞTy

subject to

Fð yÞ � p: ð3:13Þ

Let yðuðkÞÞ designate the optimal solution. Then we solve the direction finding
problem

max uTyðuðkÞÞ þ dTv
� 	

subject to

ðu, vÞ 2 V : ð3:14Þ

Let ðu*k, v*kÞ be an optimal solution to this problem. If u*k ¼ %u
ðkÞ then ðu*k, v*kÞ

is an optimal solution of the dual problem (3.12) is an optimal solution to
the primal problem (3.10), where x̂x is an optimal solution of the LP:

min cTx

subject to

Tx � yðuðkÞÞ

Dx � d:

Otherwise, go to Step 2.
Step 2. Find �ðkÞ ð0 < � < 1Þ satisfying

u*k
� �T

y
�ðkÞ

1� �ðkÞ
uðkÞ þ u*k

� �
> uðkÞ
� �T

y uðkÞ
� �

þ vðkÞ
� �T

d:

Then we define

uðkþ1Þ ¼ �ðkÞuðkÞ þ ð1� �ðkÞÞu*k

vðkþ1Þ ¼ �ðkÞvðkÞ þ ð1� �ðkÞÞv*k:
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If the procedure is infinite, then the sequence ðuðkÞ, vðkÞÞ converges and the
limiting pair has the same property as ðu*k , v*kÞ in Step 1.

A primal–dual interior point algorithm
If we look at problem (1.2), where hðxÞ is assumed to be convex, h0ðxÞ

logconcave, and h1ðxÞ, . . . , hmðxÞ concave or logconcave, then the barrier
function

hðxÞ � �
Xm
i¼0

log hiðxÞ ð3:15Þ

is a convex function for any fixed � > 0.
Function (3.15) is the classical Fiacco McCormick logarithmic barrier

function in connection with which usually three problems arise: the convexity
of the function, finding an initial feasible solution, and the ill-conditioning of
the Hessian matrix. In our case the barrier function is convex, under general
assumptions, an initial feasible solution can frequently be found by using the
probabilistic nature of the problem. If this is not the case, we would maximize
h0ðxÞ subject to all remaining constraints, until a point x, with h0ðxÞ > 0 is
found.

We introduce slack variables and rewrite (1.2) as

min hðxÞ

hiðxÞ � wi ¼ 0

wi � 0, i ¼ 0, 1, . . . , m:

The next step is to eliminate the inequalities wi � 0 by the introduction of
logarithmic barrier terms to the objective function. This yields the problem

min hðxÞ � �
Xm
i¼0

log wi

" #

subject to

hiðxÞ � wi ¼ 0, wi
>
¼ 0, i ¼ 0, 1, . . . , m:

Then we take the Lagrangian

Lðx, w, y, �Þ ¼ hðxÞ � �
Xm
i¼0

log wi �
Xm
i¼0

yiðhiðxÞ � wiÞ,
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write up the first order KKT conditions and the method is essentially
an iterative solution method for these equations, based on Newton’s method.
The search directions �x, �y, �z are determined by the system of linear
equations

�Hðx, yÞ 0 AT ðxÞ

0 �W�1Y �I

AðxÞ �I 0

0
BB@

1
CCA

�x

�w

�y

0
B@

1
CA ¼

�

��

%

0
B@

1
CA,

where

Hðx, yÞ ¼ r2hðxÞ �
Xm
i¼0

yi r
2hiðxÞ

AðxÞ ¼

rh0ðxÞ

..

.

rhmðxÞ

0
BBB@

1
CCCA

� ¼ rhðxÞ � AT ðxÞy,

W is the diagonal matrix with w0, . . . ,wm in the main diagonal, � ¼ �W�1e�
y, % ¼ ð%0, . . . , %mÞ

T , %i ¼ wi � hiðxÞ, i ¼ 0, . . . ,m, and e is the vector with all
components equal to one.

Starting from an initial x0, w0, y0, we proceed through a sequence of points:

xkþ1 ¼ xk þ �k �xk,

wkþ1 ¼ wk þ �k �wk,

ykþ1 ¼ yk þ �k �yk,

where �xk, �wk and �yk are the subsequent search directions.
The above algorithm proved to be very efficient on a large number of

problems.
In the next two methods we present not only problem solving algorithms

but, simultaneously, the estimation of the probabilities involved.
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Solution of the probabilistic constrained problem by the use of nonparametric
estimates of distribution functions

We look at the problem

min cTx

subject to

PðTx � �Þ � p

Ax ¼ b

x � 0, ð3:16Þ

where we assume that the random variables �1, . . . , �r are independent and
each has continuous distribution. If we introduce the notations FiðzÞ ¼
Pð�i � zÞ, i ¼ 1, . . . , r, Tx ¼ y, then problem (3.16) has the equivalent form:

min cTx

subject toYr
i¼1

ð1� Fið yiÞÞ � p

Tix ¼ yi, i ¼ 1, . . . , r

Ax ¼ b

x � 0: ð3:17Þ

The method works with the hazard rate functions defined by

giðtÞ ¼
fiðtÞ

1� FiðtÞ
ð3:18Þ

if FiðtÞ < 1 and giðtÞ ¼ 0 if FiðtÞ ¼ 1, i ¼ 1, . . . , r, where fiðtÞ is the probability
density function corresponding to FiðtÞ, i ¼ 1, . . . , r.

Assume that the functions fiðtÞ, i ¼ 1, . . . , r are logconcave. Then, by
Theorem 2.4 the functions 1� FiðtÞ, i ¼ 1, . . . , r are also logconcave. If, in
addition, we assume that for any x, y1, . . . , yr, satisfying the last three
constraints in (3.17), we have FiðyiÞ < 1, i ¼ 1, . . . , r, then we can take
logarithm on both sides in the first constraint.

The logconcavity of 1� FiðtÞ implies that giðtÞ is a decreasing function.
Integrating (3.18) we obtain

1� FiðyiÞ ¼ e

�

Zyi
�1

giðtÞ dt

:
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We estimate the functions giðtÞ from samples.
Let g

ðnÞ
i denote an original estimator of gi for a given n. We take a sample

�nif g from the population with distribution function Fi, and create a grid
tn,1 < tn,2 < . . . < tn,N . The grid may depend on i but we suppress it, for the
sake of simplicity. The original estimator g

ðnÞ
i can then be defined as

g
ðnÞ
i ðtÞ ¼

F
ðnÞ
i ðtn, jþ1Þ � F

ðnÞ
i ðtn, jÞ

ðtn, jþ1 � tn, jÞð1� F
ðnÞ
i ðtn, jÞÞ

, tn, j < x � tn, jþ1,

where F
ðnÞ
i is the empirical distribution function corresponding to

Fi, i ¼ 1, . . . , r.
The next step is to choose a point xn, j from the window ðtn,j, tn, jþ1� and

assign a weight to it: wðxn, jÞ. Then solve the problem

inf
Uj increasing

XN
j¼1

Uj � g
ðnÞ
i ðxn, jÞ


 �2
wðxn, jÞ:

Let ĝg
ðnÞ
i ðxn, jÞ be the optimal solution and assign this value to each element

of the window ðtn, j, tnþ1, j�. Then ĝg
ðnÞ
i is a nondecreasing step function

approximating g
ðnÞ
i in the least square sense. Now our approximation to

1� FiðyiÞ is

1� F̂F
ðnÞ
i ðyiÞ ¼ e

�

Zyi
�1

ĝg
ðnÞ
i ðtÞ dt

:

This estimate has several good properties.
It remains to show how this estimate can be used to solve problem (3.17).

Since

log 1� F̂F
ðnÞ
i ð yiÞ


 �
¼ �

Zyi
�1

ĝg
ðnÞ
i ðtÞ dt,

this function is piecewise linear and concave. Assume that the function
consists of a finite number of linear pieces, the equations of which are

aTij yþ bij, j ¼ 1, . . . , Ji, i ¼ 1, . . . , r:
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The problem (3.17) is equivalent to the following LP:

min cTx

subject to

yi � aTij yþ bij, j ¼ 1, . . . , Ji

Tix ¼ yi, i ¼ 1, . . . , r

Ax ¼ b

x � 0:

Solution by a regression method
We solve problem (1.2) under the following conditions: the random vector �

has continuous distribution and logconcave density; g1, . . . , gr are concave or
quasi-concave functions; the other constraints are linear that we write in the
form Ax ¼ b, x � 0; the objective function is linear: hðxÞ ¼ cTx. The method
works under more general assumptions as well but we restrict ourselves to a
relatively simple case.

Under the above assumptions the constraining function

GðxÞ ¼ Pðg1ðx, �Þ � 0, . . . , grðx, �Þ � 0Þ ð3:19Þ

is logconcave in x. We approximate logGðxÞ by a quadratic function
xTDxþ bTxþ c, where xTDx is negative definite, solve the approximate
problem, take a new feasible point to improve on the approximation,
again solve the problem etc. The function values GðxÞ computed for the
approximation may be noisy, a least square approximation procedure will
eliminate much of the noise. The solution algorithm can be described as
follows.
Step 1. Find x0, . . . , xk�1 which are feasible solutions to the problem. Compute

the corresponding values pi ¼ logGiðxÞ, i ¼ 1, . . . , k� 1.
Step 2. Let

qkðxÞ ¼ xTDkxþ bTk xþ ck

be a quadratic function, where Dk, bk, ck are obtained from the least square
approximation

min
Xk�1
i¼0

ðpi � qkðxiÞÞ
2:
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Step 3. Solve the approximate problem

min cTx

subject to

xTDkxþ bTk xþ ck � log p

Ax ¼ b

x � 0:

Let xk be an optimal solution. Suppose that we have a criterion to decide if xk
is ‘‘good enough’’ as a solution to the original problem. In principle the KKT
conditions are the best from this point of view but we may have some other
stopping rule as well, e.g., the optimum values of the approximate problem do
not change significantly in several subsequent iterations. Now, if xk is ‘‘good
enough’’, then stop and accept it as optimal solution to the original problem.
Otherwise let k kþ 1 and go to Step 2.

3.2 The case of discrete distribution

We look at problem (1.3), where we assume that the random vector � has
discrete distribution. First we formulate the definition of a p-level efficient
point (or PLEP). Let F designate the distribution function of �.

Definition 3.1. A point z 2 R
r is said to be a p-level efficient point of the

probability distribution F, if FðzÞ � p and there is no y such that
y � z, y 6¼ z, Fð yÞ � p.

If r ¼ 1, then for any p 2 ð0, 1Þ there exists exactly one p-level efficient
point. Sometimes we need p-level efficient points defined in connection with
functions obtained from a distribution function by holding some of the
variables fixed. This is the case, e.g., in the forthcoming enumeration
algorithm. Definition 3.1 extends in a trivial way to this case. We have the
following

Theorem 3.1. If the components of the random vector � are integer-valued, then
for any p 2 ð0,1Þ the set of p-level efficient points is nonempty and finite. The set
of p-level efficient points serves as the p-quantile of the probability distribution
determined by F.

From the practical point of view we may restrict ourselves to the case where
the distribution has a finite support. We do not assume, however, that the
support set is part of the integer lattice in R

r.
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Let Zi ¼ fzi0, . . . , zikiþ1g be the set of possible values of �i, i ¼ 1, . . . , r and
define the direct product

Z ¼ Z1 � . . . � Zr: ð3:20Þ

The set Z contains all possible values of � but may be somewhat larger than
the set of possible values. Below we present an algorithm to find all p-level-
efficient points of the distribution. We remark that any p-level-efficient point is
necessarily an element of Z.

Algorithm to enumerate the p-efficient points
Step 0. Initialize k 0. Go to Step 1.
Step 1. Let

z1, j1 ¼ arg min y j Fðy, z2,k2þ1, . . . , zr,krþ1Þ � p
� 	

z2, j2 ¼ arg min y j Fðz1, j1 , y, . . . , zr,krþ1Þ � p
� 	

..

.

zr,jr ¼ arg min y j Fðz1, j1 , . . . , zr�1, jr�1 , yÞ � p
� 	

:

Go to step 2
Step 2. Let E  fz1,j1 , . . . , zr,jrg. Go to Step 3.
Step 3. Let k kþ 1. If j1 þ k > k1 þ 1, then go to Step 5. If j1 þ k � k1 þ 1,

then go to Step 4.
Step 4. Enumerate all p-level-efficient points of the function Fðz1, j1þk, yÞ,

where y 2 R
r�1 and eliminate those which dominate at least one element in

E. ( y dominates z, if y � z and y 6¼ z). If H is the set of the remaining
p-level-efficient points, which may be empty, then let E  E [H. Go to
Step 3.

Step 5. Stop. E is the set of p-level-efficient points of the distribution function F.

Remark. The above algorithm allows for the enumeration of all p-level-
efficient points of functions F which assign probability � 1 to the entire space.

Example. Let r ¼ 2, Z1 ¼ Z2 ¼ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9f g, pik ¼ 0:019 if 0 �
i � 4, 0 � k � 5 or k ¼ 8, 9; pik ¼ 0:038 if 0 � i � 4, k ¼ 6; pik ¼ 0 if
0 � i � 4, k ¼ 7; pik ¼ 0:001 if 5 � i � 9, 0 � k � 9 and p ¼ 0:6. In Step 1
we obtain

3 ¼ arg min y j Fðy, 9Þ � 0:6
� 	

6 ¼ arg min y j Fð3, yÞ � 0:6
� 	

:
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Thus, ðz1, j1 , z2, j2Þ ¼ ð3, 6Þ and at Step 2 we have k ¼ 0, E ¼ ð3, 6Þ
� 	

. In Step 3
we take k ¼ 4 and go to Step 4, where we obtain H ¼ ð4, 6Þ

� 	
. We eliminate

(4, 6) and E ¼ ð3, 6Þ
� 	

. Now we go to Step 3 and find H empty for
k ¼ 2, 3, 4, 5. In case of k ¼ 6 we obtain H ¼ ð9, 5Þ

� 	
and the algorithm

terminates. The result is E ¼ ð3, 6Þ, ð9, 5Þ
� 	

.

Cutting plane method for the solution of problem (1.3) with discrete
random vector �

We assume that the support of � is Z, given by (3.20), or a part of it. Let
zð1Þ, . . . , zðNÞ designate the p-level-efficient points of the distribution F and
suppose that we have already enumerated them. Problem (1.3) is equivalent to
the disjunctive programming problem:

min cTx

subject to

Tx � zðiÞ for at least one i ¼ 1, . . . , N

Ax ¼ b, x � 0: ð3:21Þ

Problem (3.21) is relaxed as

min cTx

subject to

Tx �
XN
i¼1

�iz
ðiÞ

Ax ¼ b, x � 0XN
i¼1

�i ¼ 1, � � 0 ð3:22Þ

and we propose an algorithm to solve (3.22). Introducing slack variables the
problem becomes

min cTx

subject to

Tx� u ¼
XN
i¼1

�iz
ðiÞ

Ax ¼ b, x � 0XN
i¼1

�i ¼ 1, � � 0, u � 0: ð3:23Þ
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Since the set of p-level efficient points may be concentrated on a manifold with
dimension smaller than r, first we determine this manifold. Let

z ¼
1

N

XN
i¼1

zðiÞ

and consider the system of linear equations with unknown vector w:

wT ðzðiÞ � zÞ ¼ 0, i ¼ 1, . . . , N: ð3:24Þ

If w1, . . . ,wh is a maximum number of linearly independent vectors
satisfying (3.24), then we append the constraints

wT
l ðTx� uÞ ¼ 0, l ¼ 1, . . . , h

to the constraints Ax¼ b and keep them together throughout the procedure.
The steps of the algorithm are the following.
Step 1. Enumerate all the p-level efficient points zð1Þ, . . . , zðNÞ. Initialize k 0

and go to Step 2.
Step 2. Solve the LP:

min cTx

subject to

Ax ¼ b, wT
l ðTx� uÞ ¼ 0, l ¼ 1, . . . , h

ðwiÞ
T
ðTx� u� zÞ � 0, i ¼ 1, . . . , k

x � 0, u � 0: ð3:25Þ

If k ¼ 0 then ignore the cuts, i.e., the constraints in the second to the last
line in (3.25). Let ðxðkÞ, uðkÞÞ be an optimal solution. Go to Step 3.

Step 3. Solve the auxiliary problem

min eT� ¼ �

subject toXN
i¼1

zðiÞ � z
� �

�i ¼ TxðkÞ � uðkÞ � z

� � 0, ð3:26Þ

where e ¼ ð1, . . . , 1ÞT and the decision vector is �. The solution of (3.26)
needs some care because the matrix of the problem may not have full
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row rank. In this case we may use a more general variant of the simplex
method (see Prékopa (1996)) or use a well-known technique involving
artificial variables.
If � � 1, then Stop, the current ðxðkÞ, uðkÞÞ is an optimal solution of problem
(3.25). If �>1 then go to Step 4.

Step 4. Let zði1Þ � z, . . . , zðir�hÞ � z be an optimal basis to the problem (3.26).
Then find a w satisfying

wTwi ¼ 0, i ¼ 1, . . . , h

wT ðzðij Þ � zði1ÞÞ ¼ 0, j ¼ 2, . . . , r� h:

These r� 1 equations determine w up to a constant factor. Assume that we
have determined w in such a way that

wT TxðkÞ � uðkÞ � z
� �

< 0:

Then define wkþ1 ¼ w and introduce the cut

wkþ1
� �T

ðTx� u� zÞ � 0:

Set k kþ 1 and go to Step 2.
The finiteness of the above algorithm is guaranteed if fzðiÞ, i ¼ 1, . . . ,Ng is a

discrete convex set, i.e., zð jÞ 62 riconvfzðiÞ, i ¼ 1, . . . ,Ng, j ¼ 1, . . . ,N.

The cone generation method
The method solves problem (3.22). Before presenting it we introduce the

notion of a discrete �-concave function. In Section 2 we already introduced
this notion in connection with functions defined on the entire r-space and
stated in Theorem 2.9 that if the probability measure is generated by an �-
concave density function, then the measure is �-concave in the sense of
Definition 2.4, where � ¼ �=ð1þ r�Þ. As we have remarked in Section 2, there
is no discrete counterpart of this theorem. Still, the notion of �-concavity
can be defined in connection with a function defined on the integer lattice of
the r-space.

Definition 3.2. The function f ðzÞ � 0, defined on the integer lattice of the
r-space is said to be �-concave if for any integer component vectors x, y, z
and 0 < � < 1 such that f ðxÞ > 0, f ð yÞ > 0, z � �xþ ð1� �Þy, we have the
inequality

f ð�xþ ð1� �ÞyÞ � ½�f �ðxÞ þ ð1� �Þf �ð yÞ�1=�, ð3:27Þ
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where �1 � � <1; for � ¼ �1, � ¼ 0 the expression in (3.27) is defined by
continuity in the same way as we have defined it in Definition 2.3.

If a function is �-concave in the entire r-space, then it is �-concave on the
integer lattice of the same space.

Assume that the probability distribution function FðzÞ ¼ Pð� � zÞ, z 2 R
r is

�-concave on the integer lattice of the space. Let

Zp ¼ fz 2 R
r
j FðzÞ � pg:

Then we have the relation (for the proof see Dentcheva et al. (2000))

Zp \ Z
r
þ ¼ conv ðZpÞ \ Z

r
þ, ð3:28Þ

where Zr
þ is the nonnegative orthant of the r-space, Zr

þ ¼ fz 2 Z
r j z � 0g.

Relation (3.28) gives some information regarding the relationship of
problems (3.21) and (3.22). Equivalence between the two problems, however,
can be stated only if further information is available. If, for example x is also
restricted to be integer and the matrix T has integer entries, then, by (3.28), the
two problems are equivalent.

The cone generation method consists of the following steps.

Step 1. Find a p-level efficient point z(1) and set I1 ¼ f1g, k ¼ 1.
Step 2. Solve the master problem

min cTx

subject to

Tx �
X
i2Ik

�iz
ðiÞ

Ax ¼ b, x � 0X
i2Ik

�i ¼ 1, � � 0: ð3:29Þ

Let uk be the part of the optimal dual vector which is associated with the
first part of the constraints.

Step 3. Calculate an upper bound on the value

min
i2Ik
ðukÞTzðiÞ: ð3:30Þ

If for jk 2 Ik we have �jk > 0 then ðukÞTzjk is a suitable upper bound on this
value.

Step 4. Find a p-level efficient solution to the problem

min
FðzÞ�p

uk
� �T

z, ð3:31Þ
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where FðzÞ ¼ Pð� � zÞ, z 2 R
r. Let z(kþ 1) designate an optimal solution to this

problem. If the optimal values in (3.31) and (3.30) coincide, then Stop, the
optimal solution of problem (3.29) is an optimal solution to problem (3.22).
Otherwise set Ikþ1 Ik [ fkþ 1g, k kþ 1 and go to Step 2.

The solution of problem (3.31) may be difficult in the general case.
However, if the random variables �1, . . . , �r are independent, there is a simple
way to do the job. We assume that Z is the integer grid of R

r. Let FiðzÞ
designate the probability distribution function of the random variable
�i, i ¼ 1, . . . , r. Then the probabilistic constraint FðzÞ � p can be written in
the form

log FðzÞ ¼
Xr
i¼1

log FiðziÞ � log p:

If FðzÞ � p, then we also have FiðziÞ � p, i ¼ 1, . . . , r. This implies that if li is the
p-level efficient point of the distribution function Fi, then zi � li, i ¼ 1, . . . , r: It
follows that problem (3.31) is equivalent to the nonlinear knapsack problem:

min
Xr
i¼1

uizi

subject toXr
i¼1

log FiðziÞ � log p

zi � li, zi integer, i ¼ 1, . . . , r: ð3:32Þ

If bi is a known upper bound on zi, i ¼ 1, . . . , r, then problem (3.32) can be
transformed into the following equivalent 0�1 variable LP:

min
Xr
i¼1

Xbi
j¼li

juiyi, j

subject toXr
i¼1

Xbi
j¼li

log Fið jÞð Þyi, j � log p

Xbi
j¼li

yi, j ¼ 1, i ¼ 1, . . . , r

yi, j 2 f0, 1g, j ¼ li, . . . , bi, i ¼ 1, . . . , r: ð3:33Þ

The variable zi in problem (3.32) is replaced by
Pbi

j¼li
j yi,j in problem (3.33). If

FiðzÞ is the distribution function of a logconcave distribution on the integers
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i ¼ 1, . . . , r, then we introduce zi ¼ li þ
Pbi

j¼liþ1
�ij, i ¼ 1, . . . , r, where �ij are

0�1 variables. Then we reformulate problem (3.32) as follows:

min
Xr
i¼1

Xbi
j¼liþ1

ui�ij

subject toXr
i¼1

Xbi
j¼liþ1

aij�ij � q,

�ij 2 f0, 1g, j ¼ li þ 1, . . . , bi, i ¼ 1, . . . , r, ð3:34Þ

where aij ¼ log Fið jÞ � log Fið j � 1Þ ¼ Pð� ¼ jÞ and q ¼ log p� log l,
l ¼ ðl1, . . . lrÞ

T . Problem (3.34) is a knapsack problem, for which many
efficient solution techniques exist.

The advantage of the cone generation method is that problem (3.31) is
separated from the other parts of the problem and, as we have seen, this
problem sometimes has simple solution technique.

A branch and bound method
The method solves problem (1.3) with the additional restriction that x and �

are integers. The matrix T is assumed to have integer entries. As we have
remarked in the discussion of the previous method, under these conditions the
problem

min cTx

subject to

Tx � zðiÞ, for at least one i ¼ 1, . . . , n

Ax ¼ b, x � 0 integer, ð3:35Þ

which is the same as problem (3.1) with the integrality restriction on x, is the
same as the problem

min cTx

subject to

Tx �
XN
i¼1

�iz
ðiÞ

Ax ¼ b, x � 0 integerXN
i¼1

�i ¼ 1, � � 0: ð3:36Þ
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A new PLEP generation technique is also proposed by the authors. In order to
describe it we need some preparation.

In connection with a vector w satisfying FðwÞ � p for some p 2 ð0, 1Þ we
define li ¼ liðwÞ to be the p=FðwÞ-level efficient point of the conditional
marginal distribution Fiðzi j � � wÞ, i.e.,

liðwÞ ¼ arg min j j Fið j j � � wÞ �
p

FðwÞ

� 
, i ¼ 1, . . . , r:

Let l ¼ lðwÞ designate the vector of components liðwÞ, i ¼ 1, . . . , r. The
following assertions hold true:

(i) for every p-level efficient point v � w we have v � lðwÞ;
(ii) if z � w, then lðzÞ � lðwÞ;
(iii) w is p-level efficient if and only if lðwÞ ¼ w.

To every nonnegative integer component vector z we assign a level
jzj ¼ z1 þ . . . þ zr. We also create a graph out of these points as nodes
and draw a directed arc from v to w if jw j ¼ j v j þ 1 and the two vectors
differ in one component only. There are two variants of the enumeration
technique: the forward and the backward schemes. In the latter one we start at
the highest level candidate, in the former one at the lowest level candidate.
Since p	 1, the backward algorithm produces the result faster, in general,
therefore we present only that one.

Backward enumeration scheme
Step 0. Let v ¼ ðk1, . . . , krÞ and set k ¼ jvj1, level counter; S

k ¼ ;, the set of
PLEP’s at level k; Ck ¼ f
g, the set of candidate points at level k; J ¼ ;, the
set of all PLEP’s.

Step 1. For each v 2 Ck generate its predecessors and supplement them
to Ck�1.

Step 2. For each v 2 Ck�1 compute lðvÞ. If lðvÞ ¼ v, move the point from Ck�1

to Sk�1.
Step 3. Set J ¼ J [ SK�1. If Ck�1 ¼6 0, Stop. Otherwise decrease k by 1 and go

to Step 1.
In the implementation an important issue is to avoid generating the same

point more than once. Granted, the procedure terminates in a finite number of
iterations.

In the solution algorithm of the problem we use the value zðl*ðvÞÞ defined by

z l*ðvÞð Þ ¼ min cTx

subject to

Tx � l*ðvÞ

Ax ¼ b, x � 0 integer, ð3:37Þ
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where l*ðvÞ designates the smallest vector in Z such that l*ðvÞ � lðvÞ. The value
zðl*ðvÞÞ is a lower bound on the optimal values of all predecessors of v.

Let zI designate the best known feasible solution to the problem, at some
point of the algorithm. Then, if zðl*ðvÞÞ � zI , node v can be discarded. If
zðl*ðvÞÞ < zI , then v is either stored as candidate for further use (if the solution
is fractional), or replaces zI (if the solution is integer).

The branch and bound algorithm
Step 0. Let v ¼ ðk1, . . . , krÞ. Compute an initial upper bound zI and set

k ¼ jvj1, level counter; S
k ¼6 0, set of PLEP’s at level k; CK ¼ fvg, set of

candidate points at level k; J ¼6 0, set of all PLEP’s; M ¼6 0, set of PLEP’s
corresponding to integer problems.

Step 1. For each v 2 Ck generate the predecessors and supplement them
to Ck�1.

Step 2. For each v 2 Ck�1 compute the conditional lower bound lðvÞ on
PLEP’s. If lðvÞ ¼ v, move the point from Ck�1 to Sk�1.

Step 3. Set J ¼ J [ Sk�1. If Ck�1 ¼6 0 and Sk�1 ¼6 0, Stop. Otherwise decrease
k by 1.

Step 4. For each point v 2 Sk [ Ck solve a relaxation of problem (3.37). Let
xðl*ðvÞÞ be an optimal solution.

(1) If zðl*ðvÞÞ � zI , discard the point v.
(2) If zðl*ðvÞÞ < zI and v 2 Sk, then (I) if xðl*ðvÞÞ is fractional, then

supplement the point v to M; (II) otherwise update zI and remove from
M all points w having worse lower bound values zðl*ðvÞÞ.

If Ck ¼ ;, Stop. Otherwise go to Step 1.
The algorithm terminates in a finite number of steps. At the endM contains

all PLEP’s corresponding to the integer problem.
As a special case of the above described probabilistic integer programming

problem the probabilistic set covering problem has been considered
and solved, where the components of the decision vector x are 0�1 variables
and the random vector � has 0�1 components as well. The special structure of
the problem is exploited in the solution algorithm.

Finally, we mention that an algebraic geometry approach has been deve-
loped for the solution of the probabilistic constrained integer programming
problem, where the random variables are also integer valued and are located in
the technology matrix. The method uses Gröbner bases. The description of it
is, however, rather lengthy therefore we disregard its presentation here.

3.3 Bibliographical notes

The method of feasible direction is due to Zoutendijk (1960). Its application
(algorithm P2) to solve probabilistic constrained stochastic programming
problemswasproposedbyPrékopa (1970).Deák (1971) implemented it together
with the calculation of multivariate normal distribution function values and
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their gradients. Prékopa et al. (1980) applied the developed method for the
solution of an economic problem concerning electrical energy. Problem (1.5)
with normal distribution was also efficiently solved by Szántai (1985). The use
of SUMT (see Fiacco and McCormick (1968) for its general description) for
the same problem was suggested by Prékopa (1972a) and implemented by
Rapcsák (1974). It was first applied (in the probabilistic constrained framework)
by Prékopa et al. (1978). Further application is mentioned in Section 7. The
application of a variant of the supporting hyperplane method of Veinott
(1967), to solve problem (1.3) was proposed by Prékopa and Szántai (1978b).
The solution code, due to Szántai, is described in his (Szántai, 1988) paper.
The reduced gradient method, developed by Abadie and Carpentier (1969), was
applied by Mayer (1979, 1980, 1988, 2000) to solve problem (1.3). See also his
summarizing paper (1992) (Mayer (1992)) and book (1998) (Mayer (1998)) .
The paper by Kall and Mayer (1996) presents, among others, the solution of
(1.3), by the use of the reduced gradientmethod, in a generalmodelmanagement
framework. The next, primal-dual, method is due to Komáromi (1986b, 1987).

The primal-dual interior point algorithm is due to Vanderbei and Shanno
(2000). The ill-conditioning in the Hessian can be balanced by a method due to
Nash andSofer (1993).Other refinement is due to the same authors (1998) (Nash
and Sofer, 1998). It addresses the problem of the infeasibility of a returned �.

The method, using nonparametric estimates of the distribution functions,
when in problem (1.3) the random vector � has independent components, is
due to Gröwe (1995, 1997). The regression method is due to Deák (2000).
Another approximation method is presented in Salinetti (1983).

The concept of a p-level efficient point PLEP was introduced by Prékopa
(1990a). It is also termed p-efficient point and sometimes abbreviated as PEP.

The algorithm to enumerate the p-level efficient points and the subsequent
cutting plane method is due to Prékopa, Vı́zvári and Badics (1998). The cone
generation method, together with the embedded enumeration of the p-level
efficient points is due to Dentcheva, Prékopa and Ruszczyński (2000). Vı́zvári
(2002) has revised it from the point of view of integer programming. The next,
branch and bound method and the embedded enumeration technique of the
p-level efficient points is due to Beraldi and Ruszczyński (2001). They have
another, paper (2002), where they solve a stochastic set covering problem by a
similar method.

The algebraic-geometry method, using Gröbner bases (see Becker and
Weispfenning), is due to Tayur et al. (1995). Inequalities in connection with
probabilistic constrained problems with discrete random variables are
presented in Sen (1992).

4 Dynamic type stochastic programming problems with probabilistic

constraints

The simplest dynamic type stochastic programming problem is the
two-stage programming under uncertainty, or, stochastic programming
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with recourse. This can be formulated as

min cTxþ E qðx, �Þð Þ
� 	

subject to

Ax ¼ b, x � 0,

x 2 K , ð4:1Þ

where

qðx, �Þ ¼ min qTy

subject to

Wy � � � Tx, y � 0: ð4:2Þ

Problems (4.1) and (4.2) are called the first and the second stage problems,
respectively. The set K in problem (4.1) is the set of all x vectors for which
problem (4.2) has feasible solution for any possible values of the random
vector �. Since the projection of the convex polyhedron

ðx, �, yÞ jWy � � � Tx, y � 0
� 	

onto the space of the x, � vectors can be described by the (in x and �)
homogeneous linear inequalities

Hx � G�, ð4:3Þ

it follows that

K ¼ x j Hx � hf g, ð4:4Þ

where

hi ¼ sup
�2�

G�ð Þi

and � is the support of the random vector �. By (4.4), K is a convex
polyhedron.

If we assume that the dual of problem (4.2) has feasible solution and E(�)
exists, then the optimum value of (4.2) exists for any x 2 K , � 2 � and
Eðqðx, �ÞÞ exists for any x 2 K .

The condition that the second stage problem be solvable for any � 2 � is
frequently too restrictive in practice. In the power system engineering, for
example, we cannot design power systems in such a way that no blackout
should occur, ever. Similarly, in water resources engineering we cannot design
a dam in such a way that no flood should occur, ever. We have to allow
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disaster to occur but we may limit the frequency of its occurrence. A model
where the solvability of the second stage problem is ensured only by a (large)
probability has been formulated by Prékopa (1973a). Since (4.3) is a necessary
and sufficient condition for the solvability of problem (4.2), we formulate our
new problem in such a way that impose a probabilistic constraint on the
inequalities (4.3). This raises the question that what optimum value shall we
enter into problem (4.1) if problem (4.2) is not always solvable. To overcome
this difficulty we introduce new variables (components of) z into problem (4.2)
that we add to the left hand side of the constraints and enter the same
variables with high costs into the objective function. The high costs should
render z¼ 0 automatically whenever the original second stage problem (4.2) is
solvable. Our new two-stage problem with probabilistic constraint is the
following:

min cTxþ E qðx, �Þð Þ
� 	

subject to

PðHx � G�Þ � p

Ax ¼ b, x � 0, ð4:5Þ

where

qðx, �Þ ¼ min qTyþ dTz
� 	

subject to

Wyþ z � � � Tx, y � 0: ð4:6Þ

Prékopa (1980b, 1995) formulated the power system expansion problem as
a special case of problem (4.5)–(4.6). A solution technique for the above
problem is proposed by Deák (2001). Similar models can be formulated for
the multiperiod case. A practical way, however, to incorporate probabilistic
constraints into dynamic type models is to include them in rolling horizon
models, where we solve static models subsequently in time. Examples will be
presented in Section 7.

5 Bounding, approximation and simulation of probabilities

In Section 3 we presented nonlinear programming procedures suitable to
solve probabilistic constrained stochastic programming problems. We left
open the question how to compute the constraining function values and their
gradients in the probabilistic constraint. First we look at the function values
which are joint probabilities of finite numbers of random events, where
each event is determined by some relation involving multivariate functions.
For example the constraining function PðTx � �Þ in the probabilistic
constraint is the joint probability of r random events: Tix � �i, i ¼ 1, . . . , r,
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for every fixed x. If r is large, then we may not expect that the joint probability
of these events can be computed, therefore we look for bounding,
approximation and simulation procedures.

The combined use of simulation and optimization appeared in the
probabilistic constrained stochastic programming publications as early as
1974 (see Prékopa et al. (1980)). More recent is the use of bounding techniques
which, among other methods, serve for approximation of probabilities.

First we look at the bounding techniques because some of them are used
also in the approximation and simulation procedures.

5.1 Bounding probabilities of boolean functions of events

Let A1, . . . ,Ar be events in an arbitrary probability space. We intend to give
lower and upper bounds for some Boolean functions of them. We are
primarily interested in the union [ri¼1 Ai and the intersection \ri¼1 Ai of the
events as their Boolean functions. The intersection of r events appears in the
stochastic constraint Tx � �, where Ai ¼ fTix � �ig, i ¼ 1, . . . , r. The union of
events has also significance here because, by De Morgan’s equality,

\r
i¼1

Ai ¼
[r
i¼

Ai

and, consequently,

P
\r
i¼1

Ai

 !
¼ 1� P

[r
i¼1

Ai

 !
:

Sometimes it is easier to present bounding formulas for the union.
Let us introduce the notation

Sk ¼
X

1�i1< ���<ik�r

P Ai1 \ . . . \ Air

� �
, k ¼ 0, 1, . . . , r,

where S0¼ 1. These values appear in the inclusion-exclusion formula:

PðA1 [ . . . [ ArÞ ¼ S1 � S2 þ � � � þ ð�1Þ
r�1Sr: ð5:1Þ

Formula (5.1) provides us, in principle, with the possibility to find the
probability of the union of events, provided that we can find the probabilities
of the intersections of any number of them. However, if r is large, then this is
not the case and in practice we are able to find only a few of S1,S2, . . ..

Let 
 designate the number of events, out of A1, . . . ,Ar, which occur. Then
we have the following
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Theorem 5.1. The following equalities hold true

E


k

� �� �
¼ Sk, k ¼ 1, . . . , r:

For a proof see, e.g., Prékopa (1995).

In view of Theorem 5.1 we call the values S1,S2, . . . binomial moments. Let

vi ¼ Pð
 ¼ iÞ, i ¼ 0, 1, . . . , r:

Then Theorem 5.1 can be stated in the equivalent form

Xr
i¼0

i
k

� �
vi ¼ Sk, k ¼ 0, 1, . . . ,r: ð5:2Þ

The v0, . . . , vr and S1, . . . ,Sr values uniquely determine each other through
the relation (5.2).

If only S1, . . . ,Sm are known in some situation, then we can formulate the
question: what are the best lower and upper bounds, for the probability of the
union, that can be given, based on this information. The answer to this
question is given by the pair of linear programming problems:

minðmaxÞ
Xr
i¼1

vi

subject toXr
i¼0

i

k

� �
vi ¼ Sk, k ¼ 0, 1, . . . , m

vi � 0, i ¼ 0, 1, . . . , r: ð5:3Þ

In (5.3) v0, . . . , vr are decision variables, they are no longer uniquely
determined by the available binomial moments S1, . . . ,Sm. A slightly more
convenient formulation of these LP’s is:

minðmaxÞ
Xr
i¼1

vi

subject toXr
i¼1

i

k

� �
vi ¼ Sk, k ¼ 1, . . . , m

vi � 0, i ¼ 1, . . . , r: ð5:4Þ
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Problem (5.4) arises from problem (5.3) in such a way that we remove v0 as
well as the constraint involving S0. If Vmin and Vmax designate the optimum
values of problems (5.4), then Vmin is also the optimum value of the (5.3)
minimum problem and min (Vmax, 1) is the optimum value of the (5.3)
maximum problem. Problems (5.3) and (5.4) are called binomial moment
problems.

The dual of problem (5.4) can be written as

maxðminÞ
Xm
k¼1

ykSk

subject toXm
k¼1

i

k

� �
yk�
ð�Þ

1: ð5:5Þ

While in problem (5.4) the input data (the binomial moments S1, . . . ,Sm)
are in the constraints, in problem (5.5) the constraints are universal,
independent on the special events, and the input data appear only in the
objective function.

Let A ¼ ða1, . . . , arÞ, b, c designate the matrix of the equality constraint, the
right hand side and the objective function coefficient vectors, respectively.

Definition 5.1. A basis B in the minimization (maximization) problem (5.4) is
said to be dual feasible if

cTBB
�1ak � ck, k ¼ 1, . . . , r

cTBB
�1ak � ck, k ¼ 1, . . . , r

� �
:

Note that inequality holds with equality if ak is a basic vector.

Definition 5.2. A basis B in any of the problems (5.4) is said to be dual
nondegenerate if

cTBB
�1ak 6¼ ck for nonbasic ak:

It is well-known in linear programming theory that a dual feasible basis in
the minimization (maximization) problem has objective function value which
is a lower (upper) bound for the optimum value. In view of this we have the
following relations

cTB1
B�11 b � Vmin � PðA1 [ . . . [ ArÞ � Vmax � cTB2

B�12 b, ð5:6Þ
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where B1(B2) is a dual feasible basis for the minimum (maximum) problem
(5.4).

We have a complete description of dual feasible bases of problem (5.4).
This is expressed in

Theorem 5.2. Every dual feasible basis in problem (5.4) is dual non-degenerate
and has one of the following structures described by the subscripts of the vectors:

m even m odd

min problem i, i þ 1, . . . , j, j þ 1, i, i þ 1, . . . , j, j þ 1, r

max problem 1, i, i þ 1, . . . , j, j þ 1, r 1, i, i þ 1, . . . , j, j þ 1:

In other words, if m is even, then a basis is dual feasible in the min (max)
problem iff. the subscript set of the basic vectors consists of consecutive pairs (1,
r and consecutive pairs). If m is odd, then in case of the min (max) problem the
subscript set is formed by consecutive pairs and r (by 1 and consecutive pairs).
The optimal dual vector y, i.e., the optimal solution of problem (5.5) has an
interesting property expressed in

Theorem 5.3. The components y1, . . . , ym of the optimal solution y of problem
(5.5) have alternating signs, starting with þ , and have the following property

jy1j � jy2j � . . . � jymj:

Since all bases of problem (5.4) are dual nondegenerate, the optimal basis is
unique. If m is small (m � 4), then we can find the optimal basis in such a way
that we look for that basis, among the dual feasible ones, which is also primal
feasible. This method provides us with bounds that can be obtained in a
relatively simple way for the cases of m ¼ 2, 3. For m ¼ 4 we present the upper
bound. The lower bound is complicated and we disregard its presentation here.
The number m, indicating the largest number of intersections of which the
probabilities appear in a formula, is called the order of the bound. The bounds
presented below are sharp in the sense that under the given information (input
data) no better bounds can be obtained.

Second order bounds using S1, S2

The lower bound is expressed by

PðA1 [ . . . [ ArÞ �
2

i þ 1
S1 �

2

iði þ 1Þ
S2,

where

i ¼ 1þ
2S2

S1

� �
:
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The upper bound is expressed by

PðA1 [ . . . [ ArÞ � min S1 �
2

r
S2, 1

� �
:

Third order bounds using S1, S2, S3

The lower bound is expressed by

PðA1 [ . . . [ ArÞ �
i þ 2r� 1

ði þ 1Þr
S1 �

2ð2i þ r� 2Þ

iði þ 1Þr
S2 þ

6

iði þ 1Þr
S3,

where

i ¼
�6S3 þ 2ðr� 2ÞS2

�2S2 þ ðr� 1ÞS1

� �
:

The upper bound is given by

PðA1 [ . . . [ ArÞ � S1 �
2ð2i � 1Þ

iði þ 1Þ
S2 þ

6

iði þ 1Þ
S3,

where

i ¼ 2þ
3S3

S2

� �
:

Fourth order upper bound using S1, S2, S3, S4

The bound is expressed by

PðA1[ . . .[ArÞ�

min S1�
2ðði�1Þði�2Þþð2i�1ÞrÞ

iðiþ1Þr
S2þ

6ð2iþr�4Þ

iðiþ1Þr
S3�

24

iðiþ1Þr
S4, 1

� �
:

Any bound, obtained by any method in the literature, is either a special case
of our bounds, in the sense that it is the objective function value
corresponding to some dual feasible basis in problem (5.4), or it is not the
best possible bound and can be majorized by one of our bounds. As an
example we mention the Bonferroni bounds. By Theorem 5.2 the basis
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B ¼ ða1, . . . , amÞ is dual feasible in the minimization (maximization) problem if
m is even (odd). Since

B�1¼

1 2 2 � � � m

1
3
2

� �
� � �

m
2

� �
. .
. ..

.

1

0
BBBB@

1
CCCCA

�1

¼

1 �2 3 � � � ð�1Þm�1m

1 �
3
2

� �
� � � ð�1Þm�2

m
2

� �
. .
. ..

.

1

0
BBBBB@

1
CCCCCA,

it follows that

cTBB
�1b ¼ S1 � S2 þ � � � þ ð�1Þ

m�1Sm

and, by (5.6), we have established the Bonferroni bounds:

PðA1 [ . . . [ ArÞ � S1 � S2 þ � � � þ Sm�1 � Sm,

if m is even and

PðA1 [ . . . [ ArÞ � S1 � S2 þ � � � þ Sm�2 � Sm�1 þ Sm,

if m is odd.
For an m for which the bounds are not available in formulas, we can

execute a simple dual algorithm, a variant of Lemke’s dual method, to find the
optimum of problem (5.4). The algorithm presented below is valid for both the
minimization and maximization problems (5.4).

Dual algorithm to solve problem 5.4
Step 0. Find an initial dual feasible basis B, by the use of the structural

Theorem 5.2.
Step 1. If B�1b � 0, Stop, the basis B is optimal and cTBB

�1b gives us the
optimal value, i.e., the required bound for the probability of the union.
Otherwise go to Step 2.

Step 2. Choose any j such that (B�1b)j<0 and remove the jth vector from the
basis B. Go to Step 3.

Step 3. Include that vector into the basis which restores the dual feasible basis
structure described in Theorem 5.2. There is exactly one such vector. Go to
Step 1.
Note that the incoming vector can be found by a simple search procedure.

The other parts of the algorithm can also be executed in a simple way as
described in Prékopa (2001b).
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Another probability bounding scheme, which provides us with better
bounds but the corresponding LP is more difficult to solve, is the Boolean
scheme or Boolean problem. In this case we use the joint probabilities of
events individually, rather than just their sums in the binomial moments Sk.

Let again A1, . . . ,Ar be events in an arbitrary probability space and
introduce the notations

vJ ¼ P
\
j2J

Aj

 ! \
j2J

Aj

0
@

1
A

0
@

1
A

pI ¼ P
\
i2I

Ai

 !
,

where I , J � f1, . . . , rg. Here vJ is the probability that the events Aj, j 2 J
occur but the events Aj, j 2 J do not occur; pI is the probability that the events
Ai, i 2 I occur. If we introduce the incidence matrix

aIJ ¼
1 if I � J
0 if I 6� J,

�

then we have the equation

X
J�f1,..., rg

aIJvj ¼ pI , I � f1, . . . , rg: ð5:7Þ

If for input data those probabilities pI are available for which jI j � m
(where jI j designates the number of elements of the set I), then (5.7), restricted
to jI j � m, does not determine uniquely the probabilities vJ . We can, however,
write up minimization and maximization LP’s which provide us with the best
lower and upper bounds for the probability of the union, under the given
information. As we have done in problem (5.4), here too, we disregard one
variable and one constraint, those which correspond to J ¼6 0 and I ¼6 0,
respectively. So we are led to the following problems

minðmaxÞ
X

6 06¼J�f1,..., rg

vJ

subject toX
6 06¼J�f1,..., rg

aIJvJ ¼ pI , 6 0 6¼ I � f1, . . . , rg, jI j � m

vJ � 0, 6 0 6¼ J � f1, . . . , rg: ð5:8Þ
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Problem (5.8) is called Boolean probability bounding scheme.
Problems (5.4) can be regarded as aggregated problems of those in (5.8) and

problems (5.8) are disaggregated as compared to those in (5.4). Problems (5.8)
provide us with better bounds than problems (5.4). However, no general dual
feasible basis structure theorem is available for problems (5.8) and its
numerical solution is computationally intensive as there are 2r�1 variables in
it. Still, a number of important bounds can be derived from (5.8) and some
bounds that have been known in the literature can be recovered as objective
function values corresponding to some dual feasible bases in (5.8). In the first
category we mention the cherry tree bound and its generalizations. In the
second category noteworthy is the classical Hunter’s bound.

Hunter’s upper bound for the probability of the union of events
Let A1, . . . ,Ar be events in an arbitrary probability space and pi ¼ PðAiÞ

pij ¼ PðAi \ AjÞ for i 6¼ j. Create the complete graph with nodes 1, . . . , r and
assign to arc ði, jÞ the weight pij, i 6¼ j. Let T be any spanning tree in this
graph. Then we have the relation

PðA1 [ . . . [ ArÞ � S1 �
X
ði, jÞ2T

pij, ð5:9Þ

where S1 ¼ p1 þ � � � þ pr. The best upper bound of the type (5.9) is obtained
from the heaviest spanning tree T*:

X
ði, jÞ2T*

pij ¼ max
T spanning tree

X
ði, jÞ2T

pij:

Inequality (5.9) provides us with Hunter’s upper bound if we choose
T¼T*.

To find the heaviest spanning tree Kruskal’s algorithm is available. It
consists of the following steps:

Step 1. Initialize k ¼ 1 and find the heaviest arc. Go to Step 2.
Step 2. Increase k by 1. If k ¼ n then Stop, the heaviest spanning tree T* has

been found. Otherwise go to Step 3.
Step 3. Find the heaviest arc that does not create cycle. Go to Step 2.

Any upper bound in (5.9) can be represented as the objective function value
corresponding to a suitable dual feasible basis in the maximization problem
(5.8) when m ¼ 2. The basis can be constructed as follows: take all paths that
can be created by the use of the nodes and arcs in T; in case of any of these
paths take the set of nodes used by the path and consider it as a label set J in
problem (5.8); the columns in problem (5.8) corresponding to these labels
provide us with the required dual feasible basis.
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Hunter’s upper bound is always at least as good as the second order
binomial moment bound.

Finally, we mention that the probability bounding schemes can be
incorporated into the probabilistic constrained stochastic programming
problems. We present two examples in this respect.

In the first example we use the simple probability bound

PðA1 \ . . . \ ArÞ �
Xr
i¼1

PðAiÞ � ðr� 1Þ,

replace Tix � �i for Ai and impose a probabilistic constraint on the right hand
side to obtain

Xr
i¼1

PðTix � �iÞ � ðr� 1Þ � p:

This can replace the constraint PðTx � �Þ � p in problem (1.3). However,
we are somewhat better off, if we formulate for problem (1.3) the following
approximate problem:

min cTx

subject to

PðTix � �iÞ � pi, i ¼ 1, . . . , rXr
i¼1

ð1� piÞ � 1� p

Ax ¼ b, x � 0, ð5:10Þ

where p is a fixed probability but p1, . . . , pr are variables. It can be shown that
the first two sets of constraints imply that PðTx � �Þ � p. If FiðzÞ is the
probability distribution function of the random variable �i, then the constraint
PðTix � �iÞ � pi is equivalent to Tix � F�1ðpiÞ, i ¼ 1, . . . , r. If we replace
problem (5.10) for problem (1.3), then the set of feasible solutions shrinks, in
general, and the optimum value of problem (5.10) will be larger than that of
problem (1.3). The same is true for the second example that we present below.

Let us introduce the functions:

SkðxÞ ¼
X

1�i1<...<ik�r

P Ti1x � �i1 , . . . , Tirx � �ir
� �

,

k ¼ 0, 1, . . . , m,
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where S0ðxÞ:1. Out of problem (1.3) we create the new problem:

min cTx

subject to

Xr
i¼0

i

k

 !
vi ¼ SkðxÞ, k ¼ 0, 1, . . . , m

vr � p

Ax ¼ b, x � 0 : ð5:11Þ

Similar problem can be formulated by the use of the Boolean minimization
problem but in this case we have to reestablish the constraint as well as the
variable corresponding to the empty set. In fact, in problem (5.11) we have
used the binomial moment problem (5.3), and not (5.4), because problems
(5.3) and (5.4) are equivalent only in the case of bounding the union whereas
in problem (5.11) we create a bound for the intersection.

There is a considerable recent literature on the binomial and Boolean
probability bounding schemes.

5.2 Approximation and simulation of probabilities

Programming under probabilistic constraints is the research area where
optimization combined with simulation first appeared as a problem solving
methodology.

The joint probabilistic constraint with stochastically dependent random
variables presumes that we are able to compute or at least estimate the values
and gradients of multivariate distribution functions. The normal distribution
seems to be the most frequent among the multivariate distributions hence we
pay special attention to it.

The r-variate nondegenerate standard normal probability density function
has the form

’ðz; RÞ ¼
1

ð2�Þr=2
ffiffiffiffiffiffiffi
jRj
p e�z

TR�1z, z 2 R
r:

A random variable � that has this probability density function can be
represented in the form

� ¼ �rT	,
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where �r is �-distributed random variable with r degrees of freedom, 	 is an
r-variate random vector, uniformly distributed on the surface of the unit sphere:

Sr ¼ z j
Xr
i¼1

z2i ¼ 1

( )

and T is lower triangular matrix such that

TTT ¼ R:

The most important problem is to approximate, or estimate the integral

p ¼

Z
Q

’ðz; RÞ dz, ð5:12Þ

where Q is a finite or infinite rectangle. An efficient method works in the
following way.

Let the rectangle Q be bounded, for the sake of simplicity, and given by

Q ¼ fz j a � z � bg:

Let further krðtÞ designate the probability density function of the �-
distribution with r degrees of freedom and

z1ðvÞ ¼ min, subject to a � Tv � b

z2ðvÞ ¼ max , subject to a � Tv � b:

The probability in (5.12) can be expressed in the form

p ¼

Z
Q

’ðz; RÞ dz ¼

Z
Sr

Zz2ðvÞ
z1ðvÞ

krðtÞ dt

0
B@

1
CA dUðvÞ, ð5:13Þ

where U is the probability distribution function of 	.
To estimate the probability p in (5.13) we can generate a sample v1, . . . , vN

for the random vector 	 and take

1

N

XN
i¼1

eðviÞ,
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where e(v) designates the interior integral on the right hand side of (5.13). This
way, however, the procedure is slow. In order to speed it up, the generation of
the sampling elements of Sr by the use of random orthonormalized systems
has been proposed. This means that we randomly pick an orthonormalized
system of vectors g1, . . . , gr (gTi gj ¼ �ij, where �ij is Kronecker’s delta), then
choose k out of the r in all possible ways and for each choice of k vectors we
multiply them by þ 1 and �1 in all possible ways. The number of
orthonormal systems generated this way out of the single system g1, . . . , gr,
is 2kðrkÞ. One choice of k vectors can be represented by an index set
I ¼ fi1, . . . , ikg � f1, . . . , rg and a set of þ 1, �1 multipliers is designated by
s1, . . . , sk. Then we form the sum

gðS, IÞ ¼
1ffiffiffi
k
p

Xk
j¼1

sjgij :

If initially there are N orthonormal systems g
ðlÞ
1 , . . . , gðlÞr , l ¼ 1, . . . ,N

chosen, then our estimation for the probability p is

#k ¼
1

N

XN
l¼1

1

2k
r
k

� �X
S,I

e Tgðl ÞðS, IÞ
� �

, ð5:14Þ

where the second summation extends over all k element subsets of f1, . . . , rg
and all 2k k-component vectors with components �1, þ 1. The value #k is an
unbiased estimator of p.

The main advantage of the above procedure is that whenever we generate
one orthonormalized system, we immediately produce 2kðrkÞ out of it. There is,
however, another important advantage of it offered by the formula (5.14).
When we compute TgðlÞðS, IÞ, then first we form the products Tg

ðlÞ
1 , . . . ,TgðlÞr

and only after that pick the k vectors and multiply them by s1, . . . , sk. This
arrangement of computation also saves considerable time.

The method has been extended to find probabilities of convex polyhedra
and other convex sets in R

n. The only difficulty in the more general cases is to
find the intersections z1(v), z2(v) of the straight line Tv ð�1 <  <1Þ with
the boundary of the convex set. It is reported that three digit accuracy can be
obtained in less than 1 s. for all r� 20.

The next simulation technique that we describe is more general, it can be
applied in principle for arbitrary multivariate probability distributions.
However, numerical results are available only for three multivariate
distributions: normal, gamma and Dirichlet. We describe the general method
for the case where Ai ¼ f�i � xig, i ¼ 1, . . . , r and we want to estimate the joint
probability distribution function of �1, . . . , �r:

F x1, . . . , xrð Þ ¼ P A1 \ . . . \ Arð Þ:

Ch. 5. Probabilistic Programming 323



We pass to the complementary events Ai ¼ f�i > xig, i ¼ 1, . . . , r, and define

Sk ¼
X

1�i1<...<ik�r

P Ai1 \ . . . \ Aik

� �
, k ¼ 1, . . . , r:

If we use S1, S2, S3, then, using the bounds described in Section 5.1, we can
create lower and upper bounds for the probability of the union A1 [ . . . [ Ar,
and, in turn, for the probability of the intersection which is Fðx1, . . . , xrÞ.
Three lower bounds: L1, L2, L3 and two upper bounds: U1, U2 are used. These
are the following

L1 ¼ 1� S1 first order binomial moment bound

L2 ¼ 1� S1 þ
2

r
S2 second order binomial moment bound

L3 ¼ 1� S1 þ
X
ði, jÞ2T*

P Ai \ Aj

� �
Hunter0s bound

U1 ¼ 1� S1 þ S2 second order Bonferroni bound

U2 ¼ 1�
2

i þ 1
S1þ

2

iði þ 1Þ
S2 second order binomial moment bound,

where i ¼ 1þ
2S2

S1

� �
:

We have the relations:

Fðx1, . . . , xrÞ � L1 ¼ S2 þ S3 � � � � þ ð�1Þ
rSr

Fðx1, . . . , xrÞ � L2 ¼ 1�
2

r

� �
S2 � S3 þ � � � þ ð�1Þ

rSr

Fðx1, . . . , xrÞ � L3 ¼ �
X
ðijÞ2T*

P Ai \ Aj

� �
þ S2 � S3 þ � � � þ ð�1Þ

rSr

Fðx1, . . . , xrÞ �U1 ¼ S3 þ � � � þ ð�1Þ
rSr

Fðx1, . . . , xrÞ�U2¼
k

i þ 1
�1

� �
S1þ 1�

2

iði þ 1Þ

� �
S2�S3þ � � �þð�1Þ

rSr:

ð5:15Þ

The simulation technique uses the exact values of the univariate and
bivariate marginal probability distribution function values. We compute them
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by deterministic numerical integration method. These values enter into
L1, L2, L3, U1, U2. Then we simulate the values on the right hand sides of
((5.15)), to obtain estimations of Fðx1, . . . , xrÞ.

Let ð�ðsÞ1 , . . . , �ðsÞr Þ, s ¼ 1, . . . ,N be a sample of size N for the random vector
ð�1, . . . , �rÞ. For fixed s let �ðsÞ designate the number of those inequali-
ties �ðsÞ1 � x1, . . . , �

ðsÞ
r � xr which are not fulfilled. Let further �ðsÞ designate the

number of those pairs ði, jÞ 2 T* for which we have �ðsÞi > xi, �
ðsÞ
j > xj. Since we

have the relations

E
�ðsÞ

k

 !" #
¼ Sk, k ¼ 0, 1, . . . , r; s ¼ 1, . . . , N

E �ðsÞ
� �

¼
X
ði, jÞ2T*

P Ai \ Aj

� �
,

it follows that ð�
ðsÞ

k Þ and �
ðsÞ are unbiased estimators of the right hand side

values in (5.16), respectively. If we use this and the relation

ð1� 1Þ�
ðsÞ

¼
X�ðsÞ
j¼0

ð�1Þj
�ðsÞ

j

� �
¼ 0,

then we can easily show that the follwooing random variables are unbiased
estimators of the right hand sides of (5.15):


ðsÞL1
¼

�ðsÞ � 1, if �ðsÞ � 2

0 otherwise

(


ðsÞL2
¼

1
r
�ðsÞ � 1
� �

r� �ðsÞ
� �

, if �ðsÞ � 2

0 otherwise

(


ðsÞL3
¼

�ðsÞ � 1� �ðsÞ, if �ðsÞ � 2

0 otherwise

(


ðsÞU1
¼

1
2
�ðsÞ � 1
� �

2� �ðsÞ
� �

, if �ðsÞ � 3

0 otherwise

(


ðsÞU2
¼

i��ðsÞð Þ �ðsÞ�i�1ð Þ
iðiþ1Þ

, if �ðsÞ � 1

0 otherwise

8<
:
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Taking averages with respect to s we obtain five unbiased estimators for
Fðx1, . . . ,xrÞ:


Lj
¼ Lj þ

1

N

XN
s¼1


ðsÞLj
, j ¼ 1, 2, 3


Uj
¼ Uj þ

1

N

XN
s¼1


ðsÞUj
, j ¼ 1, 2: ð5:17Þ

A sixth unbiased estimator is given by


0 ¼
1

N

XN
s¼1


ðsÞ0 , ð5:18Þ

where 
ðsÞ0 ¼ 1, if all relations �ðsÞ1 � x1, . . . , �
ðsÞ
r � xr are satisfied and 
ðsÞ0 ¼ 0

otherwise.
Out of the six estimators in (5.17) and (5.18) one estimator is formed:


 ¼ w0
0 þ wL1

L1
þ wL2


L2
þ wL3


L3
þ wU1


U1
þ wU2


U2
,

where the sum of hte weights is equal to one and weights are computed in such
a way that the variance of 
 should be minimum. The covariances of the six
estimators for this minimization problem are estimated from the sample.

Based on the above two simulation methods a hybrid method can be
created. Let again Cj ¼ ½aj, bj�, j ¼ 1, . . . , r and define the sets

DiðvÞ ¼ f j aj � Tjv � bj is violated for exactly i indices jg:

We estimate the probability PðA1 [ � � � [ ArÞ, where Aj ¼ f�j 62 Cjg, j ¼
1, . . . , r. Let pj ¼ PðAjÞ, j ¼ 1, . . . , r. Then we have

Sk ¼
Xr
i¼1

i
k

� �
pi, k ¼ 1, . . . , r:

By Theorem 5.1 we have the equalities

S2 � S3 þ � � � þ ð�1Þ
rSr ¼

Xr
i¼2

ði � 1Þpi ð5:19Þ
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�S3 þ � � � þ ð�1Þ
rSr ¼ �

Xr
i¼3

i � 1
2

� �
pi: ð5:20Þ

In addition, from the previous descriptions we know that

pi ¼

Z
Sr

Z
DiðvÞ

krðtÞ dt

0
B@

1
CA dUðvÞ, i ¼ 1, . . . , r: ð5:21Þ

Combining the above–mentioned equalities we obtain

PðA1 \ � � � \ ArÞ ¼ P A1 [ � � � [ Ar

� �
¼ 1� S1 þ S2 þ � � � þ ð�1Þ

rSr

� �

¼ 1� S1 þ

Z
Sr

Xr
i¼2

ði � 1Þ

Z
DiðvÞ

krðtÞ dt

0
B@

1
CAdUðvÞ ð5:22Þ

and

PðA1 \ � � � \ ArÞ ¼ P A1 [ � � � [ Ar

� �
¼ 1� S1 þ S2 þ �S3 þ � � � þ ð�1Þ

rSr

� �
¼ 1� S1 þ S2 �

Z
Sr

Xr
i¼3

i � 1

2

� �Z
DiðvÞ

krðtÞ dt

0
B@

1
CAdUðvÞ:
ð5:23Þ

If we compute S1 and S2 exactly, by some numerical quadrature and choose
randomly the vector v, that appear on the right hand sides of (5.21)–(5.23),
and designate by 
1 and 
2, respectively the obtained last terms in these
equations, then we have two estimators for PðA1 \ � � � \ ArÞ. These are

P̂P1 ¼ 1� S1 þ 
1, P̂P2 ¼ 1� S1 þ S2 þ 
2:

We can use P̂P0 ¼ 
0 in (5.18) as a third estimator. Our final estimator is a
minimum variance linear combination of the three:

P̂P ¼ w0P̂P0 þ w1P̂P1 þ w2P̂P2
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where w0 þ w1 þ w2 ¼ 1. The covariance of P̂P0, P̂P1, P̂P2 can be estimated
from the sample and w0, w1, w2 can be obtained as optimal solution of the
problem:

min wTCw

subject to

w0 þ w1 þ w2 ¼ 1:

A simple procedure is available to find the sets DiðvÞ, i ¼ 1, . . . , r, for a
given v.

The above described method has been compared for the case of a
multivariate normal distribution to methods of deterministic numerical
integration. It is suggested that before choosing the method to approximate
the probability p ¼ PðA1 \ � � � \ ArÞ, a few trial point should be generated to
obtain a preliminary indication about the magnitude of the probability p. It is
stated that, choosing the most suitable method, a twenty dimensional
probability can be computed with four digit accuracy in less than six minutes
on an ordinary desktop computer.

To close this section, we briefly describe a recently developed numerical
integration method to find the values of the multivariate normal integrals.
The method works both in the nondegenerate and degenerate cases and its
code is publicly available on the internet.

Assume that the distribution is a nondegenerate standard normal
distribution with correlation matrix � of which the Cholesky factorization
� ¼ CCT is known. Let a and b be the lower and upper boundary points of
the r-dimensional rectangular set, respectively.Wewant to compute the integral

p ¼

Zb1
a1

� � �

Zbr
ar

1

j�j1=2ð2�Þr=2
e�

1
2 x

T��1x dxr � � � dx1: ð5:24Þ

If we use the transformation x ¼ Cy, then we have to integrate with respect
to the components of y satisfying

a1 � y1 � b1

a0ið y1, . . . , yi�1Þ ¼ ai �
X
j<i

cijyj

 !
1

cii

� yi

� bi �
X
j<i

cijyj

 !
1

cii
¼ b0iðy1, . . . , yi�1Þ, i ¼ 2, . . . , r:
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With this transformation the integral (5.24) becomes (’ is the univariate
standard normal probability density function):

Zb1
a1

’ð y1Þ

Zb02ð y1Þ
a0
2
ð y1Þ

’ð y2Þ � � �

Zb0rð y1,...,yr�1Þ

a0rð y1,...,yr�1Þ

’ð yrÞ dyr � � � dy1:

If we introduce the further transformation yi ¼ ��1ðziÞ, i ¼ 1, . . . , r, where
� is the univariate standard normal distribution function, and introduce the
notations

g1 ¼ �ða1Þ, h1 ¼ �ðb1Þ

giðz1, . . . , zi�1Þ ¼ � ai �
Xi�1
j¼1

cij�
�1ðzjÞ

 !.
cii

 !

hiðz1, . . . , zi�1Þ ¼ � bi �
Xi�1
j¼1

cij�
�1ðzjÞ

 !.
cii

 !
, i ¼ 2, . . . , r,

then the integral (5.24) transforms into

p ¼

Zh1
g1

Zh2ðz1Þ
g2ðz1Þ

� � �

Zhrðz1,..., zr�1Þ

grðz1,..., zr�1Þ

dzr � � � dz1:

The final transformation zi ¼ gi þ wiðhi � giÞ, i ¼ 1, . . . , r transforms the
integral into

p ¼ ðh1 � g1Þ

Z1
0

ðh2ðw1Þ � g2ðw1ÞÞ

Z1
0

� � �

Z1
0

ðhrðw1, . . . , wr�1Þ � grðw1, . . . , wr�1ÞÞ dwr�1 � � � dw1

where the integration region is standardized.
The above procedure is applicable in any ordering of the variables. The

method works best if the innermost integral carries the most weight, then
comes the second etc. These weights can be ranked by ranking the
probabilities �ðbiÞ ��ðaiÞ, i ¼ 1, . . . , r.
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5.3 Calculation of the gradient values

Let � ¼ ð�1, . . . , �rÞ be a continuously distributed random vector,
Fðz1, . . . , zrÞ its probability distribution function and fiðzÞ the probability
density function of �i, i ¼ 1, . . . , r. Let further

Fðz1, . . . , zi�1, ziþ1, . . . , zr j ziÞ

¼ Pð�1 � z1, . . . , �i�1 � zi�1, �iþ1 � ziþ1, . . . , �r � zr j �i ¼ ziÞ

i ¼ 1, . . . , r:

It is easy to see that

@Fðz1, . . . , zrÞ

@zi
¼ Fðz1, . . . , zi�1, ziþ1, . . . , zr j ziÞfiðziÞ

i ¼ 1, . . . , r ð5:25Þ

and this formula provides us with a general method to compute the gradients
of F. In case of many known probability distributions the conditional
distribution function Fðz1, . . . , zi�1, ziþ1, . . . , zr j ziÞ is of the same type as the
original distribution function, hence using the same code and a code to
calculate fiðziÞ, we can obtain the ith component of rF .

As an example we present the gradient of the multivariate standard normal
probability distribution function �ðz1, . . . , zr; RÞ, where R ¼ ðijÞ is the
correlation matrix. We can use formula (5.25), where we replace

Fðz1, . . . , zi�1, ziþ1, . . . , zr j ziÞ

¼ �
z1�1, iziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 21,i

q , . . . ,
zi�1�i�1, iziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2i�1,i

q ,
ziþ1�iþ1, iziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2iþ1,i

q , . . . ,
zr�r, iziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r,i

q ;R

0
B@

1
CA,

and R is the (r�1)� (r�1) correlation matrix with entries

sj,k ¼
j,k � j,i k,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2j,i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k,i

q , j, k ¼ 1, . . . , r, j 6¼ i, k 6¼ i:

In addition we replace ’ðziÞ for fiðziÞ, where ’ is the standard normal
probability density function. We see that r� z; Rð Þ can be computed by
computing the values of r�1-variate standard normal distribution functions
and the values of the univariate standard normal probability density function.
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Note that in the probabilistic constraint PðTx � �Þ � p the random vector
can be standardized and we can write the constraint in the form:

�
Tix� �i

�i
, i ¼ 1, . . . , r; R

� �
� p:

To compute the gradient of the constraining function the just obtained
formula can be used.

Other examples, where the gradients can be computed by the use of the
same type but lower dimensional distribution functions, include the gamma
and the Dirichlet distributions.

General formulas for gradients of ‘‘probability functions’’ are also available.
We look at the function

FðxÞ ¼

Z
f ðx, yÞ�0

pðx, yÞ dy,

where pðx, yÞ is a probability density function and f ðx, yÞ � 0 is the compact
form of the inequalities fiðx, yÞ � 0, i ¼ 1, . . . , k. There are altogether three
formulas, the first one is called the integral over the surface formula, the
second one the integral over the volume formula and the third one is a general
formula.

The integral over the surface formula
Let �ðxÞ ¼ fy j f ðx, yÞ � 0g and @�ðxÞ the boundary of the set �ðxÞ. Let

further @�iðxÞ ¼ �ðxÞ \ fy j fiðx, yÞ ¼ 0g, i.e., that part of the boundary set
@�ðxÞ which is determined by fi. Then we have the equation

rxFðxÞ ¼

Z
�ðxÞ

rxpðx, yÞ dy�
Xk
i¼1

Z
@�iðxÞ

pðx, yÞ

kry fiðx, yÞk
rx fiðx, yÞ dS:

The integral over the volume formula
We introduce the notations ðx 2 R

n, y 2 R
m
Þ:

f1, lðx, yÞ ¼

f1ðx, yÞ

..

.

flðx, yÞ

0
B@

1
CA, f ðx, yÞ ¼ f1, kðx, yÞ
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ryf ðx, yÞ ¼

@f1ðx, yÞ
@y1

� � �
@fkðx, yÞ
@y1

..

. ..
. ..

.

@f1ðx, yÞ
@ym

� � �
@fkðx, yÞ
@ym

0
BBB@

1
CCCA

H ¼

h1, 1 � � � h1, m

..

. ..
. ..

.

hn, 1 � � � hn, m

0
BB@

1
CCA, hi, j ¼ hi, jðx, yÞ

divyH ¼

Xm
i¼1

@h1, j
@yj

..

.

Xm
i¼1

@hn, j
@yj

0
BBBBBBBB@

1
CCCCCCCCA
, j ¼ 1, . . . , m:

We have the gradient formula

rxFðxÞ ¼

Z
�ðxÞ

rxpðx, yÞ dyþ

Z
�ðxÞ

divyðpðx, yÞHðx, yÞÞ dy,

where H(x, y) satisfies the equation

Hðx, yÞryf ðx, yÞ þ rx f ðx, yÞ ¼ 0:

This last equation may not have a solution and in that case the general
formula may be useful.

The general formula for the gradient
We split the set of constraints into two groups and designate the

corresponding subscript sets by K1 ¼ f1, . . . , lg and K2 ¼ fl þ 1, . . . , kg. We
have the formula

rxFðxÞ ¼

Z
�ðxÞ

rxpðx, yÞ dyþ

Z
�ðxÞ

divyð pðx, yÞHlðx, yÞÞ dy

�
Xk
i¼lþ1

Z
@i�ðxÞ

pðx, yÞ

kryfiðx, yÞk
rx fiðx, yÞ þHlðx, yÞryfiðx, yÞ
� �

dS,
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where the n�m matrix Hlðx, yÞ satisfies the equation

Hlðx, yÞry f1,lðx, yÞ þ rx f1,lðx, yÞ ¼ 0:

5.4 Bibliographical notes

Combined use of simulation and optimization appeared first, in the
stochastic programming context, in a paper by Prékopa et al. (1980). The
paper was presented at the First International Conference on Stochastic
Programming, in Oxford, England, 1974.

For the history of inclusion–exclusion formula see Takács (1967). For the
proof of Theorem 5.1 see Takács (1967) and Prékopa (1995). Problems (5.3)–
(5.5) and Theorem 5.2 are taken from Prékopa (1988). Since Sk is the kth
binomial moment of v, problems (5.3) and (5.4) are termed binomial moment
problems. Theorem 5.3 is from Boros and Prékopa (1989).

The second order lower bound, based on S1, S2, was obtained by Dawson
and Sankoff (1967). The upper bound is due to Kwerel (1975a,b) and Sathe
et al. (1980). The third order lower and upper bounds have been obtained by
Kwerel (1975a,b) and Prékopa and Boros (1989). Kwerel used linear
programming theory specialized for the cases m¼ 2, 3, without writing up the
more general problems (5.3), (5.4). Boros and Prékopa (1989) presented a
variety of bounds, based on the dual feasible basis structure theorem
(Theorem 5.2). The fourth order bound, based on S1, S2, S3, S4 is also from
Boros and Prékopa (1989). The Bonferroni bounds are due to Bonferroni
(1937). The dual algorithm to solve problem (5.4) is due to Prékopa (1988). A
more refined version of it, formulated for the (equivalent) power moment
problem, was presented in Prékopa (2001b).

Problem (5.8), more exactly its dual was initiated by Boole (1854). Its exact
formulation is due to Hailperin (1965). Hunter’s upper bound is due to Hunter
(1976) and Worsley (1983). The algorithm to find the heaviest spanning tree is
due to Kruskal (1956). One generalization of Hunter’s bound is presented in
Prékopa et al. (2001) and another one, the cherry tree bound, in Bukszár and
Prékopa (2001). The use of bounds in probabilistic constrained stochastic
programming problems, presented at the end of Section 5.1, is from Prékopa
(1999).

Other useful probability bounds are presented in Galambos and Simonelli
(1996), Bukszár and Szántai (2002), Bukszár (2001) etc.

The simulation method based on (5.13), to estimate the normal probability
distribution function value, is due toDeák (1980, 1986, 1988, 1990, 2000b, 2002).
The next, more general method that can be used to estimate the values of arbit-
raryprobabilitydistribution functions, is due toSzántai (1986, 2000).Thehybrid
method was proposed by Gassmann (1988) and it is called Deák, Szántai,
Gassmann (DSG) method. A more recent paper by Gassmann et al. (2002)
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improves on this and revises other methods to compute multivariate normal
integrals. The last method in Section 5.2 is due to Genz (1992).

The formula to compute gradients of multivariate normal integrals was first
proposed in Prékopa (1970) and used in computerized problem solution in
Prékopa et al. (1980). Gradient formula for the multivariate gamma
distribution, presented in Section 2.2 (distribution (8)) is described in
Prékopa and Szántai (1978a). Szántai (1985) derived the gradient of the
Dirichlet distribution. For its description see also Prékopa (1995).

The general surface and volume integral formulas are due to Uryasev (1989,
2001). Some special formulas have been derived by Raik (1972), Kibzun and
Kurbakooskij (1991), Kibzun and Kan (1996) and Marti (1988).

6 Duality and stability

Probabilistic constrained stochastic programming problems are nonlinear
optimization problems, hence nonlinear duality theory has a straightforward
application there. There is, however, one primal-dual relationship, involving
two special probabilistic constrained problems, and a corresponding duality
theorem which are special and deserve presentation here. The theory that we
describe is due to Komáromi (1986).

Let A be an m� n matrix and � 2 R
m, � 2 R

n two continuously distributed
random variables. Designate by F and G the probability distribution functions
of � and �, respectively, and suppose that they are quasi-concave functions.
Let supp F and suppG designate the supports of F and G, respectively, i.e., the
smallest closed sets where the probability measures, generated by these
distribution functions, are equal to one. Introduce the notations

B ¼ fb j FðbÞ � p, b 2 supp Fg

XðbÞ ¼ fx j Ax � b, x � 0g

C ¼ fc j Gð�cÞ � q, � c 2 supp Gg

YðcÞ ¼ fy j ATy � c, y � 0g:

Consider the pair of primal-dual problems:

min sup
c2C

cTx

subject to

FðbÞ � p, b 2 supp F

Ax � b, x � 0 ð6:1Þ
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and

max inf
b2B

bTy

subject to

Gð�cÞ � q, � c 2 supp G

ATy � c, y � 0: ð6:2Þ

Note that the constraints in problem (6.1) are equivalent to
PðAx � �Þ � p, x � 0 and the constraints in problem (6.2) are equivalent to
PðATy � �Þ � q, y � 0. We have the following duality theorem.

Theorem 6.1. The following three assertions hold true.

(a) Suppose that the function F is strictly increasing in each variable, suppG
is bounded and Slater’s condition: intfb j b 2 B, XðbÞ 6¼ ;g 6¼ ; holds. If
the objective function of problem (6.1) is unbounded, then the problem
(6.2) has no feasible solution. Otherwise, problem (6.2) has feasible
solution, the optimum values of the two problems are equal and that value
is attained in problem (6.2).

(b) Suppose that the function G is strictly increasing in each variable, suppF
is bounded and Slater’s condition: intfc j c 2 C, YðcÞ 6¼ ;g 6¼ ; holds. If
the objective function of problem (6.2) is unbounded, then problem (6.1)
has no feasible solution. Otherwise, problem (6.1) has feasible solution,
the optimum values of the two problems are equal and that value is
attained in problem (6.1).

(c) Suppose that both F and G are strictly increasing functions in each
variable, suppF and suppG are bounded and Slater’s conditions:
intfb j b 2 B, XðbÞ 6¼ ;g 6¼ ;, intfc j c 2 C, YðcÞ 6¼ ;g 6¼ ; hold. Then both
problems (6.1) and (6.2) have optimal solutions. If (x0, y0) is a pair of
optimal solutions of the problems, then it is a saddle point of yTAx with
respect to minimizing over X and maximizing over Y.

A logconcave probability distribution function is also quasi-concave, hence
the above theory applies to this case.

Another interesting duality theorem, involving logconcave probability
distributions, was obtained by Luc (1983).

Stability and sensitivity are important issues in probabilistic constrained
stochastic programming problems. Since decision making takes place based
on tail probabilities, it is particularly important to know how the optimum
value of the problem changes if the probability distribution of the random
variables in the model changes. If the probability distribution belongs to some
known class, the question can be formulated in such a way that: how the
change of the distribution parameters influences the optimum value or the
problem in general?
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The case of the normal distribution offers nice illustration. Consider
problem (1.3), where � has a multivariate normal distribution with expecta-
tions Eð�iÞ ¼ �i, variances Varð�iÞ ¼ �

2
i , i ¼ 1, . . . , r and correlation matrix R.

The probabilistic constraint can equivalently be written in the form

PðTx � �Þ ¼ P
Tix� �i

�i
�
�i � �i

�i
, i ¼ 1, . . . , r

� �
¼ �ðL1ðxÞ, . . . , LrðxÞ; RÞ � p,

where LiðxÞ ¼ ðTiðxÞ � �iÞ=�i, i ¼ 1, . . . , r. If we introduce the new variables
yi ¼ LiðxÞ, i ¼ 1, . . . , r, then problem (1.3) can bewritten in the equivalent form:

min cTx

� y; Rð Þ � p

LðxÞ ¼ y

Ax ¼ b, x � 0: ð6:3Þ

The changes in �i, �i, i ¼ 1, . . . , r change only the linear constraint LðxÞ ¼ y
and its effect to the optimum value can be computed by the use of some
standard methods (see, e.g., Prékopa (1995, Chapter 15)). When we apply a
method of this kind first we linearize the probabilistic constraining function
around the optimal y but then concentrate on the effect of the change in the
next linear constraint.

The problem is more complicated if the change occurs in the correlation
matrix R. We present a few facts that can be used to do further analysis.

Let ’ð y; RÞ designate the r-variate standard normal probability density
function with correlation matrix R ¼ ði, jÞ. Then, as it is easy to check, we
have the equality

@’

@i,j
¼

@2’

@yi@yj
:

Integrating on both sides with respect to y, in �1 < yi � zi, i ¼ 1, . . . , r,
and choosing i ¼ 1, j ¼ 2, for the sake of simplicity, we obtain the equation

@�ðz; RÞ

@1, 2
¼

Zz1
�1

� � �

Zzr
�1

@2’ð y;RÞ

@y1@y2
dyr . . . dy2 dy1

¼

Zz3
�1

� � �

Zzr
�1

’ð y;RÞ dyr . . . dy3: ð6:4Þ
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If we choose another correlation matrix K ¼ ð�i, jÞ and take


i, j ¼ �i, j þ ð1� �Þ�i, j

as functions of the variable 0 � � � 1, then, in view of (6.4), we get

d�ðz; GÞ

d�
¼
X
i<j

@�ðz; GÞ

@
i, j
ði, j � �i, jÞ, ð6:5Þ

where G ¼ ð
i,jÞ. If i, j � �i, j, then the derivative in (6.5) is positive and
integrating on the left hand side of (6.5) with respect to � from 0 to 1, we
obtain the inequality

�ðz;RÞ � �ðz;KÞ, for R � K : ð6:6Þ

Inequality (6.6) is known as Slepian’s inequality (see Slepian (1962)).
A large number of stability results have been obtained over the past

fifteen years by Dupačová (1991) Kall (1987), Römisch and Schultz (1991),
Henrion and Römisch (1998, 2000), Henrion (2000) and others. As the results
and their descriptions are rather involved we only demonstrate the flavor of
the more recent results by presenting a theorem from Henrion and Römisch
(1998).

Consider problem (1.3) and assume that � has an �-concave probability
density function (see Theorem 2.9 for the implication with respect to the
distribution of �), the problem has feasible solution and finite optimum. Let
�ðPÞ designate the set of optimal solutions. Together with P we consider
another probability distribution Q and designate by Fp and FQ, respectively,
the corresponding distribution functions. The set of optimal solutions under
the distribution Q is designated by �ðQÞ. We assume that there exists an x
such that Ax ¼ b, x � 0 and FPðTxÞ > p. Moreover, we assume that Fp is
strictly convex in a convex neighborhood of A�ðPÞ. We have the following.

Theorem 6.2. Under the above conditions there exist constants L > 0, � > 0
such that

dHð�ðPÞ, �ðQÞÞ � LkFP � FQk
1
2
1,

whenever

kFP � FQk1 < �:
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7 Selected applications

7.1 Energy problems

An optimal investment problem, formulated for the electrical energy sector
of the Hungarian economy, was the first real life application of probabilistic
constrained stochastic programming with stochastically dependent random
variables. The application was done by Prékopa et al. and was presented at the
First International Conference on Stochastic Programming held in Oxford,
England, 1974 (see Prékopa et al. (1980)). The model was based on a deter-
ministic model that had been formulated earlier. The number of stochastic
constraints is four in the stochastic model. Let G(x) designate the probability
that all these are satisfied. Let further xlin and xstoch designate the optimal
solutions of the deterministic and stochastic problems, respectively. An
interesting phenomenon turned up. The reliability level of the joint probability
of the stochastic constraints, taken with xlin, was only 0.1, whereas the
optimum value cTx subject to G(x)� p, and the other deterministic
constraints, came out as (almost) the same as cTxlin, i.e., c

Txlin¼ cTxstoch, in
both the p¼ 0.9 and p¼ 0.95 cases. Thus, in case of each p, an optimal
solution, providing us with high reliability in power service, could be obtained
with no additional cost as compared to the optimal cost in the deterministic
problem. The optimal solutions xlin and xstoch, however, were different.
Normal distribution was used and the method of feasible directions to solve
the problem.

Two-stage optimal capacity design in power networks, with probabilistic
constraint for the solvability of the second stage problem, was formulated in
Prékopa (1980). Numerical solution for a special case of this problem was
presented by Prékopa et al. (1998). Optimal capacity design problems with
probabilistic constraints have been formulated by several authors. Among
them we mention Bloom et al. (1984), Bloom (1988), Coté and Laughton
(1982), Bisthoven et al. (1988) and Dodu et al. (1981).

7.2 Water resources

One of the revealing problems, where the use of joint probabilistic
constraint is the only justified possibility, is a flood control reservoir system
design problem. In its simplest (but nontrivial) version there are only two
possible reservoir sites where capacities x1, x2 have to be determined and these
serve to protect a downstream area from flood that may happen once in a
year, say. If �1, �2 are the water amounts to be retained by the reservoirs (see
Fig. 1 for the topology of the system).

Then the flood will be retained if and only if x1 þ x2 � �1 þ �2, x2 � �2
are satisfied. Since �1, �2 are random variables, the fulfilment of these
inequalities can be guaranteed only on a probability level p, chosen by ourselves.
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If c(x1, x2) is the reservoir building cost function, then our stochastic
programming problem is:

min cðx1, x2Þ

subject to

P
x1 þ x2 � �1 þ �2

x2 � �2

 !
� p

0 � x1 � V1, 0 � x2 � V2, ð7:1Þ

where V1, V2 are upper bounds determined by the local geographic situation.
We can see in problem (7.1) that to prescribe probabilistic constraints
separately for the two stochastic constraints has no meaning at all because
they jointly ensure the reliability of the system. The problem was solved under
normal and gamma distributions. The above simple and a more general flood
control problem was formulated and solved by Prékopa and Szántai (1978b).
The method of supporting hyperplanes was applied to solve the problem.
Further results in this respect are in Kelman et al. (1989), Prékopa Rapcsák
and Zsuffa (1978) formulated and solved a reservoir system design problem,
where the possible sites are located along one river. The probabilistic
constraint prescribes the simultaneous probability of retaining the streamflow
and serve all demands. Normal distribution was used and the SUMT to solve
the problem.

Prékopa and Szántai (1976) formulated and solved a multi-period reservoir
system operation problem, using the rolling horizon principle. A multivariate

Fig. 1

Ch. 5. Probabilistic Programming 339



gamma distribution was fitted to the empirical data and was used, together
with the supporting hyperplane method, in the solution of the optimization
problem.

A sequential probability maximization problem was formulated for the
water level regulation of Lake Balaton in Hungary, the largest lake in Central
and Western Europe. A Gaussian process was used to describe the inflow
process. The result enabled to improve on the water level regulation reliability
(to keep the water level within prescribed limits) from the former 80% to 97.5%.

Dupačová et al. (1991) compared the different reservoir system operation
models and solutions under different probability distributions.

7.3 Production and inventory

A reliability type multi-item inventory problem was formulated by Prékopa
and Kelle (1978). Further results are in Kelle (1984, 1985). It is assumed that
during a given period of time the total delivery is the same as the total demand
in each item. However, deliveries take place at random epochs and random
quantities. In order to ensure that all demands be met during the given period,
initial safety stocks are needed. The problem is to minimize their total holding
costs subject to a reliability constraint that serves to ensure the above-
mentionedrequirement.TheSUMTwasused to solve theoptimizationproblem.

Murr and Prékopa (2000) have solved a product substitution problem in
connection with fiber manufacturing. The manufacturing process produces
random yield and the problem is to set the original production goals so that all
demands be met, on a given reliability level, with minimum cost. Normal
distribution was assumed and the method of feasible direction was applied
(Szántai’s code).

Beraldi and Ruszczyński (2002) formulated and solved the stochastic set
covering problem which has many applications in the production and service
industry. The right hand side random variables �i may represent occurrences
of requests for service and the jth column of the technology matrix has
entries that describe capabilities of the different facilities to respond to
these requests. The authors have developed their own method to solve the
problem, where both the random variables and the decision variables are
discrete (0–1-valued).

Beraldi and Ruszczyński (2001) have formulated a probabilistic lot sizing
problem, as an application of their general method to solve probabilistic
constrained stochastic programming problems with integer valued right hand
side random variables. The problem is to minimize the total setup, production
and holding costs subject to the condition that all demands should be met in
the course of the planning horizon.

Singh, Abraham and Akella (1990) formulated and solved a chip
manufacturing problem. Given a number of possible chip sites and chip
types, the problem is to find an optimal allocation of types to sites so that the
probability of getting a prescribed non-defective chip composition will be
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maximized. In this problem both the random and the decision variables are
nonnegative integer valued.

Henrion et al. (2001) and Henrion and Möller (2002) have formulated a
model for a continuous distillation process under stochastic inflows in a feed
tank. The problem is to control an extracting process so that lower and upper
level constraints in the feed tank should be met by a large probability. In the
most important case, analysed in this paper regarding the type of randomness,
the inflow process is supposed to be Gaussian. For the numerical solution of
the problem Szántai’s code, to solve the probabilistic constrained problems,
was applied. Similar problem is dealt with in another paper by Henrion et al.
(2001). The above problem appears to have strong connection to the water
level regulation problem of Lake Balaton mentioned in Section 2.

7.4 Telecommunication problems

Some of the most recent works in this area are the following. Dentcheva,
Prékopa and Ruszczyński (2000) formulated and solved a traffic assignment
problem for Time Division Multiple Access (TDMA) satellite communication
systems. The problem has the form:

min
Xn
i¼1

xi

subject to

P
Xn
i¼1

QðiÞxi � D

 !
� p

x � 0, integer,

where QðiÞ, i ¼ 1, . . . , n are m�m permutation matrices and D is an m�m
matrix with nonnegative integer entries (representing demands). The solution
technique that solves the problem, the cone generation technique, is described
in Section 3.2.

Medova and Scott (2000) formulated a quality of service management
problem, where an upper bound is imposed on blocking probabilities. These
are transformed into simpler constraints, by the use of large deviation theory.
Then the total cost of link capacities minus revenues is minimized subject to
the above mentioned constraints.

In her Thesis Heikkinen (2001) formulated an elegant model for the
stochastic power control problem in mobile telecommunication systems. The
model has interesting connection to game theory and von Neumann’s
economic model. Further results are in Heikkinen and Prékopa (2002) and
Gao and Prékopa (2001).
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7.5 Diet problems and food service management

A classical formulation of the deterministic diet problem is an LP: min cTx,
subject to Ax � b, x � 0. Here A is an m� n matrix with entries equal to the
nutrient contents of the different foods, m is the number of nutrients, n is the
number of foods, b is the nutrient requirement vector and c is the vector of
costs of the unit amounts of the different foods.

If one thinks that the food is served for a population, where each individual
has his/her own nutrient requirement vector, then the probabilistic constrained
problem (where we use � rather than b on the right hand side) can be
formulated as:

min cTx

subject to

PðAx � �Þ � p

x � 0, ð7:2Þ

to decide on the quantities of foods to be served. In practical problems A may
also be random in which case the solution of the problem becomes hard.
Approximation and solution to problem (7.2), for this case, is presented in
Armstrong and Balintfy (1975). Further papers on the problem include
Balintfy and Prékopa (1966), Balintfy and Armstrong (1980), Lancaster
(1992). There are other formulations of the diet problem too, and given the
underlying problem, there are stochastic programming formulations for the
problem, other than (7.2), as well. Problem (7.2) prescribes that 100p% of the
population should receive all nutrients on at least minimum level. If we
formulate the problem by the use of conditional expectation constraints (see
Section 2.4), then we prescribe upper bounds on the averages of the unserved
nutrients.

In this area another problem is the minimum cost animal feed problem. A
classical work in this respect is the one published by van de Panne and Popp
(1963).

7.6 Finance problems

There are a large number of stochastic programming models applied to
financial problems. Most of them, however, that have been formulated so far,
belong to the class of recourse problems. Recently, safety type considerations,
that have existed since the nineteen fifties but have not gained enough
attention during the past decades, came into prominence. The important step
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in this direction was the formulation of the concept of Value at Risk (VaR)
and its variants. These notions have already existed in a probabilistic/
statistical framework with the name of quantile and its generalizations or
variants. Before presenting some results in this respect we mention an
application of probabilistic constrained stochastic programming to optimal
portfolio composition.

The classical portfolio models of Markowitz (1952, 1959, 1987) have safety
aspect but it is incorporated into the models in the form of the variance of
the return. Given the expected return, the smaller the variance of the return,
the better the portfolio. Markowitz looks for efficient portfolios which means
that given the expectation of the return, its variance cannot be decreased
and given the variance, the expectation cannot be increased. To illustrate
the power of probabilistic constrained stochastic programming formulation
we present a bond portfolio construction model. Let us introduce the
notations:

n number of bond types which are candidates for inclusion into the
portfolio

m number of periods
ai k cash flow of a bond of type k in period i, k ¼ 1, . . . , n i ¼ 1, . . . ,m
pk unit price of bond of type k
�i random liability value in period i, i ¼ 1, . . . ,m
xk decision variable, number of bonds of type k to include into the

portfolio
zi cash carried forward from period i to period i þ 1, i ¼ 1, . . . ,m, where

z1 is an initial cash amount that we include into the portfolio and
zmþ1 ¼ 0; zi, i ¼ 1, . . . ,m are decision variables

i rate of interest in period i, i ¼ 1, . . . ,m.

If the liabilities were deterministic values then our optimal bond portfolio
model would be the following

min
Xn
k¼1

pkxk þ z1

( )

subject to

Xn
k¼1

ai kxk þ ð1� iÞzi � ziþ1 � �i, i ¼ 1, . . . , m

xk � 0, k ¼ 1, . . . , n

zi � 0, i ¼ 1, . . . , m, zmþ1 ¼ 0: ð7:3Þ
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The probabilistic constrained variant of it can be formulated as

min
Xn
k¼1

pkxk þ z1

( )

subject to

P
Xn
k¼1

ai kxk þ ð1� iÞzi � ziþ1 � �i, i ¼ 1, . . . , m

 !
� p

xk � 0, k ¼ 1, . . . , n

zi � 0, i ¼ 1, . . . , m, ð7:4Þ

where p is a safety (reliability) level chosen by ourselves, e.g., p ¼ 0:8, 0:9, 0:95
etc. Some of the liability values (e.g., those corresponding to the early periods)
may be deterministic. Then they should be removed from the probabilistic
constraint in (7.4) and listed separately. The properties and solution methods
of the model can be learned from theorems and methods presented in the
previous sections.

Value at Risk, or VaR has been defined in connection with a random
variable 	 or its probability distribution function F(z) by the equation F(z)¼ p,
where 0<p<1. If F(z) is strictly increasing then there is exactly one solution
to this equation. Otherwise we may take the smallest z satisfying F(z)� p.
This definition of VaR is suitable in connection with a random variable that
designates loss. If � designates revenue then we take �¼�� which means loss
and we define VaR for �. The VaR can be defined in connection with a
portfolio, where the total random return is �Tx. In this case we may look for
the VaR of the probability distribution of ��Tx, i.e., for that value of z that
minimizes Pð��Tx � zÞ ¼ Pð�Tx � �zÞ subject to the constraint that this
probability is at least p.

A closely related notion is the Conditional Value at Risk (CVaR), defined
in connection with a random variable 	 (or its probability distribution) by

CVaRð	Þ ¼ Eð	 j 	 � z > 0Þ, z ¼ VaRð	Þ:

provided that the distribution is continuous. Other forms of CVaR(	) are:

CVaR ¼
1

1� p

Z1
z

u dFðuÞ, z ¼ VaRð	Þ ð7:5Þ

CVaR ¼ inf
a

aþ
1

1� p
Eð½	 � a�þÞ

� 
: ð7:6Þ
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This last form of CVaR is due to Rockafellar and Uryasev (2000).
Minimizing CVaR can be used as a decision principle to compose optimal
portfolios. An example is the following credit risk optimization problem (see
Andersson et al. (2001)). Suppose there are n obligors and let xi, bi, �i
designate the weight, the debt and the lost part of it of the ith obligor. Then
the loss function is f(x, �)¼ (b��)Tx . If we replace f(x, �) for 	 in (7.6), then we
obtain the objective function

aþ
1

1� p
Eð½ f ðx, �Þ � a�þÞ ð7:7Þ

that is to be minimized with respect to x and a. Suppose that there are some
deterministic constraints, expressed by x 2 X , and we approximate the
expectation in (7.7) by the use of a sample with respect to the distribution of
� : y1, . . . , yn, then we obtain the approximate problem:

min
a, x, z

aþ
1

1� p

1

N

XN
i¼1

zi

( )

subject to

x 2 X

zi � f ðx, yiÞ, zi � 0, i ¼ 1, . . . , N:

Another example is presented in Borgentoft et al. (2001).
There are many other applications of the probabilistic constrained

stochastic programming model and its variant, maximizing a probability
subject to constraints. E.g., Pickens et al. (1991) applies it to forrestry, Pintér
(1991) to environmental problems, Thoft-Christensen and Murotsu (1986)
to engineering structures, Singh, Abraham and Akella (1990) to chip
manufacturing, Shapiro (1986) to insurance, Cooper et al. (1998) to data
envelopment analysis, Kibzun and Kan (1996) to aviation, etc.
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Henrion, R., P. Li, A. Möller, M. Wendt, G. Wozny (2001). Optimal control of a continuous

distillation process under probabilistic constraints, in: M. Grötschel, S. Krumke, J. Rambau (eds.)

Optimization of Large Scale Systems, Springer, Berlin, pp. 499–517.

Henrion, R., W. Römisch (1998). Metric regularity and quantitative stability in stochastic programs

with probabilistic constraints. Mathematical Programming 84, 55–88.

Ch. 5. Probabilistic Programming 347



Henrion, R., W. Römisch (2000). Stability of solutions to chance constrained stochastic programs, in:

J. Guddat, et al. (eds.), Parametric Optimization and Related Topics V, Peter Lang, Frankfurt a. M,

pp. 95–114.

Henrion, R. (2000). Qualitative stability of convex programs with probabilistic constraints. Lecture

Notes in Economics and Math. Systems 481, 164–180.

Hunter, D. (1976). Bounds for the probability of a union. Journal of Applied Probability 13, 597–603.

Kall, P. (1987). On approximations and stability in stochastic programming, in: Parametric

Optimization and Related Topics, Akademie-Verlag, Berlin, pp. 387–407.

Kall, P., J. Mayer (1996). SLP–IOR: an interactive model management system for stochastic linear

programs. Mathematical Programming 75, 221–240.

Kataoka, S. (1963). A stochastic progamming model. Econometrica 31, 181–196.

Kelle, P. (1984). On the safety stock problem for random delivery processes. European Journal of

Operational Research 17, 191–200.

Kelle, P. (1985). Safety stock planning in a multi-stage production-inventory system. Engineering Costs

and Production Economics 9, 231–237.
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Prékopa, A. (2001a). On the concavity of multivariate probability distributions. Operations Research

Letters 29, 1–4.
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Prékopa, A. (1973a). Contributions to the theory of stochastic programming. Math. Progr. 4, 202–221.
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20, 8–14.

Rapcsák, T. (1974). On the Numerical Solution of a Reservoir Model. Ph.D. Thesis, University of

Debrecen, Hungary (in Hungarian).

Rinott, Y. (1976). On convexity of measures. Annals of Probability 4, 1020–1026.

350 A. Prékopa
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algorithm of Dentcheva-Prékopa-Ruszczyński, Optimization Methods and Software 17, 543–559.

Worsley, K.J. (1982). An improved Bonferroni inequality and applications. Biometrica 69, 297–302.

Zoutendijk, G. (1960).Methods of Feasible Directions. Elsevier Publishing Co. Amsterdam, New York.

Ch. 5. Probabilistic Programming 351



Chapter 6

Monte Carlo Sampling Methods

Alexander Shapiro
School of Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta, GA 30332, USA

Abstract

In this chapter we discuss Monte Carlo sampling methods for solving large scale
stochastic programming problems. We concentrate on the ‘‘exterior’’ approach
where a random sample is generated outside of an optimization procedure, and
then the constructed, so-called sample average approximation (SAA), problem is
solved by an appropriate deterministic algorithm. We study statistical properties
of the obtained SAA estimators. The developed statistical inference is
incorporated into validation analysis and error estimation. We describe some
variance reduction techniques which may enhance convergence of sampling
based estimates. We also discuss difficulties in extending this methodology to
multistage stochastic programming. Finally, we briefly discuss the SAA method
applied to stochastic generalized equations and variational inequalities.

Key words: Two-stage stochastic programming, Monte Carlo sampling,
sample average approximation, consistency of estimators, Law of Large
Numbers, exponential rates of convergence, conditioning of stochastic
problems, validation analysis, variance reduction techniques, multistage
stochastic programming, conditional sampling, stochastic generalized equations,
variational inequalities.

1 Introduction

Let us consider a stochastic programming problem in the form

Min
x2X
f f ðxÞ :¼ E½Fðx, nÞ�g, ð1:1Þ
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where F(x, �) is a function of two vector variables x2Rn and � 2Rd, X�R
n is

a given set and n¼ �(!) is a random vector. The expectation in (1.1) is taken
with respect to the probability distribution of n which assumed to be known.
In some applications considered in this chapter, the underlying probability
space of the elementary events ! will be irrelevant. Therefore, in order
to distinguish between random data and their numerical values we often use
the bold script like n for the random vector �(!), and � for its particular
realization (numerical value). We denote by ��R

d the support of the
probability distribution of n, that is, � is the smallest closed set in R

d such that
the probability of the event n2Rd\� is zero. We denote by Prob(A) or P(A)
the probability of an event A.

Often one can view the optimization problem (1.1) as a two-stage stochastic
programming problem with F(x, �) and � being the optimal value and data
vector, respectively, of the corresponding second stage program. For example,
in the case of two-stage linear stochastic programming with recourse,
F(x, �) :¼ cTxþQ(x, �), where Q(x, �) is the optimal value of the following
second stage problem

Min
y2Rm

qTy subject to TxþWy ¼ h, y � 0, ð1:2Þ

with � :¼ (q,T,W, h). As such we need to consider situations where F(x, �) can
take values þ1 or �1. That is, unless stated otherwise, we assume that
F(x, �) is an extended real valued function and the expected value E[F(x, n)] is
well defined for every considered x2Rn (see the Appendix of chapter
‘‘Stochastic Programming Models’’ for a discussion of the concept of ‘‘well
defined’’ expected value). It is also important to notice that it is implicitly
assumed in the above setting that for any x2X and �2� the value F(x, �) can
be efficiently calculated. This generally holds true for two-stage programming.
For multistage programming, however, the situation is more delicate, we will
discuss this in Section 6.

If n has a finite number of possible realizations (called scenarios), say
�¼ {�1, . . . , �K} with respective (positive) probabilities pk, k¼ 1, . . . ,K, then
we can write the expected value function in the form

f ðxÞ ¼
XK
k¼1

pkFðx, �kÞ: ð1:3Þ

Note, however, that even a crude discretization of the probability distribution
of n leads to an exponential growth of the number of scenarios. For example,
if components of the random vector n are independent, each having just three
possible realizations, then the total number of scenarios K¼ 3d. No computer
in a foreseeable future will be able to handle calculations involving 3100

scenarios. Therefore, that way or another, one needs to reduce the number of
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scenarios to a manageable level. In this chapter we discuss an approach to
solving the expected value problem (1.1), referred to as the true optimization
problem, by using Monte Carlo sampling techniques.

Suppose that we can generate a sample of N replications of the random
vector n. In the Monte Carlo sampling method this is accomplished by
generating a random (or rather pseudorandom) sequence U1,U2, . . . , of
numbers independent of each other and uniformly distributed on the interval
[0, 1], and then constructing a sample of n by an appropriate transformation.
In that way we can consider the sequence ! :¼ {U1,U2, . . . } as an element
of the probability space equipped with the corresponding (product)
probability measure, and the sample ni¼ �i(!), i¼ 1, 2, . . . , as a function of
!. We can view the generated sample n1, n2, . . . , as a sequence of random
vectors, each having the same probability distribution as n. If the generated
random vectors are (stochastically) independent of each other, we say that the
sample is independent identically distributed (iid). By �1, �2, . . . , we denote a
particular realization of the considered random sample.

With the generated sample �1, . . . , �N, we associate the sample average
function

f̂fNðxÞ :¼
1

N

XN
i¼1

Fðx, �iÞ: ð1:4Þ

Note again that for any x2X, the sample average f̂fNðxÞ can be viewed as a
numerical value associated with the generated sample or as a random variable.
Which one of these two meanings will be used in a particular situation will be
clear from the context.

Since each ni has the same probability distribution as n, we have that for
any x2X, E[F(x, ni)]¼ f(x) and hence

E f̂fNðxÞ
h i

¼ f ðxÞ: ð1:5Þ

That is, f̂fNðxÞ is an unbiased estimator of f(x). Moreover, under various
conditions the Law of Large Numbers (LLN) can be applied1 with the
implication that f̂fNðxÞ converges with probability one (w.p.1) to f(x) as
N!1. In that case we say that f̂fNðxÞ is a consistent estimator of f(x). This
certainly holds true if the sample is iid.

For the purpose of solving a particular stochastic programming problem,
sampling techniques can be applied in different ways. One approach uses
sampling in an ‘‘interior’’ fashion. Such algorithms aim at solving the
considered problem by resorting to sampling whenever the procedure requires
to compute (approximately) the value, and may be derivatives, of the expected

1 Note again that we allow for f(x) to take values þ1 or �1.
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value function at a current iteration point. Typically such an algorithm is
tailored for a specific class of optimization problems and tries to mimic its
deterministic counterpart. Often different samples are used each time the true
function or its derivatives are estimated at different iteration points. Several
such algorithms were suggested with a different level of statistical and
convergence analysis.

In this chapter we mainly discuss an alternative approach, referred to as the
‘‘exterior’’ method. First, a sample �1, . . . , �N is generated, and then the true
problem (1.1) is approximated by the optimization problem

Min
x2X

f̂fNðxÞ ¼
1

N

XN
i¼1

Fðx, �iÞ

( )
: ð1:6Þ

Note that once the sample is generated, i.e., numerical values of vectors
�1, . . . , �N are computed, f̂fNðxÞ becomes a deterministic function and its
value can be calculated at any given point x2X. From an optimization point
of view, problem (1.6) can be considered as a stochastic programming
problem with the finite set {�1, . . . , �N} of scenarios each with equal
probability N�1. Therefore, any numerical algorithm suitable for the
considered class of problems can be applied to (1.6). The optimal value v̂vN
and an optimal solution x̂xN of the problem (1.6) are considered as statistical
estimators of their counterparts of the true problem (1.1).

The above approach is called ‘‘exterior’’ since the sample is generated
outside of the considered optimization problem, and then the constructed
problem (1.6) is solved by an appropriate deterministic algorithm. It should be
noted that this method is not an algorithm, but rather a general approach to
solving stochastic programs. One still needs to employ a particular (hopefully
efficient) deterministic algorithm in order to solve the obtained problem (1.6).
The basic idea of the ‘‘exterior’’ approach is simple indeed and the method
was suggested by several authors in different contexts under various names.
We refer to (1.6) as the sample average approximation (SAA) problem. The
approach is also known as the sample path or the stochastic counterpart
method.

Let us also remark that values of the sample average function f̂fNðxÞ can be
computed in two somewhat different ways. The generated sample �1, . . . , �N

can be stored in the computer memory, and called every time a new value of
the sample average function should be computed. In another way the same
sample is computed by using the common random number generator at every
iteration of the numerical procedure. Which one to use depends on
convenience of a particular application.

The idea of common random number generation is well known in
simulation. That is, suppose that we want to compare values of the objective
function at two points x1,x22X. In that case we are interested in the
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difference f(x1)�f(x2) rather than in the individual values f(x1) and f(x2). If we
use sample average estimates f̂fNðx1Þ and f̂fNðx2Þ based on independent samples,
both of size N, then

Var f̂fNðx1Þ � f̂fNðx2Þ
h i

¼ Var f̂fNðx1Þ
h i

þVar f̂fNðx2Þ
h i

: ð1:7Þ

On the other hand, if we use the same sample for the estimators f̂fNðx1Þ and
f̂fNðx2Þ, then

Var f̂fNðx1Þ� f̂fNðx2Þ
h i

¼Var f̂fNðx1Þ
h i

þVar f̂fNðx2Þ
h i

�2Cov f̂fNðx1Þ, f̂fNðx2Þ
� �

:

ð1:8Þ

In both cases, f̂fNðx1Þ � f̂fNðx2Þ is an unbiased estimator of f(x1)�f(x2).
However, in the case of the same sample the estimators f̂fNðx1Þ and
f̂fNðx2Þ tend to be positively correlated with each other, in which case the
variance in (1.8) is smaller than the one in (1.7). The difference between the
independent and the common random number generated estimators of
f(x1)�f(x2) can be especially dramatic when the points x1 and x2 are close to
each other and hence the common random number generated estimators are
highly correlated.

There are several advantages in the exterior approach as compared with
interior methods. One advantage is simplicity of the exterior method. In the
following sections we discuss convergence properties of statistical estimators
derived by the SAA method. For such statistical analysis a particular
numerical algorithm applied to solve the SAA problem is irrelevant.

2 Statistical properties of SAA estimators

In this section we discuss statistical properties of the optimal value v̂vN
and the set ŜSN of optimal solutions of the SAA problem (1.6). Unless
stated otherwise we assume that the set X is nonempty and closed. We
denote by v* and S the optimal value and the set of optimal solutions,
respectively, of the true problem (1.1). For sets A,B�R

n we denote by
dist(x,A) :¼ infx 0 2A jjx�x

0jj the distance from x2Rn to A, and by

DðA, BÞ :¼ sup
x2A

distðx, BÞ and HðA, BÞ :¼ maxfDðA, BÞ, DðB, AÞg

ð2:1Þ
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the deviation of the set A from the set B and the Hausdorff distance between
the sets A and B, respectively. By the definition, dist(x,A)¼ þ1 if A is
empty, and H(A,B)¼ þ1 if A or B is empty.

As it was mentioned earlier, we assume that the expected value f(x) is well
defined for every considered point x2Rn. That is, F(x, � ) is measurable, with
respect to the Borel sigma algebra of R

d, and either E[F(x, n)þ ] or
E[�F(x, n)þ ] is finite. If we view the random vector n¼ �(!) as a measurable
mapping defined on a probability space (�,F,P), then the above measura-
bility requirement can be formulated as the F-measurability of F(x, �( � )).
We also assume that the integrand function F(x, �(!)) is random lower
semicontinuous (random lsc). Assuming that F is P-complete, this holds if
F( � , � ) is measurable, with respect to the Borel sigma algebra of Rn

�R
d, and

F( � , �) is lower semicontinuous for every �2�. We can also view
f̂fNðxÞ ¼ f̂fNðx,!Þ as a sequence of random functions defined on the same
probability space (�,F,P). The above assumption that F is random lsc
implies that the optimal value v̂vN ¼ v̂vNð!Þ, of the SAA problem, and the
multifunction !� ŜSNð!Þ are measurable. Consequently, DðŜSN , SÞ is measur-
able and there exists a measurable selection x̂xN 2 ŜSN . This takes care of
measurability of the considered statistical estimators. We refer to the
Appendix of chapter ‘‘Stochastic Programming Models’’ for a more detail
discussion of these concepts.

Let us observe that the feasible set X can be absorbed into the objective
function. That is, define2 Fðx, �Þ :¼ Fðx, �Þ þ iX ðxÞ, i.e.,

Fðx, �Þ :¼
Fðx, �Þ, if x 2 X ,
þ1, if x 62 X :

�
ð2:2Þ

The true problem (1.1) can then be written in the form

Min
x2Rn

f ðxÞ :¼ E½Fðx, nÞ�
� �

: ð2:3Þ

Similarly, the SAA problem (1.6) can be writted as

Min
x2Rn

~ffNðxÞ :¼
1

N

XN
i¼1

Fðx, �iÞ

( )
: ð2:4Þ

Note that f ðxÞ ¼ f ðxÞ þ iX ðxÞ and ~ffNðxÞ ¼ f̂fNðxÞ þ iX ðxÞ.

2 Recall that iX denotes the indicator function of the set X, i.e., iX(x)¼ 0 if x2X and iX(x)¼ þ1 if

x 62X.
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2.1 Consistency of SAA estimators

We say that v̂vN is a consistent estimator of v* if v̂vN converges w.p.1 to v* as
N!1. Similarly, we say that an optimal solution x̂xN of the SAA problem is
consistent if distðx̂xN ,SÞ tends to zero w.p.1 as N!1. If S¼ {x*} is a
singleton, this means that x̂xN ! x* w.p.1. In the case of nonunique optimal
solutions, we would like to ensure that every x̂xN is consistent. That is, we
would like to have that DðŜSN ,SÞ ! 0 w.p.1. We also consider the set S" of
"-optimal solutions of the true problem. That is, for "� 0 we say that x is
an "-optimal solution of the true problem if f ðxÞ is finite3 and
f ðxÞ � infx2X f ðxÞ þ ". Similarly is defined the set ŜS"N of "-optimal solutions
of the SAA problem.

Definition 1. We say that the LLN holds, for f̂fNðxÞ, pointwise if f̂fNðxÞ
converges w.p.1 to f(x), as N!1, for any fixed x2Rn.

If the sample is iid, then the LLN holds4 pointwise provided that the
expected value f(x) is well defined. Unfortunately, such pointwise convergence
of f̂fNðxÞ to f(x) does not necessarily imply convergence of v̂vN to v*. In order to
ensure consistency of v̂vN we need a uniform, or more generally epicon-
vergence, type of convergence. The analysis is relatively simple in the convex
case, which we consider first.

As it was mentioned earlier we can view f̂fNðxÞ ¼ f̂fNðx,!Þ as a sequence of
random functions defined on a common probability space (�,F,P). Another
way of saying that an event happens w.p.1 is to say that it happens for almost
every (a.e.) !2�, i.e., it happens for all !2�\� where � is an F-measurable
subset of � such that P(�)¼ 0. We also say that an event happens w.p.1
for N large enough if for a.e. !2� there exists M(!)2R such that the
event happens for all N�M(!). We say that the functions f̂fN epiconverge to
f w.p.1, written f̂fN!

e
f w.p.1, if for a.e. !2� the functions f̂fNð�,!Þ

epiconverge5 to f( � ). The following result is a simple consequence of
Theorem 25 from Section 8.1 in the Appendix.

Proposition 2. Suppose that for almost every � 2� the function F( � , �)
is convex, the expected value function f( � ) is lower semicontinuous and its
domain, dom f, has a nonempty interior, and the LLN holds pointwise. Then
f̂fN!

e
f w.p.1.

3 Note that we assume here that if x* is an optimal or "-optimal solution of the true problem, then

f(x*) is finite. Therefore, if the true problem possesses an optimal solution, then v* is finite. Also v* is

finite iff for any ">0 the true problem has an "-optimal solution.
4 Often, LLN which ensures convergence w.p.1, is called strong Law of Large Numbers as opposed to

weak LLN which ensures only convergence in probability. Since in this chapter we deal only with the

strong LLN we omit the word ‘‘strong’’.
5 See the Appendix for the definition of epiconvergence of a sequence of deterministic functions.
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Proof. It follows from the assumed convexity of F( � , �) that the function f( � )
is convex and that w.p.1 the functions f̂fNð�Þ are convex. Let us choose a
countable and dense6 subset D of Rn. By the pointwise LLN we have that for
any x2D, f̂fNðxÞ converges to f(x) w.p.1 as N!1. This means that there
exists a set �x�� of P-measure zero such that for any !2�\�x, f̂fNðx,!Þ
tends to f(x) as N!1. Consider the set � :¼ [ x2D�x. Since the set D
is countable and P(�x)¼ 0 for every x2D, we have that P(�)¼ 0. We also
have that for any !2�\�, f̂fNðx,!Þ converges to f (x), as N!1, pointwise on
D. It follows then by Theorem 25 that f̂fNð�,!Þ!

e
f ð�Þ for any !2�\�. That is,

f̂fNð�Þ!
e
f ð�Þ w.p.1. u

As it was mentioned in the above proof, convexity of f( � ) follows from
convexity of F( � , �), �2�. Also, by Fatou’s lemma, lower semicontinuity of
f( � ) is implied by lower semicontinuity of F( � , �), � 2�, under the additional
assumption that F(x, � ) is bounded from below by an integrable function (see
the Appendix of chapter ‘‘Stochastic Programming Models’’).

By the assertion (iii) of Theorem 25 we obtain the following corollary.

Corollary 3. Suppose that for almost every �2� the function F( � , �) is convex
and the LLN holds pointwise. Let C be a compact subset of Rn such that f( � )
is finite valued on a neighborhood of C. Then f̂fN!

e
f converges to f uniformly

on C, that is

sup
x2C
j f̂fNðxÞ � f ðxÞj ! 0 w:p:1 as N !1: ð2:5Þ

By the result (8.3) of Proposition 24 we have that f̂fN!
e
f , w.p.1, implies that

lim sup
N!1

v̂vN � v*, w:p:1: ð2:6Þ

Without an additional assumption the inequality in (2.6) can be strict. In
addition to convexity we need a boundedness type condition to ensure
consistency of v̂vN .

Theorem 4. Suppose that: (i) the integrand function F is random lower
semicontinuous, (ii) for almost every �2� the function F( � , �) is convex, (iii) the
set X is closed and convex, (iv) the expected value function f is lower semi-
continuous and there exists a point x 2 X such that f(x)<þ1 for all x in a
neighborhood of x, (v) the set S of optimal solutions of the true problem is
nonempty and bounded, (vi) the LLN holds pointwise. Then v̂vN ! v* and
DðŜSN ,SÞ ! 0 w.p.1 as N!1.

6 It is said that D is a dense subset of Rn if for any point x2Rn and ">0 there exists a point x0 2D such

that jjx�x0jj<".
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Proof. Clearly we can restrict both the true and the SAA problems to the
affine space generated by the convex set X. Relative to that affine space the set
X has a nonempty interior. Therefore, without loss of generality we can
assume that the set X has a nonempty interior. Since it is assumed that
f(x) possesses an optimal solution, we have that v* is finite and hence
f(x)� v*>�1 for all x2X. Since f(x) is convex and is greater than �1 on
an open set (e.g., interior of X), it follows that f(x) is proper.

Now let f ðxÞ and ~ffNðxÞ be extended real valued functions defined in
(2.3) and (2.4), respectively. Observe that the pointwise LLN for F(x, �)
(assumption (vi)) implies the corresponding pointwise LLN for Fðx, �Þ. Since
X is convex and closed, it follows that f is convex and lower semicontinuous.
Moreover, because of the assumption (iv) and since the interior of X is
nonempty, we have that dom f has a nonempty interior. By Proposition 2 it
follows then that ~ffN!

e
f w.p.1. Consider a compact set K with a nonempty

interior and such that it does not contain a boundary point of dom f , and f ðxÞ
is finite valued on K. Since dom f has a nonempty interior such set exists. Then
it follows from ~ffN!

e
f , that ~ffNð�Þ converge to f ð�Þ uniformly on K, all w.p.1 (see

Theorem 25). It follows that w.p.1 for N large enough the functions ~ffNðxÞ are
finite valued on K, and hence are proper.

Now let C be a compact subset of Rn such that the set S is contained in the
interior of C. Such set exists since it is assumed that the set S is bounded.
Consider the set ~SSN of minimizers of ~ffNðxÞ over C. Since C is nonempty and
compact and ~ffNðxÞ is lower semicontinuous and proper for N large enough,
and because by the pointwise LLN we have that for any x2S, ~ffNðxÞ is finite
w.p.1 for N large enough, the set ~SSN is nonempty w.p.1 for N large enough.
Let us show that Dð ~SSN ,SÞ ! 0 w.p.1. Let !2� be such that ~ffNð�,!Þ!

e
f ð�Þ.

We have that this happens for a.e. !2�. We argue now by a contradiction.
Suppose that there exists a minimizer ~xxN ¼ ~xxNð!Þ of ~ffNðx,!Þ over C such that
distð ~xxN ,SÞ � " for some ">0. Since C is compact, by passing to a subsequence
if necessary, we can assume that ~xxN tends to a point x 2 C. It follows that
x 62 S. On the other hand, we have by Proposition 24 that x 2 argminx2C f ðxÞ.
Since argminx2C f ðxÞ ¼ S, we obtain a contradiction.

Now because of the convexity assumptions, any minimizer of ~ffNðxÞ over C
which lies inside the interior of C, is also an optimal solution of the SAA
problem (2.4). Therefore, w.p.1 for N large enough we have that ~SSN ¼ ŜSN .
Consequently, we can restrict both the true and the SAA optimization
problems to the compact set C, and hence the assertions of the above
proposition follow. u

Let us make the following observations. It was assumed in the above
proposition that the LLN holds pointwise for all x2Rn. Actually it suffices to
assume that this holds for all x in some neighborhood of the set S. Under the
assumptions of the above theorem we have that f(x)>�1 for every x2Rn.
The above assumptions do not prevent, however, for f(x) to take value þ1 at
some points x2X. Nevertheless, it was possible to push the proof through
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because in the considered convex case local optimality implies global
optimality. There are two possible reasons why f(x) can be þ1. Namely, it
can be that F(x, � ) is finite valued but grows sufficiently fast so that its integral
is þ1, or it can be that F(x, � ) is equal þ1 on a set of positive measure, and
of course it can be both. For example, in the case of two-stage programming it
may happen that for some x2X the corresponding second stage problem is
infeasible with a positive probability p. Then w.p.1 for N large enough, for at
least one of the sample points �i the corresponding second stage problem will
be infeasible, and hence f̂fNðxÞ ¼ þ1. Of course, if the probability p is very
small, then the required sample size for such event to happen could be
very large.

Theorem 4 shows that in the convex case consistency of SAA estimators
follows from the pointwise LLN and natural boundedness conditions.
Without convexity the epiconvergence analysis becomes more involved. We
give below convergence results based on uniform convergence which often are
sufficient for practical applications.

Proposition 5. Suppose that f̂fNðxÞ converges to f(x) w.p.1, as N!1, uniformly
on X. Then v̂vN converges to v* w.p.1 as N!1.

Proof. The uniform convergence of f̂fNðxÞ to f(x) w.p.1 means that for any
">0 the following inequality holds w.p.1 for N large enough,

sup
x2X
j f̂fNðxÞ � f ðxÞj � ": ð2:7Þ

It follows then that jv̂vN � v*j � " w.p.1 for N large enough, which completes
the proof. u

Proposition 6. Suppose that there exists a compact set C�R
n such that: (i) the

set S of optimal solutions of the true problem is nonempty and is contained in C,
(ii) the function f(x) is finite valued and continuous on C, (iii) f̂fNðxÞ converges to
f(x) w.p.1, as N!1, uniformly in x2C, (iv) w.p.1 for N large enough the set ŜSN

is nonempty and ŜSN � C. Then v̂vN ! v* and DðŜSN ,SÞ ! 0 w.p.1 as N!1.

Proof. Assumptions (i) and (iv) imply that both the true and SAA problems
can be restricted to the set C. It can be easily verified that assumptions (ii) and
(iii) imply that the functions f̂fN restricted to X\C epiconverge to the function
f restricted to X\C, i.e., f̂fN þ iX\C!

e
f þ iX\C, w.p.1. Since C is compact, the

proof then can be completed in a way similar to the proof of Theorem 4. u

The last assumption (iv) in the above proposition holds, in particular, if the
feasible set X is closed, the functions f̂fNðxÞ are lower semicontinuous and for
some �>v* the level sets fx 2 X: f̂fNðxÞ � �g are uniformly bounded w.p.1.
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There is a variety of results on uniform LLN (assumption (iii) of the above
proposition). In the convex case this is ensured by the assumptions of
Corollary 3. Following is a relatively simple uniform LLN without the
convexity assumption. We say that F(x, �), x2C, is dominated by an integrable
function if there exists a nonnegative valued measurable function G(�)
such that E½GðnÞ� < þ1 and for every x2C the inequality jF(x, n)j �G(n)
holds w.p.1.

Proposition 7. Let C be a nonempty compact subset of Rn and suppose that:
(i) for almost every �2� the function F( � , �) is continuous on C, (ii) F(x, �),
x2C, is dominated by an integrable function, (iii) the sample is iid. Then the
expected value function f(x) is finite valued and continuous on C, and f̂fNðxÞ
converges to f(x) w.p.1 uniformly on C.

Proof. It follows from the assumption (ii) that j f(x)j �E[G(n)], and
consequently j f (x)j<þ1 for all x2C. Consider a point x2C and let xk
be a sequence of points in C converging to x. By the Lebesgue Dominated
Convergence Theorem assumption (ii) implies that

lim
k!1

E½Fðxk, nÞ� ¼ E lim
k!1

Fðxk, nÞ

� �
:

Since by (i), F(xk, n)!F(x, n) w.p.1, it follows that f(xk)! f(x), and hence
f(x) is continuous.

Choose now a point x 2 C, a sequence �k of positive numbers converging
to zero, and define Vk :¼ fx 2 C : kx� xk � �kg and

�kð�Þ :¼ sup
x2Vk

jFðx, �Þ � Fðx, �Þj: ð2:8Þ

By the assumption (i) we have that for any �2�, �k(�) tends to zero as k!1.
Moreover, by the assumption (ii) we have that �k(�), k¼ 1, . . . , are dominated
by an integrable function, and hence by the Lebesgue Dominated
Convergence Theorem we have that

lim
k!1

E½�kðnÞ� ¼ E lim
k!1

�kðnÞ

� �
¼ 0: ð2:9Þ

We also have that

j f̂fNðxÞ � f̂fNðxÞj �
1

N

XN
i¼1

jFðx, niÞ � Fðx, niÞj,
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and hence

sup
x2Vk

j f̂fNðxÞ � f̂fNðxÞj �
1

N

XN
i¼1

�kðn
iÞ: ð2:10Þ

Since the sample ni is iid, it follows by the LLN that the right hand side of
(2.10) converges w.p.1 to E[�k(n)] as N!1. Together with (2.9) this implies
that for any given ">0 there exists a neighborhoodW of x such that w.p.1 for
sufficiently large N,

sup
x2W\C

j f̂fNðxÞ � f̂fNðxÞj < ":

Since C is compact, there exists a finite number of points x1, . . . , xm2C and
corresponding neighborhoods W1, . . . ,Wm covering C such that w.p.1 for
N large enough the following holds

sup
x2Wj\C

j f̂fNðxÞ � f̂fNðxjÞj < ", j ¼ 1, . . . , m: ð2:11Þ

Furthermore, since f(x) is continuous on C, these neighborhoods can be
chosen in such a way that

sup
x2Wj\C

j f ðxÞ � f ðxjÞj < ", j ¼ 1, . . . , m: ð2:12Þ

Again by the LLN we have that f̂fNðxÞ converges pointwise to f(x) w.p.1.
Therefore,

j f̂fNðxjÞ � f ðxjÞj < ", j ¼ 1, . . . , m, ð2:13Þ

w.p.1 for N large enough. It follows from (2.11)–(2.13) that w.p.1 for N large
enough

sup
x2C
j f̂fNðxÞ � f ðxÞj < 3": ð2:14Þ

Since ">0 was arbitrary, we obtain that (2.5) follows and hence the proof is
complete. u

It is possible to extend the above result in various directions. For example,
the assumption that the sample is iid was used in the proof in two places,
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namely, to ensure pointwise convergence w.p.1 of f̂fNðxÞ to f(x) (i.e., pointwise
LLN) and applicability of the LLN to the right hand side of (2.10). As it was
mentioned earlier, there is a variety of results, in the probability theory, on the
(pointwise) LLN without the iid assumption, which can be applied to the
present case.

Remark 8. We assumed that the feasible set X in the SAA problem (1.6) is
fixed, i.e., independent of the sample. However, in some situations it also
should be estimated. Then the corresponding SAA problem takes the form

Min
x2XN

f̂fNðxÞ, ð2:15Þ

where XN is a subset of Rn depending on the sample, and therefore is random.
Suppose that in addition to the assumptions of Proposition 6 the following
two conditions hold with probability one:

(a) If xN2XN and xN converges w.p.1 to a point x, then x2X.
(b) For some point x2S there exists a sequence xN2XN such that xN! x

w.p.1.

Under the assumption of the uniform convergence of f̂fN to f, the above
conditions (a) and (b) ensure conditions (i) and (ii) of the (epiconvergence)
Definition 23 as applied to the functions f̂fN þ iXN\C and f þ iX\C at the point x.
Consistency of the SAA estimators then follows.

Suppose, for example, that the set X is defined by the constraints

X :¼ x 2 X0 : gjðxÞ � 0, j ¼ 1, . . . , p
� �

, ð2:16Þ

where X0 is a nonempty closed subset of Rn and the constraint functions are
given as the expected value functions

gjðxÞ :¼ E½Gjðx, nÞ�, j ¼ 1, . . . , p, ð2:17Þ

with Gj being random lsc functions. Then the set X can be estimated by

XN :¼ x 2 X0 : ĝgjNðxÞ � 0, j ¼ 1, . . . , p
� �

, ð2:18Þ

where ĝgjNðxÞ :¼ N�1
PN

i¼1 Gjðx, �
iÞ. If for a given point x2X0 we have that

ĝgjN converge uniformly to gj w.p.1 on a neighborhood of x and the functions
gj are continuous, then the above condition (a) holds.

In order to ensure condition (b) one needs to impose a constraint quali-
fication (on the true problem). Consider, for example, X :¼ fx 2 R : gðxÞ � 0g
with g(x) :¼ x2. Clearly X¼ {0}, while an arbitrary small perturbation of the
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function g( � ) can result in the corresponding set XN being empty. It is possible
to show that if a constraint qualification for the true problem is satisfied at x,
then condition (b) follows. For instance, if the set X0 is convex and for every
�2� the functions Gj ( � , �) are convex, and hence the corresponding expected
value functions gj ( � ), j¼ 1, . . . , p, are also convex, then such a simple
constraint qualification is the Slater condition. Recall that it is said that the
Slater condition holds if there exists a point x 2 X0 such that gjðxÞ < 0,
j¼ 1, . . . , p.

2.2 Asymptotics of the SAA optimal value

Consistency of the SAA estimators gives us a certain assurance that the
error of the estimation approaches zero in the limit as the sample size grows to
infinity. Although this is important conceptually, it does not give any
indication of the magnitude of the error for a chosen sample size N. Suppose
for a moment that the sample is iid and let us fix a point x2X. Then we have
that the sample average estimator f̂fNðxÞ, of f(x), is unbiased and has variance
�2(x)/N, where �2(x) :¼Var[F(x, n)] is supposed to be finite. Moreover, by the
Central Limit Theorem (CLT) we have that

N1=2 f̂fNðxÞ � f ðxÞ
h i

) YðxÞ, ð2:19Þ

where ‘‘) ’’ denotes convergence in distribution and Y(x) has a normal
distribution with mean 0 and variance �2(x), written Y(x)�N(0, �2(x)). That
is, for largeN, f̂fNðxÞ has approximately normal distribution with mean f(x) and
variance �2(x)/N.

This leads to the following (approximate) 100(1��)% confidence interval
for f(x):

f̂fNðxÞ �
z�=2�̂�ðxÞffiffiffiffi

N
p , f̂fNðxÞ þ

z�=2�̂�ðxÞffiffiffiffi
N
p

� �
, ð2:20Þ

where z�/2 :¼��1(1��/2) and7

�̂�2ðxÞ :¼
1

N � 1

XN
i¼1

Fðx, �iÞ � f̂fNðxÞ
h i2

ð2:21Þ

is the sample variance estimate of �2(x). That is, the error of estimation of f(x)
is (stochastically) of order Op(N

�1/2). The involved constant, which is
proportional to �(x), can be reduced (sometimes significantly) by variance

7 Here �( � ) denotes the cdf of the standard normal distribution. For example, to 95% confidence

intervals corresponds z0.025¼ 1.96.
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reduction techniques. However, the basic rate of Op(N
�1/2) is characteristic for

Monte Carlo sampling and cannot be changed.
Consider now the optimal value v̂vN of the SAA problem (1.6). Clearly we

have that for any x0 2X the inequality f̂fNðx
0Þ � infx2X f̂fNðxÞ holds. By taking

the expected value of both sides of this inequality and minimizing the left hand
side over all x0 2X we obtain

inf
x2X

E f̂fNðxÞ
h i

� E inf
x2X

f̂fNðxÞ

� �
: ð2:22Þ

Since E½ f̂fNðxÞ� ¼ f ðxÞ, it follows that v* � E½v̂vN �. In fact, typically, E½v̂vN � is
strictly less than v*, i.e., v̂vN is a downwards biased estimator of v*. Note that
the inequality (2.22) holds even if f(x)¼ þ1 or f(x)¼�1 for some x2X.

Let us discuss now the following simple example which demonstrates
various basic properties of the SAA estimators.

Example 9. Consider the function F(x, �) :¼ jx��j, with x, �2R, and X :¼R.
In that case optimal solutions of the true and SAA problems are given by
the true (population) and the sample medians, respectively. Suppose, first,
that the corresponding random variable n has a discrete distribution with
P(n¼�1)¼P(n¼ 1)¼ 1/2. Then

f ðxÞ ¼
1

2
ðjx� 1j þ jxþ 1jÞ,

and hence v*¼ 1 and S¼ [�1, 1]. Let �1, . . . , �N be an iid sample of n, i.e., each
�i can take value �1 or 1 with probability half and they are independent of
each other. Then

f̂fNðxÞ ¼ pN jx� 1j þ ð1� pNÞjxþ 1j,

where pN is the proportion of times that �i¼ 1. It follows that if pN<1/2, then
ŜSN ¼ f�1g and v̂vN ¼ 2pN . If pN>1/2, then ŜSN ¼ f1g and v̂vN ¼ 2ð1� pNÞ,
and finally if pN¼ 1/2, then ŜSN ¼ ½�1, 1� and v̂vN ¼ 1. That is, v̂vN ¼
minf2pN , 2ð1� pNÞg. Now by the CLT we have that N1/2(2pN�1) converges
in distribution to N(0, 1). It follows that N1=2ðv̂vN � 1Þ converges in distribution
to W :¼�jZj, where Z�N(0, 1). In general, convergence in distribution does
not imply convergence of the corresponding expected values. However, in the
present case the uniform integrability condition8 can be verified, and hence we
obtain that

E½v̂vN � ¼ v* �N�1=2C þ oðN�1=2Þ, ð2:23Þ

8 See the Appendix, (8.5) in particular, for a definition of the uniform integrability condition.
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where C :¼ E½Z� ¼
ffiffiffiffiffiffiffiffi
2=�
p

. That is, the estimator v̂vN has a negative bias of
order O(N�1/2).

Suppose now that n can take three values �1, 0 and 1 with equal
probabilities 1/3. In that case v*¼ 2/3 and S¼ {0}, i.e., the true optimization
problem has unique optimal solution x*¼ 0. The SAA estimator x̂xN can be
equal to�1, 0, or 1. Moreover, the event fx̂xN ¼ 1g happens if more than half of
the sample points are equal to one. Probability of that is given by P(W>N/2),
where W has a binomial distribution B(N, 1/3). If exactly half of the sample
points are equal to one, then the sample estimate can be any number
in the interval [0, 1]. Similar conclusions hold for the event fx̂xN ¼ �1g.
Therefore, the probability that x̂xN ¼ 0 is at least 1�2P(W�N/2). By the
Large Deviations theory (see Section 8.3 in the Appendix) we have that
P(W>N/2)� e��N, with the (best) exponential constant � can be calculated
to be �¼ 0.059. It follows that

1� Pðx̂xN ¼ 0Þ � 2e��N : ð2:24Þ

That is, the probability that the SAA estimator x̂xN is equal exactly to the
true optimal solution x* approaches one exponentially fast. Consequently,
it happens with probability approaching one exponentially fast that v̂vN ¼
f̂fNðx*Þ. Since f̂fNðx*Þ is an unbiased estimator of v*, it follows then that the bias
E½v̂vN � � v*, although is negative, approaches zero very fast as N increases.

Finally, suppose that the probability distribution of n is continuous, i.e., its
cumulative distribution function (cdf) G( � ) is continuous. Then the expected
value function f(x) is continuously differentiable with df(x)/dx¼ 2G(x)�1.
Suppose further that G( � ) is differentiable at x* with gðx*Þ :¼ dGðx*Þ=dx > 0.
Then d2f ðx*Þ=dx2 ¼ 2gðx*Þ is positive, and hence, since f(x) is convex, it
follows that the minimizer x* is unique. Also, it is well known that in this case
N1=2ðx̂xN � x*Þ converges in distribution to normal with zero mean and
variance [2g(x*)]�2. That is, x̂xN tends to x* at a stochastic rate of Op(N

�1/2).
By the Mean Value Theorem we have that

f̂fNðx̂xNÞ � f̂fNðx*Þ ¼ �Nðx̂xN � x*Þ,

where �N is a subgradient of f̂fN calculated at some point ~xxN 2 ½x*, x̂xN �. By
the uniform LLN we also have that j�N � df ð ~xxNÞ=dxj tends w.p.1, and
hence in probability, to zero. Moreover, since x* is a minimizer of f(x), we have
that df(x*)/dx¼ 0, and hence it follows that �N¼ op(1). Consequently, we
obtain that f̂fNðx̂xNÞ � f̂fNðx*Þ ¼ opðN

�1=2Þ, and hence

v̂vN ¼ f̂fNðx̂xNÞ ¼ f̂fNðx*Þ þ opðN
�1=2Þ: ð2:25Þ
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Together with (2.19) this implies that N1=2ðv̂vN � v*Þ ) Nð0, �2ðx*ÞÞ. Typically
in such cases the bias E½v̂vN � � v* tends to zero at a rate of O(N�1).

Let us consider now the general case. Let Y(x) be random variables defined
in (2.19). Recall that YðxÞ � Nð0, �2ðxÞÞ and that the covariance between
Y(x1) and Y(x2), for some x1, x22X, is the same as the covariance between
F(x1, n) and F(x2, n). We use the following assumptions about the integrand F:

(A1) For some point x2X the expectation E[F(x, n)2] is finite.
(A2) There exists a measurable function K:�!Rþ such that E[K(n)2] is finite

and

jFðx1, �Þ � Fðx2, �Þj � Kð�Þkx1 � x2k, ð2:26Þ

for all x1, x22X and � 2�.

The above assumptions imply that the expected value f(x) and variance
�2(x) are finite valued for all x2X. Moreover, it follows from (2.26) that
j f ðx1Þ � f ðx2Þj � �kx1 � x2k, where � :¼E[K(n)], and hence f(x) is Lipschitz
continuous on X. If X is compact, we have then that the set S, of minimizers of
f(x) over X, is nonempty.

Theorem 10. Suppose that the sample is iid, the set X is compact and
assumptions (A1) and (A2) are satisfied. Then the following holds

v̂vN ¼ inf
x2S

f̂fNðxÞ þ opðN
�1=2Þ, ð2:27Þ

N1=2 v̂vN � v*ð Þ ) inf
x2S

YðxÞ: ð2:28Þ

Proof of (2.27) is based on upper and lower estimates, while (2.28) follows
from (2.27). It is clear that v̂vN � infx2S f̂fNðxÞ, which leads to the required
upper bound. Derivation of the lower bound is more involved and is based on
a functional CLT, and will be not given here.

Under mild additional conditions (see Section 8.2 in the Appendix) it
follows from (2.28) that

E½v̂vN � � v* ¼ N�1=2E inf
x2S

YðxÞ

� �
þ oðN�1=2Þ: ð2:29Þ

In particular, it follows from (2.28) that if S¼ {x*} is a singleton, then

N1=2 v̂vN � v*ð Þ ) Nð0, �2ðx*ÞÞ: ð2:30Þ
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Moreover, since E[Y(x*)]¼ 0, we obtain that in this case the bias E½v̂vN � � v* is
of order o(N�1/2). On the other hand, if the true problem has more than one
optimal solution, then the right hand side of (2.28) is given by the minimum of
a number of random variables. Although each Y(x) has mean zero, their
minimum typically has a negative mean. Therefore, if S is not a singleton, then
the bias E½v̂vN � � v* typically is negative and of order O(N�1/2). Moreover, the
bias tends to be bigger the larger the set S is.

Suppose now that the feasible set X is defined by constraints in the form
(2.16). The Lagrangian function of the true problem is Lðx, 	Þ :¼ f ðxÞþPp

j¼1 	jgjðxÞ. Suppose also that the problem is convex, that is the set X0

is convex and for all � 2� the functions F( � , �) and Gj( � , �), j¼ 1, . . . , p,
are convex. Suppose, further, that the functions f(x) and gj(x) are finite valued
on a neighborhood of S and the Slater condition holds. Then with
every optimal solution x* 2S is associated a nonempty and bounded set � of
Lagrange multipliers vectors 	¼ (	1, . . . , 	p) satisfying the optimality
conditions:

x* 2 arg min
x2X0

Lðx, 	Þ, 	j � 0 and 	jgjðx*Þ ¼ 0, j ¼ 1, . . . , p:

ð2:31Þ

The set � coincides with the set of optimal solutions of the dual of the true
problem, and therefore is the same for any optimal solution x* 2S.

Let v̂vN be the optimal value of the SAA problem (2.15) with XN given in the
form (2.18). We use the assumptions (A1) and (A2), given before Theorem 10,
applied to the integrands Gj as well as to the integrand F. It follows then that
the functions f (x) and gj (x) are finite valued and continuous on X. As in
Theorem 10, we denote by Y(x) random variables which are normally
distributed and have the same covariance structure as F(x, n). We also denote
by Yj (x) random variables which are normally distributed and have the same
covariance structure as Gj (x, n), j¼ 1, . . . , p.

Theorem 11. Suppose that the sample is iid, the problem is convex and the
following conditions are satisfied: (i) the set X is compact, (ii) the functions f(x)
and gj(x) are finite valued on a neighborhood of S, (iii) the Slater condition for
the true problem holds, (iv) the assumptions (A1) and (A2) hold for the
integrands F and Gj, j¼ 1, . . . , p. Then

N1=2 v̂vN � v*ð Þ ) inf
x2S

sup
	2�

YðxÞ þ
Xp
j¼1

	jYjðxÞ

" #
: ð2:32Þ

Proof of the above theorem is based on duality theory of convex
programming and a functional CLT, and will be not given here. It follows

370 A. Shapiro



from (2.32) that if S¼ {x*} and � ¼ f	g are singletons, i.e., both the true and
its dual problems have unique optimal solutions, then

N1=2 v̂vN � v*ð Þ ) Nð0, �20Þ, ð2:33Þ

with �20 :¼ Var½Fðx*, nÞ þ
Pp

j¼1 	jGjðx*, nÞ�.

3 Exponential rates of convergence

In this section we discuss exponential rates of convergence of optimal
and nearly optimal SAA solutions. This allows to give an estimate of
the sample size which is required to solve the true problem with a given
accuracy by solving the SAA problem. Although such estimates of the sample
size typically are too conservative for a practical use, they give an insight
into the complexity of solving the true (expected value) problem. The
analysis is based on the Large Deviations theory.9 For the sake of simplicity,
unless stated otherwise, we assume in this section that the random sample
is iid.

3.1 The case of finite feasible set

In this section we consider cases where10 jXj<1, i.e., the set X is finite,
although may be very large. For the sake of simplicity we assume that F(x, �)
is finite for all x2X and �2� and f(x) is finite for every x2X. Then the sets
ŜS"N and S" of "-optimal solutions of the SAA and true problems, respectively,
are nonempty and, of course, finite for any "� 0. Consider numbers "� 0,
�� 0 with �� ", and the event fŜS�N � S"g which means that any �-optimal
solution of the SAA problem provides an "-optimal solution of the true
problem. We estimate now the probability of that event.

We can write

ŜS�N 6� S"
n o

¼
[

x2XnS"

\
y2X

f̂fNðxÞ � f̂fNð yÞ þ �
n o

, ð3:1Þ

and hence

P ŜS�N 6� S"
� �

�
X

x2XnS"

P

\
y2X

f̂fNðxÞ � f̂fNð yÞ þ �
n o !

: ð3:2Þ

9 See Section 8.3 of the Appendix for a brief discussion of the LD theory.
10 By jXj we denote the cardinality of the set X.
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Consider a mapping u:X\S"!X. It follows from (3.2) that

P ŜS�N 6� S"
� �

�
X

x2XnS"

P f̂fNðxÞ � f̂fNðuðxÞÞ � �
n o

: ð3:3Þ

We assume that the mapping u(x) is chosen in such a way that for some "*>",

f ðuðxÞÞ � f ðxÞ � "* for all x 2 XnS": ð3:4Þ

Note that if u( � ) is a mapping from X\S" into the set S, i.e., u(x)2S for all
x2X\S", then (3.4) holds with

"* :¼ min
x2XnS"

f ðxÞ � v*, ð3:5Þ

and such that "* is greater than " since the set X is finite. Therefore, a mapping
u( � ) satisfying condition (3.4) always exists. Of course, there are many
possible choices of the mapping u(x) with different values of the constant "*.

For each x2X\S", define

Yðx, �Þ :¼ FðuðxÞ, �Þ � Fðx, �Þ:

Note that E[Y(x, n)]¼ f(u(x))�f(x), and hence E[Y(x, n)]��"* for all x2X\S".
The corresponding sample average is

ŶYNðxÞ :¼
1

N

XN
i¼1

Yðx, �iÞ ¼ f̂fNðuðxÞÞ � f̂fNðxÞ:

By (3.3) we have

P ŜS�N 6� S"
� �

�
X

x2XnS"

P ŶYNðxÞ � ��
n o

: ð3:6Þ

Let Ix( � ) denote the (large deviations) rate function
11 of the random variable

Y(x, n). The inequality (3.6) together with the LD upper bound (8.6) implies

1� P ŜS�N � S"
� �

�
X

x2XnS"

e�NIxð��Þ: ð3:7Þ

11 See Section 8.3 of the Appendix for the definition of the rate function.
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Note that the above inequality (3.7) is not asymptotic and is valid for any
random sample of size N.

Assumption (B). For every x2X\S" the moment generating function of the
random variable Y(x, n) is finite valued in a neighborhood of t¼ 0.

The above assumption (B) holds, for example, if the support � of n is a
bounded subset of R

d, or if Y(x, � ) grows at most linearly and n has a
distribution from the exponential family.

Theorem 12. Let " and � be nonnegative numbers such that �� ". Then

1� P ŜS�N � S"
� �

� jXje�N
ð�, "Þ, ð3:8Þ

where


ð�, "Þ :¼ min
x2XnS"

Ixð��Þ: ð3:9Þ

Moreover, if assumption (B) holds, then 
(�, ")>0.

Proof. The inequality (3.8) is an immediate consequence of the inequality
(3.7). We have that ��>�"*�E[Y(x, n)], and hence it follows by assumption
(B) that Ix(��)>0 for every x2X\S". This implies that 
(�, ")>0. u

The following asymptotic result is an immediate consequence of inequality
(3.8),

lim sup
N!1

1

N
log 1� P ŜS�N � S"

� �h i
� �
ð�, "Þ: ð3:10Þ

It means that the probability of the event that any �-optimal solution of the
SAA problem provides an "-optimal solution of the true problem approaches
one exponentially fast as N!1. This suggests that the SAA method
can efficiently find an "-optimal solution of the true problem by solving the
SAA problem with accuracy �, provided that the constant 
(�, ") is not
‘‘too small’’.

For � close to �E[Y(x, n)], we can write by (8.9) that

Ixð��Þ 	
ð��� E½Yðx, nÞ�Þ2

2�2x
�
ð"* � �Þ2

2�2x
, ð3:11Þ
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where

�2x :¼ Var½Yðx, nÞ� ¼ Var½FðuðxÞ, nÞ � Fðx, nÞ�:

Recall that Ix( � ) is a convex function attaining its minimum at E[Y(x, n)], and
hence Ix(z) is monotonically increasing for z�E[Y(x, n)] as z!�1.
Therefore, for all "*� 0 sufficiently small and �2 [0, "], the constant 
(�, "),
given in (3.9), can be estimated (see (8.10)) as


ð�, "Þ �
ð"* � �Þ2

3�2max

�
ð"� �Þ2

3�2max

, ð3:12Þ

where

�2max :¼ max
x2XnS"

Var½FðuðxÞ, nÞ � Fðx, nÞ�: ð3:13Þ

3.2 Estimates of the sample size

Let us fix a significance level �2 (0, 1), and estimate the sample size N which
is needed for the probability PðŜS�N � S"Þ to be at least 1��. By requiring the
right-hand side of (3.8) to be less than or equal to �, we obtain that

N �
1


ð�, "Þ
log
jXj

�

	 

: ð3:14Þ

Moreover, we have by (3.12) that 
ð�, "Þ � ð"� �Þ2=ð3�2maxÞ for all "� 0
sufficiently small and �2 [0, "]. It follows that for all ">0 small enough and
0� �<", the sample size which is required for PðŜS�N � S"Þ � 1� � to hold can
be estimated as

N �
3�2max

ð"� �Þ2
log
jXj

�

	 

: ð3:15Þ

Of course, the constant �2max, defined in (3.13), depends on the choice of the
mapping u(x) and could be difficult to estimate. Moreover, as it was
mentioned earlier, the bound (3.15) typically is too conservative for practical
estimates of the required sample sizes. However, the estimate (3.15) has
interesting consequences for complexity issues. A key characteristic of (3.15) is
that N depends only logarithmically both on the size of the feasible set X and
on the tolerance probability �.

Suppose now that X is a bounded, not necessarily finite, subset of Rn, and
that f(x) is finite valued for all x2X. Then we can apply the sample size
estimate (3.15) as follows. Recall that any two norms on the finite dimensional
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space Rn are equivalent. For technical reasons it will be convenient to use here
the max-norm jjxjj :¼max{jx1j, . . . , jxnj}. For a given �>0, consider a finite
subset X� of X such that for any x2X there is x0 2X� satisfying jjx�x

0jj � �.
Since X is bounded, its diameter D :¼ supx, y2X jjx�yjj is finite. Then such set
X� can be constructed with jX�j � (D/�)n. By reducing the feasible set X to its
subset X�, as a consequence of (3.15) we obtain the following estimate of the
sample size, required to solve the reduced problem with an accuracy "0>�:

N �
3�2max

ð"0 � �Þ2
n log

D

�
� log �

	 

: ð3:16Þ

Suppose, further, that the expectation function f(x) is Lipschitz continuous
on X modulus L, that is, j f ðxÞ � f ð yÞj � Lkx� yk for all x, y2X. Then an
"0-optimal solution of the reduced problem is an "-optimal solution of the
true problem with "¼ "0 þL�. Let us set � :¼ ("��)/(2L) and "0 :¼ "� L� ¼
"� ð"� �Þ=2. By employing (3.16) we obtain the following estimate of the
sample size N required to solve the true problem:

N �
12�2max

ð"� �Þ2
n log

2DL

"� �
� log �

	 

: ð3:17Þ

The above estimate (3.17) shows that the sample size which is required to solve
the true problem with probability 1�� and accuracy ">0 by solving the SAA
problem with accuracy �<", grows linearly in dimension n of the decision
vector x. The estimate (3.17) also involves constants D,L and �2max which
should be estimated for the considered class of problems. Note that the
variance constant �2max appears linearly in the estimate (3.17). This should not
be surprising since for deciding (comparing), with a given accuracy, which one
of just two values f(u(x)) and f(x), of the true objective function, is smaller we
need a sample of a size proportional to �2x.

3.3 Piecewise linear case

The estimate (3.17) is general and can be applied to any stochastic problem
of the form (1.1). In the case of two-stage linear stochastic programming it is
possible to say more. In that case the feasible set X and the optimal value
F(x, �) of the second stage problem satisfy the following assumptions.

(C1) The set X is a convex closed polyhedron.
(C2) For every � 2� the function F( � , �) is polyhedral.12

12 Recall that a function g : R
n ! R is said to be polyhedral if it is proper convex and lower

semicontinuous, its domain is a convex closed polyhedron and g(x) is piecewise linear on its domain.
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We also assume in this section that the support of n is finite.

(C3) The support � of n is finite, �¼ {�1, . . . , �K}, with respective (positive)
probabilities pk, k¼ 1, . . . ,K.

We can absorb the feasible set X into the objective function by formulating
the true and SAA problems in the forms (2.3) and (2.4), respectively. Denote
Fkð�Þ :¼ Fð�, �kÞ. We have then that

f ð�Þ ¼
XK
k¼1

pkFkð�Þ,

and dom f ¼ \Kk¼1 domFk. Note also that dom Fk ¼ X \ dom Fð�, �kÞ. It
follows from the above assumptions (C1)–(C3) that the function f is polyhedral
provided that its domain is nonempty.

Suppose, further, for the sake of simplicity that the true problem has
unique optimal solution, i.e., S¼ {x*}. Consider the following event.

(EN) The SAA problem (1.6) has unique optimal solution x̂xN and x̂xN ¼ x*.

The above event can also be formulated in the form: ‘‘the point x* is the
unique optimal solution of the SAA problem’’.

Theorem 13. Suppose that the assumptions (C1)–(C3) hold and the true problem
has unique optimal solution x*. Then the event (EN) happens w.p.1 for N large
enough and, moreover, there exists a constant 
*>0 such that

lim
N!1

1

N
log½1� PðENÞ� ¼ �
*: ð3:18Þ

Proof of the above theorem is based on the following lemma which is
implied by the polyhedral structure of the considered problem. Denote by

X :¼ dom f ¼ X \ dom f

the domain of the function f , by TX ðx*Þ the tangent cone to X at x*, and by
f
0
ðx*, dÞ the directional derivative of f at the point x* in the direction d2Rn.

Note that since f ðx*Þ is finite and the function f is polyhedral, the directional
derivative f

0
ðx*, dÞ is finite if d 2 TX ðx*Þ, and f

0
ðx*, dÞ ¼ þ1 otherwise.

Lemma 14. Suppose that the assumptions (C1)–(C3) hold and the true problem
has unique optimal solution x*. Then there exists a finite number of directions
d1, . . . , dJ2R

n\{0} such that f
0
ðx*, djÞ > 0, j¼ 1, . . . , J, and the event (EN)

happens if and only if ~ff 0Nðx*, djÞ > 0, j¼ 1, . . . , J.
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Proof. For the sake of notational convenience we can assume without loss of
generality that x*¼ 0. We have that for every k2 {1, . . . ,K}, the function Fkð�Þ

is polyhedral and Fkðx*Þ is finite. Because of the polyhedral structure of Fk we
have that the tangent cone to the domain of Fk at the point x*¼ 0 can be
represented as a union of a finite number of closed convex polyhedral cones
such that Fk is linear

13 on each cone in a neighborhood of x*¼ 0. By taking all
possible intersections of these cones for k¼ 1, . . . ,K, we can construct a finite
number of closed convex polyhedral cones T1, . . . ,TM with the following
properties. (i) The union of the tangent cones TdomFk

ðx*Þk2f1, ...,Kg coincides
with [Mm¼1 Tm. (ii) To every k2 {1, . . . ,K} corresponds a subset Mk of
{1, . . . ,M} such that the tangent cone TdomFk

ðx*Þ coincides with [m2Mk
Tm and

Fk is linear on each cone Tm, m2Mk, in a neighborhood of x*¼ 0. Now let
d1, . . . , dJ be the set of vectors of length one generating all extreme rays of all
cones Tm, m¼ 1, . . . ,M.

For any generated sample �i, i¼ 1, . . . ,N, we have that the corresponding
function ~ffN is polyhedral and dom ~ffN ¼ \

N
i¼1 domFð�, �iÞ. Moreover, by the

above construction we have that there exists a set M� {1, . . . ,M} such that
the tangent cone to dom ~ffN at x* coincides with [m2M Tm and ~ffNð�Þ is linear on
each cone Tm, m2M, in a neighborhood of x*¼ 0. Let J be a subset of
{1, . . . , J} such that the vectors dj, j2J, generate the set of all extreme rays of
the cones Tm, m2M. We have then that if ~ff 0Nðx*, djÞ > 0 for all j2J, then
x*¼ 0 is the minimizer of ~ffN over every cone Tm, m2M. By convexity this
implies that x* is the unique minimizer of ~ffN over Rn. Conversely, if ~ff 0Nðx*, djÞ
is less than or equal to zero for some j2 {1, . . . , J}, then either x* is not a
minimizer or x* is not a unique minimizer of ~ffN over Rn. The last assertion
follows since ~ffN is polyhedral.

Finally, the expected value function f has the same type of structure with
the corresponding extreme rays forming a subset of the set {d1, . . . , dJ}. We
have then that f

0
ðx*, djÞ is positive and finite for dj 2 TX ðx*Þ, and

f
0
ðx*, djÞ ¼ þ1 otherwise. This completes the proof of the lemma. u

Proof (of Theorem 13). Since f ðx*Þ is finite we have that for any d2Rn,

f
0
ðx*, dÞ ¼

XK
k¼1

pkF
0

kðx*, dÞ ¼ E F
0

n ðx*, dÞ
h i

, ð3:19Þ

where F �ð�Þ :¼ Fð�, �Þ and F
0

�ðx*, dÞ denotes the directional derivative of F � at
x* in the direction d. We also have that

~ff 0Nðx*, dÞ ¼
1

N

XN
i¼1

F 0�i ðx*, dÞ: ð3:20Þ

13 We say here that a real valued function g(x) is linear if g(x)¼ aTxþ b for some a, b2Rn. It is more

accurate to call such a function affine.
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For a given d2Rn, by applying the LLN to the random variable F
0

nðx*, dÞ we
obtain that

~ff 0Nðx*, dÞ ! f
0
ðx*, dÞ w:p:1 as N !1: ð3:21Þ

Note that (3.21) holds if f
0
ðx*, dÞ ¼ þ1 as well. Now let d1, . . . , dJ be vectors

specified in Lemma 14. Since f
0
ðx*, djÞ > 0, j¼ 1, . . . , J, it follows by (3.21)

that ~ff 0Nðx*, djÞ > 0, j¼ 1, . . . , J, and hence the event (EN) happens, w.p.1 for
N large enough.

Now by the upper LD bound (see (8.8) and (8.13)) we have that for any
d2Rn the inequality

P ~ff 0Nðx*, dÞ � 0
n o

� e�N
d , ð3:22Þ

holds with


d :¼ logð1� pdÞ
�1
þ %dIdð0Þ:

Here pd is the probability that F
0

nðx*, dÞ ¼ þ1, Id ( � ) is the rate function
of F

0

nðx*, dÞ conditional on the event fF
0

nðx*,dÞ < þ 1g, and %d :¼ 1 if
the mean of F

0

n ðx*, dÞ conditional on fF
0

nðx*, dÞ < þ1g is positive, and %d :¼ 0
otherwise. If d 62 TX ðx*Þ, then pd is positive, and hence 
d>0. If d 2 TX ðx*Þ,
then pd¼ 0 and f

0
ðx*, dÞ is finite. Since n has a finite support we have that in

this case Id (0)>0 if f
0
ðx*, dÞ > 0. Note also that if pd¼ 0 and f

0
ðx*, dÞ > 0,

then 
d¼ Id (0) with Id( � ) being the rate function of F
0

nðx*, dÞ.
Now by Lemma 14 we have that the complement of the event (EN) coincides

with the union of the events f ~ff 0Nðx*, djÞ � 0gj2f1,...,Jg. Therefore, it follows from
(3.22) that

1� PðENÞ �
XJ
j¼1

e�N
dj , ð3:23Þ

which in turn implies

lim sup
N!1

1

N
log½1� PðENÞ� � � min

1� j� J

dj : ð3:24Þ

We also have that

1� PðENÞ � P ~ff 0Nðx*, djÞ � 0
n o

, j ¼ 1, . . . , J: ð3:25Þ
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Since n has a finite support, the lower bound of Cramér’s LD Theorem can be
applied to the right hand side of (3.25) to obtain

lim inf
N!1

1

N
log½1� PðENÞ� � �
dj , j ¼ 1, . . . , J: ð3:26Þ

The inequalities (3.25) and (3.26) imply (3.18) with


* :¼ min
1� j� J


dj : ð3:27Þ

By the above discussion we have that every 
dj is positive and hence 
*>0.
This completes the proof. u

Theorem 13 shows that, under the assumed polyhedral structure, by solving
the SAA problem one obtains the exact optimal solution of the true problem
for sufficiently large sample size, and moreover, the probability of that event
approaches one exponentially fast with increase of the sample size. Note that
even so, the corresponding optimal value v̂vN is not exact and may have a
relatively large variability. Of course, although (3.18) ensures an exponential
convergence of the probability P(EN) to one, the convergence can be very
slow if the constant 
* is small. Consider, for example, a situation where for
some direction d2Rn the directional derivative F

0

kðx*, dÞ ¼ þ1 for just one
k2 {1, . . . ,K} with the corresponding probability pk being very small,
while F 0l ðx*, dÞ < 0 for all l 6¼ k. Then f

0
ðx*, dÞ ¼ þ1, while ~ff 0Nðx*, dÞ is

negative unless the corresponding sample includes the point �k in which case
~ff 0Nðx*, dÞ ¼ þ1, and that happens with probability 1�(1�pk)

N. Therefore, in
such situation one will need a very large sample to ensure that ~ff 0Nðx*, dÞ ¼ þ1
with a reasonably large probability.

Suppose now that the assumptions (C1)–(C3) hold, but the set S of optimal
solutions of the true problem is not necessarily a singleton. Because of the
assumed polyhedral structure we have here that the set S is a convex closed
polyhedron. The set ŜSN of optimal solutions of the SAA problem is also a
convex closed polyhedron. Consider the following event.

(GN) The set ŜSN is nonempty and forms a face of the set S.

Proof of the following result is similar to the proof of Theorem 13.

Theorem 15. Suppose that the assumptions (C1)–(C3) hold and the set S is
nonempty and bounded. Then the event (GN) happens w.p.1 for N large enough
and, moreover,

lim sup
N!1

1

N
log½1� PðGNÞ� < 0: ð3:28Þ

Ch. 6. Monte Carlo Sampling Methods 379



The above analysis is based on the polyhedral structure of the functions
Fð�, �Þ, �2�, which is inherited by the expected value function f ð�Þ because �
is finite. Since f ð�Þ is polyhedral, it follows that the set S ¼ argmin f is
nonempty, provided that f ð�Þ is bounded from below, and moreover,

f ðxÞ � v* þ c distðx, SÞ ð3:29Þ

for all x2Rn and some constant c>0. In particular, if S¼ {x*} is a singleton,
then (3.29) takes the form

f ðxÞ � f ðx*Þ þ ckx� x*k: ð3:30Þ

Optimal solution x* is said to be sharp if the above condition (3.30) holds.
Since f ð�Þ is polyhedral, x* is always sharp provided it is unique.

If n has a continuous distribution, and hence its support � is not a finite set,
then condition (3.30) still may hold in some particular situations. It is possible
to show that in such cases, under some mild additional conditions, the event
(EN) happens w.p.1 for N large enough and the probability P(EN) approaches
one at an exponential rate. By convexity of f ð�Þ, condition (3.30) is equivalent
to the condition that f

0
ðx*, dÞ � ckdk for all d2Rn. If n has a continuous

distribution, then it may happen that f
0
ðx*, dÞ ¼ 0 for some d 6¼ 0 even if the

optimal solution x* is unique. In such cases an SAA optimal solution x̂xN
converges to x* typically at a rate of Op(N

�1/2).

3.4 Conditioning of piecewise linear stochastic programs

It was shown in Section 3.3 that, under the assumed polyhedral structure of
the problem, one can find an exact optimal solution of the true problem by
solving the SAA problem with sufficiently large sample size. Of course, the
sample size N which is required for that to happen, with a reasonably large
probability, is problem dependent. It turns out that in some cases the true
problem possesses unique optimal solution x* which can be computed exactly
by solving the corresponding SAA problem based on a relatively small sample.
This usually is indicated by the fact that while solving several SAA problems,
based on independent samples of n of a relatively small size, one obtains the
same optimal solution. It is natural to call such problems well conditioned. On
the other hand, it may happen that either the set S is not a singleton or the
sample size which is needed for the event (EN) to happen, with a reasonably
large probability, is very large. We call such problems ill conditioned.

Suppose, for the sake of simplicity, that in addition to the assumptions
(C1)–(C3) the following holds.

(C4) The expected value function f(x) is finite valued for all x2X in a
neighborhood of the point x*.
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In the case of two-stage stochastic programming the above assumption
holds, for example, if the recourse is relatively complete. We have by Lemma
14 that, under the assumptions (C1)–(C4), there exists a finite number of
nonzero vectors d1, . . . , dJ2TX(x*) such that the event (EN) happens iff
~ff 0Nðx*, djÞ > 0, j¼ 1, . . . , J. Furthermore, the (3.18) holds with the exponential
constant 
* given by


* ¼ min
1�j�J

Idj ð0Þ, ð3:31Þ

where Id ( � ) denotes the rate function of the random variable F 0nðx*, dÞ.
We have that E½F 0nðx*, dÞ� ¼ f 0ðx*, dÞ. Moreover, because of the assumption

(C4) and the assumed polyhedral structure, we have here that if d2TX(x*),
then f 0ðx*, dÞ is finite, and hence F 0�ðx*, dÞ is finite for any �2�¼ {�1, . . . , �K}.
Now, by (8.9), for f 0(x*, d) close to zero we can approximate Id (0) as follows

Idð0Þ 	
½ f 0ðx*, dÞ�2

2Var½F 0nðx*, dÞ�
: ð3:32Þ

This leads to the following concept. We call

� :¼ max
1� j� J

Var½F 0nðx*, djÞ�

½ f 0ðx*, djÞ�
2

ð3:33Þ

the condition number of the true problem. By (3.21) and (3.22) we have that

*	 (2�)�1. That is, for large � the true problem is viewed as ill conditioned
since one needs a very large sample in order to solve it exactly. Note that
f 0(x*, d)¼ 0 for some d2TX(x*)\{0} iff the true problem has another optimal
solution apart from x*, i.e., the set S is not a singleton. In that case �¼ þ1.

Of course, it is impractical to try to compute the above condition number.
For one thing it depends on the optimal solution x* which is not known a
priori. Therefore, the above analysis has rather a conceptual value. Note also
that we approach here the question of conditioning of the true problem from
the point of view of SAAs. That is, problems which are ‘‘flat’’ in some feasible
directions near the optimal solution x* are difficult to solve exactly. This is
measured by the squared coefficient of variation of the corresponding
directional derivative.

As it was mentioned in the previous section, in case n has a continuous
distribution it can happen that f 0(x*, d)¼ 0 for some d2TX(x*)\{0} even if the
optimal solution x* is unique. Typically in such cases x̂xN converges to x* at a
rate of Op(N

�1/2), i.e., accuracy of the estimator x̂xN improves slowly with
increase of the sample size N. From the above point of view any such problem
is ill conditioned.
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Let us also remark that it is possible to introduce a similar concept of
condition number for problems with finite feasible set X by replacing the
directional derivatives with the corresponding finite differences (see the
discussion of Section 3.1).

4 Validation analysis

Suppose that we are given a feasible point x 2 X as a candidate for an
optimal solution of the true problem. For example, x can be an output of a
run of the corresponding SAA problem. In this section we discuss ways to
evaluate quality of this candidate solution. This is important, in particular, for
a choice of the sample size and stopping criteria in simulation based
optimization. There are basically two approaches to such validation analysis.
We can either try to estimate the optimality gap f ðxÞ � v*, or to evaluate first
order (KKT) optimality conditions at the considered point x.

Let us emphasize that the following analysis is designed for the situations
where the value f ðxÞ, of the true objective function at the considered point, is
finite. In the case of two-stage programming this requires, in particular, that
the second stage problem, associated with first stage decision variables x, is
feasible for almost every realization of the random data.

4.1 Estimation of the optimality gap

In this section we consider the problem of estimating the optimality gap

gapðxÞ :¼ f ðxÞ � v* ð4:1Þ

associated with the candidate solution x. Clearly, for any feasible x 2 X,
gapðxÞ is nonnegative and gapðxÞ ¼ 0 iff x is an optimal solution of the true
problem.

Consider the optimal value v̂vN of the SAA problem (1.6). As it was
discussed in Section 2.2 we have that v* � E½v̂vN �. This means that v̂vN provides
a valid statistical lower bound for the optimal value v* of the true problem. The
expectation E½v̂vN � can be estimated by averaging. That is, one can solve M
times SAA problems based on independently generated samples each of size
N. Let v̂v1N , . . . , v̂v

M
N be the computed optimal values of these SAA problems.

Then

vN,M :¼
1

M

XM
j¼1

v̂v j
N ð4:2Þ
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is an unbiased estimator of E½v̂vN �. Since the samples, and hence v̂v1N , . . . , v̂v
M
N , are

independent, we can estimate the variance of vN,M by

�̂�2N, M :¼
1

M

1

M � 1

XM
j¼1

v̂v
j
N � vN, M

� �2" #
: ð4:3Þ

Note that the above make sense only if the optimal value v* of the true
problem is finite. Note also that the inequality v* � E½v̂vN � holds and v̂vN gives a
valid statistical lower bound even if f(x)¼ þ1 for some x2X.

In general, the random variable v̂vN , and hence its replications v̂v j
N , does not

have a normal distribution, even approximately (see Theorem 10 and the
following up discussion). However, by the CLT, the probability distribution
of the average vN,M becomes approximately normal asM increases. Therefore,
we can use

LN,M :¼ vN,M � t�,M�1�̂�N,M ð4:4Þ

as an approximate 100(1��)% confidence14 lower bound for the expectation
E½v̂vN �.

We can also estimate f ðxÞ by sampling.15 That is, let f̂fN 0 ðxÞ be the sample
average estimate of f ðxÞ, based on a sample of size N0 generated independently
of samples involved in computing x. Let �̂�2N 0 ðxÞ be an estimate of the variance
of f̂fN 0 ðxÞ. In the case of iid sample, one can use the sample variance estimate

�̂�2N 0 ðxÞ :¼
1

N 0ðN 0 � 1Þ

XN 0
i¼1

Fðx, �iÞ � f̂fN 0 ðxÞ
h i2

: ð4:5Þ

Then

UN 0 ðxÞ :¼ f̂fN 0 ðxÞ þ z��̂�N 0 ðxÞ ð4:6Þ

gives an approximate 100(1��)% confidence upper bound for f ðxÞ. Note that
since N0 typically is large, we use here the standard normal critical value z�.

We have that

E f̂fN 0 ðxÞ � vN,M

h i
¼ f ðxÞ � E½v̂vN � ¼ gapðxÞ þ v* � E½v̂vN � � gapðxÞ,

14 Here t�,� is the �-critical value of t-distribution with � degrees of freedom. This critical value is

slightly bigger than the corresponding standard normal critical value z�, and t�,� quickly approaches z�
as � increases.
15 Compare with the discussion of Section 2.2, see (2.20) in particular.
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i.e., f̂fN 0 ðxÞ � vN,M is a biased estimator of the gapðxÞ. Also the variance of
this estimator is equal to the sum of the variances of f̂fN 0 ðxÞ and vN,M , and
hence

f̂fN 0 ðxÞ � vN,M þ z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂�2N 0 ðxÞ þ �̂�

2
N,M

q
ð4:7Þ

provides a conservative 100(1��)% confidence upper bound for the gapðxÞ.
We say that this upper bound is ‘‘conservative’’ since in fact it gives a
100(1��)% confidence upper bound for the gapðxÞ þ v* � E½v̂vN �, and we have
that v* � E½v̂vN � � 0.

In order to calculate the estimate f̂fN 0 ðxÞ one needs to compute the value
Fðx, �iÞ of the objective function for every generated sample realization �i,
i¼ 1, . . . ,N0. Typically it is much easier to compute Fðx, �Þ, for a given �2�,
than to solve the corresponding SAA problem. Therefore, often one can use a
relatively large sample size N0, and hence to estimate f ðxÞ quite accurately.
Evaluation of the optimal value v* by employing the estimator vN,M is a more
delicate problem.

There are two types of errors in using vN,M as an estimator of v*, namely the
bias v* � E½v̂vN � and variability of vN,M measured by its variance. Both errors
can be reduced by increasing N, and the variance can be reduced by increasing
N and M. Note, however, that the computational effort in computing vN,M is
proportional to M, since the corresponding SAA problems should be solved
M times, and to the computational time for solving a single SAA problem
based on a sample of size N. Naturally one may ask what is the best way of
distributing computational resources between increasing the sample size N
and the number of repetitions M. This question is, of course, problem
dependent. Let pN be the probability that an optimal solution of an SAA
problem, based on a sample of size N, is an optimal solution of the true
problem. Then the probability that in M repetitions of the SAA problems at
least one optimal solution is an optimal solution of the true problem is
1�(1�pN)

M. Now if we use the asymptotic pN	 1�e�N
 for some positive
constant 
, then

1� ð1� pNÞ
M
	 1� e�NM
,

which is the same as the asymptotic pNM	 1�e�NM
. Of course, the above are
asymptotics and for finite sample sizes the situation can be different. In any
case it appears that in cases where complexity of SAA problems grows fast
with increase of the sample size, it is more advantageous to use a larger
number of repetitions M. On the other hand, in some cases the computational
effort in solving an SAA problem grows only linearly with the sample size N.
In such cases one can use a larger N and make only a few repetitions M in
order to estimate the variance of vN,M .
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The bias v* � E½v̂vN � does not depend on M, of course. The following result
shows that it decreases monotonically with increase of the sample size N.

Proposition 16. Suppose that the sample is iid. Then E½v̂vN � � E½v̂vNþ1� for
any N2N.

Proof. We can write

f̂fNþ1ðxÞ ¼
1

N þ 1

XNþ1
i¼1

1

N

X
j 6¼i

Fðx, �jÞ

" #
:

Moreover,

inf
x2X

E
1

N

X
j 6¼i

Fðx, njÞ

" #
� E inf

x2X

1

N

X
j 6¼i

Fðx, njÞ

" #
, ð4:8Þ

and since the sample is iid the right hand side of (4.8) is equal to E½v̂vN �. It
follows that

E½v̂vNþ1�¼ inf
x2X

E f̂fNþ1ðxÞ
h i

�
1

N þ 1

XNþ1
i¼1

E inf
x2X

1

N

X
j 6¼i

Fðx, njÞ

" #
¼ E½v̂vN �,

which completes the proof. u

As it was discussed in Section 2.2 (see (2.29) in particular) we have that if
the set S is not a singleton, then the bias v* � E½v̂vN � typically converges to zero,
as N increases, at a rate of O(N�1/2), and tends to be bigger for a larger set S.
Ill conditioned problems with a large set of optimal or nearly optimal
solutions show a similar behavior of the bias. On the other hand, in well cond-
itioned problems, the event x̂xN ¼ x*, and hence v̂vN ¼ f̂fNðx*Þ, happens with
probability approaching one exponentially fast. Since E½ f̂fNðx*Þ� ¼ f ðx*Þ, in
such cases the bias v* � E½v̂vN � ¼ f ðx*Þ � E½v̂vN � tends to be much smaller.

In the above approach the upper and lower statistical bounds were
computed independently of each other. Alternatively, it is possible to use the
same sample for estimating f ðxÞ and E½v̂vN �. That is, for M generated samples
each of size N, the gap is estimated by

dgapgapN,MðxÞ :¼
1

M

XM
j¼1

f̂f
j
NðxÞ � v̂v

j
N

h i
, ð4:9Þ
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where f̂f
j
NðxÞ and v̂v

j
N are computed from the same sample j¼ 1, . . . ,

M. We have that the expected value of dgapgapN,MðxÞ is f ðxÞ � E½v̂vN �, i.e., the
estimator dgapgapN,MðxÞ has the same bias as f̂fN 0 ðxÞ � vN,M . On the other hand,
for well conditioned problems it happens with high probability that v̂v j

N ¼

f̂f jNðx*Þ, and as a consequence f̂f jNðxÞ tends to be highly positively correlated
with v̂v jN , provided that x is close to x*. In such cases variability of dgapgapN,MðxÞ
can be considerably smaller than variability of f̂fN 0 ðxÞ � vN,M . This is the idea
of common random number generated estimators which was discussed at the
end of Section 1 (see (1.7) and (1.8), in particular).

In order to reduce the bias of the above estimators of the optimality gap let
us consider the following approach. Let 	:�!R

n be a measurable mapping
such that E[	(n)]¼ 0. We have then that E½Fðx, nÞ þ 	ðnÞTx� ¼ E½Fðx, nÞ� for
any x2Rn, where Fð�, �Þ is defined in (2.2). Consequently, v* is equal to the
optimal value of the problem

Min
x2Rn

E Fðx, nÞ þ 	ðnÞTx
 �

: ð4:10Þ

It follows that v* � E½ ~vv	N �, where ~vv	N is the optimal value of the SAA problem
corresponding to the problem (4.10). That is, ~vv	N provides a valid statistical
lower bound for the true optimal value v*. Of course, quality of this lower
bound depends on a choice of the mapping 	( � ). This is closely related to a
variance reduction technique called ‘‘Linear Control Random Variables’’
method. We discuss that later (see Section 5.2).

From a theoretical point of view there is an optimal choice of the mapping
	( � ). As it was discussed in Chapter ‘‘Optimality and Duality in Stochastic
Programming’’, with the problem (4.10) is associated a dual problem such that
if the function Fð�, nÞ is convex w.p.1 and 	ð�Þ is an optimal solution of that
dual problem, then under mild regularity conditions,

v* ¼ E inf
x2Rn

Fðx, nÞ þ 	ðnÞTx
� �� �

, ð4:11Þ

and for a.e. n the set of minimizers of Fðx, nÞ þ 	ðnÞTx contains S. In
particular, if the set �¼ {�1, . . . , �K} is finite, then this dual problem can be
written in the form

Max
	1,...,	K

�
XK
k¼1

pkF
*

kð�	kÞ subject to
XK
k¼1

pk	k ¼ 0, ð4:12Þ

where F*
kð�Þ is the conjugate of the function Fkð�Þ :¼ Fð�, �kÞ. Of course, if 	ð�Þ

is known, i.e., the dual problem is solved, then the expected value problem
(1.1) can be easily solved and one does not need sampling.
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4.2 KKT statistical test

Suppose that the feasible set X is defined by constraints in the form

X :¼ fx 2 R
n : gjðxÞ ¼ 0, j ¼ 1, . . . , q; gjðxÞ � 0, j ¼ qþ 1, . . . , pg,

ð4:13Þ

where gj(x) are smooth (at least continuously differentiable) deterministic
functions. Let x* 2X be an optimal solution of the true problem and suppose
that the expected value function f(x*) is differentiable at x*. Then, under a
constraint qualification, first order (KKT) optimality conditions hold at x*.
That is, there exist Lagrange multipliers 	j such that 	j� 0, j2 I(x*) and

rf ðx*Þ þ
X

j2J ðx*Þ
	jrgjðx*Þ ¼ 0, ð4:14Þ

where I ðxÞ :¼ f j : gjðxÞ ¼ 0, j ¼ qþ 1, . . . , pg denotes the index set of inequal-
ity constraints active at a point x2Rn, and J ðxÞ :¼ f1, . . . , qg [ I ðxÞ. Note
that if the constraint functions are linear, say gjðxÞ :¼ aTj xþ bj, then
rgj(x)¼ aj and the above KKT conditions hold without a constraint quali-
fication. Consider the (polyhedral) cone

KðxÞ :¼ z 2 R
n : z ¼

X
j2J ðxÞ

�jrgjðxÞ, �j � 0, j 2 I ðxÞ
( )

: ð4:15Þ

Then the KKT optimality conditions can be written in the form rf(x*)2K(x*).
Suppose now that f( � ) is differentiable at the candidate point x 2 X, and

that the gradient rf ðxÞ can be estimated by a (random) vector �NðxÞ. In
particular, if F( � , n) is differentiable at x w.p.1, then we can use the estimator

�NðxÞ :¼
1

N

XN
i¼1

rxFðx, �
iÞ ¼ rf̂fNðxÞ ð4:16Þ

associated with the generated16 random sample. Note that if, moreover, the
derivatives can be taken inside the expectation, that is,

rf ðxÞ ¼ E½rxFðx, nÞ�, ð4:17Þ

16 We emphasize that the random sample in (4.16) is generated independently of the sample used to

compute the candidate point x.
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then the above estimator is unbiased, i.e., E½�NðxÞ� ¼ rf ðxÞ. Regularity
conditions which are required for the interchangeability formula (4.17) to hold
are discussed in section ‘‘Expectation Functions’’ of the chapter ‘‘Optimality
and Duality in Stochastic Programming’’. In the case of two-stage linear
stochastic programming with recourse, formula (4.17) typically holds if the
corresponding random data have a continuous distribution. On the other
hand, if the random data have a discrete distribution with a finite support,
then the expected value function f(x) is piecewise linear and typically is
nondifferentiable at an optimal solution.

Suppose, further, that VN :¼ N1=2½�NðxÞ � rf ðxÞ� converges in distribution,
as N tends to infinity, to multivariate normal with zero mean vector and
covariance matrix �, written VN)N(0,�). For the estimator �NðxÞ defined in
(4.16), this holds by the CLT if the interchangeability formula (4.17) holds, the
sample is iid, and rxFðx, nÞ has finite second order moments. Moreover, in
that case the covariance matrix � can be estimated by the corresponding
sample covariance matrix

�̂�N :¼
1

N�1

XN
i¼1

rxFðx, �
iÞ�rf̂fNðxÞ

h i
rxFðx, �

iÞ � rf̂fNðxÞ
h iT

: ð4:18Þ

Under the above assumptions, the sample covariance matrix �̂�N is an
unbiased and consistent estimator of �.

We have that if VN)N(0,�) and the covariance matrix � is nonsingular,
then given a consistent estimator �̂�N of �, the following holds

Nð�NðxÞ � rf ðxÞÞ
T�̂��1N ð�NðxÞ � rf ðxÞÞ ) �2n, ð4:19Þ

where �2n denotes the chi-square distribution with n degrees of freedom. This
allows to construct the following (approximate) 100(1��)% confidence
region17 for rf ðxÞ:

z 2 R
n : ð�NðxÞ � zÞÞT�̂��1N ð�NðxÞ � zÞÞ �

�2�,n
N

( )
: ð4:20Þ

Consider the statistic

TN :¼ N inf
z2KðxÞ

ð�NðxÞ � zÞT�̂��1N ð�NðxÞ � zÞ: ð4:21Þ

17 Here �2�,n denotes the �-critical value of chi-square distribution with n degrees of freedom. That is, if

Y � �2n, then ProbfY � �2�,ng ¼ �.
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Note that since the cone KðxÞ is polyhedral and �̂��1N is positive definite, the
minimization in the right hand side of (4.21) can be formulated as a quadratic
programming problem, and hence can be solved by standard quadratic
programming algorithms. We have that the confidence region, defined in
(4.20), does not have common points with the cone KðxÞ iff TN > �2�,n. We can
also use the statistic TN for testing the hypothesis:

H0: rf ðxÞ 2 KðxÞ against the alternative H1 : rf ðxÞ 62 KðxÞ:

ð4:22Þ

The TN statistic represents the squared distance, with respect to the norm18

k � k�̂��1
N
, from N1=2�NðxÞ to the cone KðxÞ. Suppose for the moment that

only equality constraints are present in the definition (4.13) of the feasible set,
and that the gradient vectors rgjðxÞ, j¼ 1, . . . , q, are linearly independent.
Then the set KðxÞ forms a linear subspace of R

n of dimension q, and the
optimal value of the right hand side of (4.21) can be written in a closed form.
Consequently, it is possible to show that TN has asymptotically noncentral
chi-square distribution with n�q degrees of freedom and the noncentrality
parameter19

� :¼ N inf
z2Kð x Þ

ðrf ðxÞ � zÞT��1ðrf ðxÞ � zÞ: ð4:23Þ

In particular, under H0 we have that �¼ 0, and hence the null distribution of
TN is asymptotically central chi-square with n�q degrees of freedom.

Consider now the general case where the feasible set is defined by equality
and inequality constraints as in (4.13). Suppose that the gradient vectors
rgjðxÞ, j 2 J ðxÞ, are linearly independent and that the strict complementarity
condition holds at x, that is, the Lagrange multipliers 	j, j 2 I ðxÞ,
corresponding to the active at x inequality constraints, are positive. Then
for �NðxÞ sufficiently close to rf ðxÞ the minimizer in the right hand side of
(4.21) will be lying in the linear space generated by vectors rgjðxÞ, j 2 J ðxÞ.
Therefore, in such case the null distribution of TN is asymptotically central
chi-square with � :¼ n� jJ ðxÞj degrees of freedom. Consequently, for a
computed value T *

N of the statistic TN we can calculate (approximately) the
corresponding p-value, which is equal to ProbfY � T *

Ng, where Y � �2�. This
p-value gives an indication of the quality of the candidate solution x with
respect to the stochastic precision.

It should be understood that by accepting (i.e., failing to reject) H0, we do
not claim that the KKT conditions hold exactly at x. By accepting H0 we
rather assert that we cannot separate rf ðxÞ from KðxÞ, given precision of the

18 For a positive definite matrix A, the norm jj � jjA is defined as jjzjjA :¼ (zTAz)1/2.
19 Note that under the alternative (i.e., if rf ðxÞ 62 KðxÞ), the noncentrality parameter � tends to infinity

as N!1. Therefore, in order to justify the above asymptotics one needs a technical assumption

known as Pitman’s parameter drift.
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generated sample. That is, statistical error of the estimator �NðxÞ is bigger than
the squared k � k��1 -norm distance between rf ðxÞ and KðxÞ. Also rejecting H0

does not necessarily mean that x is a poor candidate for an optimal solution
of the true problem. The calculated value of TN statistic can be large, i.e., the
p-value can be small, simply because the estimated covariance matrix N�1�̂�N

of �NðxÞ is ‘‘small’’. In such cases, �NðxÞ provides an accurate estimator of
rf ðxÞ with the corresponding confidence region (4.20) being ‘‘small’’.
Therefore, the above p-value should be compared with the size of the
confidence region (4.20), which in turn is defined by the size of the matrix
N�1�̂�N measured, for example, by its eigenvalues. Note also that it may
happen that jJ ðxÞj ¼ n, and hence �¼ 0. Under the strict complementarity
condition, this means that rf ðxÞ lies in the interior of the cone KðxÞ, which in
turn is equivalent to the condition that f

0
ðx, dÞ � ckdk for some c>0 and all

d2Rn. Then, by the LD principle (see (4.15) in particular), the event
�NðxÞ 2 KðxÞ happens with probability approaching one exponentially fast.

Let us remark again that the above testing procedure is applicable if F( � , n)
is differentiable at x w.p.1 and the interchangeability formula (4.17) holds.
This typically happens in cases where the corresponding random data have a
continuous distribution. On the other hand, under the conditions (C1)–(C2),
of Section 3.3, and condition (C3) which assumes that the distribution of n has
a finite support, the expectation function f( � ) typically is nondifferentiable at
an optimal solution, in which case the above statistical KKT test is not
applicable. We discuss such cases in the next section.

4.3 Testing optimality conditions in nondifferentiable cases

Suppose that the feasible set X is defined by constraints in the form (4.13)
with the index sets I(x) and J(x) defined in the same way as in the previous
section. Suppose further that for every � 2� the function F( � , �) is convex.
Then the function f( � ) is convex and first order optimality conditions, at a
point x* 2X, can be written in the form: there exist Lagrange multipliers 	j
such that 	j� 0, j2 I(x*), and

0 2 @f ðx*Þ þ
X

j2J ðx*Þ
	jrgjðx*Þ: ð4:24Þ

If the true problem is convex, i.e., the functions gj, j¼ 1, . . . , q, are affine and
gj, j¼ qþ 1, . . . , p, are convex, the above conditions are sufficient for x* to be
an optimal solution of the true problem. Under a constraint qualification,
conditions (4.24) are also necessary optimality conditions. If the function
f(x) is differentiable at x*, i.e., the subdifferential @f(x*) is a singleton,
@f(x*)¼ {rf(x*)}, then conditions (4.24) coincide with the KKT optimality
conditions (4.14). In this section we discuss cases where @f(x*) possibly is not a
singleton, i.e., f(x) is not necessarily differentiable at x*.
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For a point x 2 X define

�ðxÞ :¼ inf
�2@f ðxÞ

dist �, KðxÞð Þ, ð4:25Þ

where K(x) is the cone defined in (4.15). We have that the optimality condi-
tions (4.24) hold at the point x iff �ðxÞ ¼ 0.

It is natural to try to test optimality conditions (4.24) by replacing the
subdifferential @f(x*) with its sample average estimate @f̂fNðx*Þ, and con-
sequently estimating �ðxÞ by

�̂�NðxÞ :¼ inf
�2@f̂fN ðxÞ

dist �, KðxÞð Þ: ð4:26Þ

There are, however, two basic problems with such an approach. First, in order
to calculate the estimate �̂�NðxÞ one needs to compute the whole subdifferential
@f̂fNðxÞ. Second, the mapping (multifunction) x � @f(x) is not continuous
unless @f(x) is a singleton. Take, for example, f(x) :¼ jxj, x2R. This function
has unique minimizer x*¼ 0 with @f(x*)¼ [�1, 1]. On the other hand for
x 6¼ 0, the subdifferential @f ðxÞ is either {1} or {�1}, and hence �ðxÞ ¼ 1, does
not matter how close x to x*. This makes testing optimality conditions (4.24)
in nondifferentiable cases really difficult.

We give below some results about convergence of the subdifferentials @f̂fNðxÞ
which have an independent interest.

Proposition 17. Suppose that the sample is iid, for every �2� the function
F( � , �) is convex, and the expected value function f(x) is well defined and finite
valued in a neighborhood of a point x 2 R

n. Then

lim
N!1

H @f̂fNðxÞ, @f ðxÞ
� �

¼ 0 w:p:1: ð4:27Þ

Proof. As it was shown in section ‘‘Expectation Functions’’ of chapter
‘‘Optimality and Duality in Stochastic Programming’’, we have here that f(x)
is directionally differentiable at x and

f 0ðx, dÞ ¼ E F 0nðx, dÞ
h i

: ð4:28Þ

We also have that

f̂f 0Nðx, dÞ ¼
1

N

XN
i¼1

F 0�i ðx, dÞ: ð4:29Þ
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Therefore, by the LLN it follows from (4.28) that for any d2Rn, f̂f 0Nðx, dÞ
converges to f 0ðx, dÞ w.p.1 as N!1. Consequently, for any countable set
D�R

n we have that the event

lim
N!1

f̂f 0Nðx, dÞ ¼ f 0ðx, dÞ, 8 d 2 D,

happens w.p.1. Let us take a countable and dense subset D of Rn. Since the
functions f̂f 0Nðx, �Þ are convex, it follows by Theorem 25 that f̂f 0Nðx, �Þ converges
to f 0ðx, �Þ w.p.1 uniformly on the unit ball {d: jjdjj � 1}. Furthermore, we have

H @f̂fNðxÞ, @f ðxÞ
� �

¼ sup
kdk�1

j f̂f 0Nðx, dÞ � f 0ðx, dÞj, ð4:30Þ

and hence (4.27) follows. u

Note that the assumption that the sample is iid in the above proposition
was used only to ensure that the LLN, for the random variable F 0nðx, dÞ, holds
pointwise, i.e., for any (fixed) d2Rn.

Under the polyhedricity assumptions (C2) and (C3) of Section 3.3, it is
possible to say more. In that case the functions f( � ) and f̂fNð�Þ are polyhedral
and hence their subdifferentials are polyhedrons. Suppose, further, that f(x) is
finite valued in a neighborhood of a point x. Then the convergence in (4.27) is
uniform on a neighborhood of x. Also because of the polyhedral structure of
the functions F( � , �), �2�, we have here that the space Rn can be partitioned
into a union of polyhedral cones Tm, m¼ 1, . . . ,M, such that f( � ) is linear on
each xþ Tm in a neighborhood of x, and there is a one-to-one correspondence
between vertices (extreme points) of @f ðxÞ and rf(x) for x 2 xþ Tm f0g
sufficiently close to x. Similarly, every sample average function f̂fNð�Þ is linear
on unions of xþ Tm in a neighborhood of x. Consequently, the number of
vertices of @f̂fNðxÞ is always less than or equal to the number of vertices of
@f ðxÞ. Moreover, because of the convergence (4.27) it follows that w.p.1 for N
large enough there is a one-to-one correspondence between vertices of @f̂fNðxÞ
and @f ðxÞ, and vertices of @f̂fNðxÞ converge to the corresponding vertices of
@f ðxÞ w.p.1 as N!1.

This suggests the following procedure for estimating @f̂fNðxÞ, and hence the
number �̂�NðxÞ. Generate L points x1, . . . , xL randomly, say uniformly or
normally, distributed in a small neighborhood of x. At each point calculate
the gradient (subgradient) of f̂fN , and consequently estimate �̂�NðxÞ by
replacing @f̂fNðxÞ with the convex hull of rf̂fNðxlÞ, l¼ 1, . . . ,L. It is not difficult
to show that the convex hull of rf̂fNðxlÞ, l¼ 1, . . . ,L, will converge w.p.1 to
@f̂fNðxÞ as L!1. However, numerical experiments indicate that the
convergence is slow and one needs a large number L for a test, based on
such procedure, to be reasonably accurate. Therefore, even for moderate
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values of the dimension n such procedure appears to be not practical. For
numerical experiments and an additional discussion see Linderoth et al.
(2002).

Remark 18. It is also possible to derive the Large Deviations principle for the
Hausdorff distance between @f̂fNðxÞ and @f ðxÞ. Let us consider for the sake of
simplicity the polyhedral case, i.e., suppose that the assumptions (C2) and
(C3) of Section 3.3 hold and the expected value function f(x) is finite valued in
a neighborhood of a point x 2 R

n. Then there exist a finite number of
directions d1, . . . , dJ, independent of the sample, such that the supremum in
the right hand side of (4.30) is attained at one of dj. This can be shown
essentially in the same way as in the proof of Lemma 14. Now let us choose a
constant ">0. By Cramér’s LD Theorem we have that for every dj,
j¼ 1, . . . , J, there exists a constant �j>0 such that

lim
N!1

1

N
log P j f̂f 0Nðx, djÞ � f 0ðx, djÞj � "

� �h i
¼ ��j : ð4:31Þ

Because of (4.30) we have that the event fHð@f̂fNðxÞ, @f ðxÞÞ � "g coincides with
the union of the events fj f̂f 0Nðx, djÞ � f 0ðx, djÞj � "g, j¼ 1, . . . , J. It follows then
that

lim
N!1

1

N
log P H @f̂fNðxÞ, @f ðxÞ

� �
� "

n oh i
¼ ��, ð4:32Þ

where � :¼ min1� j� J �j. In a general, not necessarily polyhedral, case the
estimate (4.32) can be obtained, under certain regularity conditions, by
applying an infinite dimensional form of the LD principle in the functional
space of continuous real valued functions defined on the unit sphere of Rn.

5 Variance reduction techniques

Consider the sample average estimators f̂fNðxÞ. We have that if the sample is
iid, then the variance of f̂fNðxÞ is equal to �

2(x)/N, where �2(x) :¼Var[F(x, n)].
In some cases it is possible to reduce the variance of generated sample
averages, which in turn enhances convergence of the corresponding SAA
estimators. It is beyond the scope of this chapter to give a complete survey of
such variance reduction techniques. Therefore, we briefly discuss in this
section a few variance reduction approaches which seem to be useful in the
SAA method. For an interval [a, b]�R, we denote by U[a, b] the uniform
probability distribution on that interval.
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5.1 Latin hypercube sampling

Suppose that the random data vector n¼ �(!) is one dimensional with the
corresponding cdf G( � ). We can then write

E½Fðx, nÞ� ¼

Z þ1
�1

Fðx, �Þ dGð�Þ: ð5:1Þ

In order to evaluate the above integral numerically it will be much better to
generate sample points evenly distributed than to use an iid sample. That is,
we can generate independent random points

Ui � U½ði � 1Þ=N, i=N�, i ¼ 1, . . . , N, ð5:2Þ

and then to construct the random sample of n by the inverse20 transformation
ni :¼G�1(Ui), i¼ 1, . . . ,N.

Now suppose that i is chosen at random from the set {1, . . . ,N} (with equal
probability for each element of that set). Then conditional on i the
corresponding random variable Ui is uniformly distributed on the interval
[(i�1)/N, i/N ], and the unconditional distribution of Ui is uniform on the
interval [0, 1]. Consequently, let {i1, . . . , iN} be a random permutation of the
set {1, . . . ,N}. Then the random variables ni1 , . . . , niN have the same marginal
distribution, with the same cdf G( � ), and are negatively correlated with each
other. Therefore, the expected value of

f̂fNðxÞ ¼
1

N

XN
i¼1

Fðx, niÞ ¼
1

N

XN
s¼1

Fðx, nisÞ ð5:3Þ

is f(x), while21

Var f̂fNðxÞ
h i

¼ N�1�2ðxÞ þ 2N�2
X
s<t

Cov Fðx, nisÞ, Fðx, nitÞ
� �

: ð5:4Þ

If the function F(x, � ) is monotonically increasing or decreasing, than the
random variables Fðx, nisÞ and Fðx, nitÞ, s 6¼ t, are also negatively correlated.
Therefore, the variance of f̂fNðxÞ tends to be smaller, and in some cases much
smaller, than �2(x)/N.

20 From the theoretical point of view such inverse transformation always exists although it can be

difficult to calculate numerically.
21 By Cov(X,Y) and Corr(X,Y) we denote the covariance and correlation, respectively, between

random variables X and Y.
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Suppose now that the random vector n¼ (n1, . . . , nd) is d-dimensional, and
that its components nj, j¼ 1, . . . , d, are distributed independently of each
other. Then we can use the above procedure for each component nj. That is, a
random sample Ui of the form (5.2) is generated, and consequently N
replications of the first component of n are computed by the corresponding
inverse transformation applied to randomly permutedUis . The same procedure
is applied to every component of n with the corresponding random samples of
the form (5.2) and random permutations generated independently of each
other. This sampling scheme is called the Latin Hypercube (LH) sampling.

If the function F(x, � ) is decomposable, i.e., Fðx, �Þ :¼ F1ðx, �1Þ þ � � � þ
Fdðx, �dÞ, then E½Fðx, nÞ� ¼ E½F1ðx, n1Þ� þ � � � þ E½Fdðx, ndÞ�, where each expec-
tation is calculated with respect to a one dimensional distribution. In that case
the LH sampling ensures that each expectation E½Fjðx, njÞ� is estimated in
nearly optimal way. Therefore, the LH sampling works especially well in cases
where the function F(x, � ) tends to have a somewhat decomposable structure.
In any case the LH sampling procedure is easy to implement and can be
applied to SAA optimization procedures in a straightforward way. Since in
LH sampling the random replications of F(x, n) are correlated with each other,
one cannot use variance estimates like (2.21) or (4.5). Therefore, the LH
method usually is applied in several independent batches in order to estimate
variance of the corresponding estimators.

5.2 Linear control random variables method

Suppose that we have a measurable function A(x, �) such that E[A(x, n)]¼ 0
for all x2X. Then, for any t2R, the expected value of Fðx, nÞ þ tAðx, nÞ is
f(x), while

Var½Fðx, nÞ þ tAðx, nÞ�

¼ Var½Fðx, nÞ� þ t2 Var½Aðx, nÞ� þ 2t CovðFðx, nÞ, Aðx, nÞÞ:

It follows that the above variance attains its minimum, with respect to t, for

t* :¼ �F , AðxÞ
VarðFðx, nÞÞ

VarðAðx, nÞÞ

� �1=2
, ð5:5Þ

where F ,AðxÞ :¼ CorrðFðx, nÞ,Aðx, nÞÞ, and with

Var½Fðx, nÞ þ t*Aðx, nÞ� ¼ Var Fðx, nÞ½ �½1� F , AðxÞ
2
�: ð5:6Þ
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For a given x2X and generated sample �1, . . . , �N, one can estimate, in the
standard way, the covariance and variances appearing in the right hand side of
(5.5), and hence to construct an estimate t̂t of t*. Then f(x) can be estimated by

f̂f AN ðxÞ :¼
1

N

XN
i¼1

Fðx, �iÞ þ t̂tAðx, �iÞ
 �

: ð5:7Þ

By (5.6), the linear control estimator f̂f AN ðxÞ has a smaller variance than f̂fNðxÞ if
F(x, n) and A(x, n) are highly correlated with each other.

Let us make the following observations. The estimator t̂t, of the optimal
value t*, depends on x and the generated sample. Therefore, it is difficult to
apply linear control estimators in an SAA optimization procedure. That is,
linear control estimators are mainly suitable for estimating expectations at a
fixed point. Also if the same sample is used in estimating t̂t and f̂f AN ðxÞ, then
f̂f AN ðxÞ can be a slightly biased estimator of f(x).

Of course, the above Linear Control procedure can be successful only if a
function A(x, �), with mean zero and highly correlated with F(x, �), is
available. Choice of such a function is problem dependent. For instance, one
can use a linear function A(x, �) :¼ 	(�)Tx (compare with the discussion at
the end of Section 4.1). Consider, for example, two-stage stochastic
programming with recourse. Suppose that the random vector h¼ h(!) and
matrix T¼T(!), in the second stage problem (1.2), are independently
distributed, and let � :¼E(h). Then

E½ðh� �ÞTT � ¼ E½ðh� �Þ�TE½T � ¼ 0,

and hence one can use Aðx, �Þ :¼ ðh� �ÞTTx as the control variable.
Let us finally remark that the above procedure can be extended in a

straightforward way to a case where several functions A1ðx, �Þ, . . . ,Amðx, �Þ,
each with zero mean and highly correlated with F(x, �), are available.

5.3 Importance sampling and likelihood ratio methods

Suppose that n has a continuous distribution with probability density
function (pdf ) g( � ). Let  ( � ) be another pdf such that the so-called likelihood
ratio function L( � ) :¼ g( � )/ ( � ) is well defined. That is, if  (z)¼ 0 for some
z2Rd, then g(z)¼ 0, and by the definition, 0/0¼ 0, i.e., we do not divide a
positive number by zero. Then we can write

f ðxÞ ¼

Z
Fðx, �Þgð�Þ d� ¼

Z
Fðx, �ÞLð�Þ ð�Þ d� ¼ E ½Fðx, fÞLðfÞ�,

ð5:8Þ
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where the integration is performed over the space R
d and the notation E 

emphasizes that the expectation is taken with respect to the random vector
f having pdf  ( � ).

Let us show that, for a fixed x, the variance of F(x, f)L(f) attains its
minimal value for  ( � ) proportional to jF(x, � )g( � )j, i.e., for

 *ð�Þ :¼
jFðx, �Þgð�ÞjR
jFðx, �Þgð�Þj d�

: ð5:9Þ

Since E ½Fðx, fÞLðfÞ� ¼ f ðxÞ and does not depend on  ( � ), we have that the
variance of F(x, f)L(f) is minimized if

E ½Fðx, fÞ
2LðfÞ2� ¼

Z
Fðx, �Þ2gð�Þ2

 ð�Þ
d�, ð5:10Þ

is minimized. Furthermore, by Cauchy inequality we have

Z
jFðx, �Þgð�Þj d�

	 
2

�

Z
Fðx, �Þ2gð�Þ2

 ð�Þ
d�

	 
 Z
 ð�Þ d�

	 

: ð5:11Þ

It remains to note that
R
 (�) d�¼ 1 and the left hand side of (5.11) is equal to

the expected value of squared F(x, f)L(f) for  ( � )¼ *( � ).
Note that if F(x, � ) is nonnegative valued, then  *ð�Þ ¼ Fðx, �Þgð�Þ=f ðxÞ and

for that choice of the pdf  ( � ), the function F(x, � )L( � ) is identically equal to
f(x). Of course, in order to achieve such absolute variance reduction to zero we
need to know the expectation f(x) which was our goal in the first place.
Nevertheless, it gives the idea that if we can construct a pdf  ( � ) roughly
proportional to jF(x, � )g( � )j, then we may achieve a considerable variance
reduction by generating a random sample �1, . . . , �N from the pdf  ( � ), and
then estimating f(x) by

~ff  N ðxÞ :¼
1

N

XN
i¼1

Fðx, �iÞLð�iÞ: ð5:12Þ

The estimator ~ff  N ðxÞ is an unbiased estimator of f(x) and may have
significantly smaller variance than f̂fNðxÞ depending on a successful choice of
the pdf  ( � ).

Similar analysis can be performed in cases where n has a discrete
distribution by replacing the integrals with the corresponding summations.

Let us remark that the above approach, called importance sampling, is
extremely sensitive to a choice of the pdf  ( � ) and is notorious for its
instability. This is understandable since the likelihood ratio function in the tail
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is the ratio of two very small numbers. For a successful choice of  ( � ), the
method may work very well while even a small perturbation of  ( � ) may be
disastrous. This is why a single choice of  ( � ) usually does not work for
different points x, and consequently cannot be used for a whole optimization
procedure. Note also that E [L(�)]¼ 1. Therefore, L(�)�1 can be used as a
linear control variable for the likelihood ratio estimator ~ff  N ðxÞ.

In some cases it is also possible to use the likelihood ratio method for
estimating first and higher order derivatives of f(x). Consider, for example, the
optimal value Q(x, �) of the second stage linear program (1.2). Suppose that
the vector q and matrix W are fixed, i.e., not stochastic, and for the sake of
simplicity that h¼ h(!) and T¼T(!) are distributed independently of each
other. We have then that Q(x, �)¼Q(h�Tx), where

QðzÞ :¼ inf qTy : Wy ¼ z, y � 0
� �

:

Suppose, further, that h has a continuous distribution with pdf g( � ). We have
that

E½Qðx, nÞ� ¼ ET EhjT ½Qðx, nÞ�
� �

,

and by using the transformation z¼ h�Tx, since h and T are independent we
obtain

EhjT ½Qðx, nÞ� ¼ Eh½Qðx, nÞ�¼

Z
Qðh� TxÞgðhÞ dh ¼

Z
QðzÞgðzþ TxÞ dz

¼

Z
Qð�ÞLðx, �Þ ð�Þ d� ¼ E ½Lðx, fÞQðfÞ�,

ð5:13Þ

where  ( � ) is a chosen pdf and Lðx, �Þ :¼ gð� þ TxÞ= ð�Þ. If the function g( � )
is smooth, then the likelihood ratio function L( � , �) is also smooth. In that
case, under mild additional conditions, first and higher order derivatives can
be taken inside the expected value in the right hand side of (5.13), and
consequently can be estimated by sampling. Note that the first order
derivatives of Q( � , �) are piecewise constant, and hence its second order
derivatives are zeros whenever defined. Therefore, second order derivatives
cannot be taken inside the expectation E[Q(x, n)] even if n has a continuous
distribution.
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6 Multistage stochastic programming

Analysis developed in the previous sections can be applied to two-stage
stochastic programming in a straightforward way. However, for multi-
stage programming the situation is more subtle. In this section we discuss
T-stage linear stochastic programming problems with recourse of the form22

Min
A
11
x
1
¼b

1

x
1
�0

c1x1þE min
A21x1þA22x2¼b2

x2�0

c2x2þE � � �þE min
AT ,T�1xT�1þATTxT¼bT

xT�0

cTxT

2
64

3
75

2
64

3
75

2
64

3
75,
ð6:1Þ

driven by the random data process n2, . . . , nT. Here xt 2 R
nt , t¼ 1, . . . ,T, are

decision variables, �1 :¼ (c1,A11, b1) is known at the first stage (and hence is
nonrandom), and �t :¼ ðct,At,t�1,Att, btÞ 2 R

dt , t¼ 2, . . . ,T, are data vectors
some (all) elements of which can be random. Such multistage problems
were discussed in section ‘‘Multistage Models’’ of chapter ‘‘Stochastic
Programming Models’’, notation and terminology of which we follow.

If we denote by Q2(x1, �2) the optimal value of the (T�1)-stage problem

Min
A21x1þA22x2¼b2

x2�0

c2x2 þ E � � � þ E min
AT ,T�1xT�1þATTxT¼bT

xT�0

cTxT

2
64

3
75

2
64

3
75, ð6:2Þ

then we can write the T-stage problem (6.1) in the following form of two-stage
programming problem

Min
x1

c1x1 þ E½Q2ðx1, n2Þ� subject to A11x1 ¼ b1, x1 � 0: ð6:3Þ

Note, however, that if T� 3, then problem (6.2) in itself is a stochastic
programming problem. Consequently, if the number of scenarios involved
in (6.2) is very large, or infinite, then the optimal value Q2(x1, �2) may be
calculated only approximately, say by sampling.

There are several ways how sampling can be applied to multistage
programming. Sampling strategies are closely related to derivations of upper
and lower statistical bounds for the optimal value of the true problem. We
discuss that in the next section.

22 For the sake of notational convenience we write in this section the scalar product between two

vectors c, x2Rn as cx instead of cTx.
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6.1 Statistical bounds

For given x1 and �2, the corresponding expected value(s) can be estimated
by generating random samples and solving the obtained SAA problems.
Let us observe that in case T� 3, it follows from (2.22) that for any
estimator Q̂Q2ðx1, �2Þ of Q2(x1, �2) obtained in that way the following relation
holds23

Q2ðx1, �2Þ � E Q̂Q2ðx1, n2Þjn2 ¼ �2

h i
ð6:4Þ

for every feasible x1 and �2. That is, for T� 3 any SAA estimator of Q2(x1, �2)
is biased downwards.

In order to get a better insight into the above problem of bias let us assume
for the sake of simplicity that T¼ 3. In that case problem (6.2) becomes the
two-stage program

Min
x2

c2x2 þ E½Q3ðx2, n3Þjn2� subject to A21x1 þ A22x2 ¼ b2, x2 � 0,

ð6:5Þ

where Q3(x2, �3) is the optimal value of the problem

Min
x3

c3x3 subject to A32x2 þ A33x3 ¼ b3, x3 � 0: ð6:6Þ

The corresponding first stage problem is then (6.3) with Q2(x1, �2) given by the
optimal value of (6.5). The functions Q2( � , �2) and Q3( � , �3) are extended real
valued convex functions for any �2 and �3.

Let us note that if we relax the nonanticipativity constraints at the second
stage of the above three-stage problem we obtain the following two-stage
program

Min
x12X1

c1x1 þ E½Qðx1, n2, n3Þ�, ð6:7Þ

where

X1 :¼ x1 2 R
n1 : A11x1 ¼ b1, x1 � 0f g,

23 The notation E[ � jn¼ �] denotes the conditional expectation given the event ‘‘n¼ �’’.
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and Q(x1, �2, �3) is the optimal value of the following problem

Min
x2,x3

c2x2 þ c3x3

subject to A21x1 þ A22x2 ¼ b2,

A32x2 þ A33x3 ¼ b3,

x2 � 0, x3 � 0: ð6:8Þ

Since (6.7)–(6.8) is obtained by a relaxation of the nonanticipativity
constraints, its optimal value is smaller than the optimal value of the
corresponding three-stage problem.

There are several ways how one can sample from the random data n2, n3
(recall that �1 is not random). Let P be the probability distribution of the
random vector (n2, n3). Suppose that a random sample

�i2, �
i
3

� �
¼ ðci2, A

i
21, A

i
22, b

i
2Þ, ðc

i
3, A

i
32, A

i
33, b

i
3Þ

� �
� P, i ¼ 1, . . . , N,

ð6:9Þ

of N replications of the random data is generated. Suppose, further, that for
each ð�i2, �

i
3Þ the corresponding linear programming problem

Min
x1,x2,x3

c1x1 þ ci2x2 þ ci3x3

subject to A11x1 ¼ b1,

Ai
21x1 þ Ai

22x2 ¼ bi2,

Ai
32x2 þ Ai

33x3 ¼ bi3,

x1 � 0, x2 � 0, x3 � 0: ð6:10Þ

is solved, and the obtained optimal values are averaged.
For each i2 {1, . . . ,N}, the above problem (6.10) is equivalent to the problem

Min
x12X1

c1x1 þQðx1, �
i
2, �

i
3Þ: ð6:11Þ

Similar to (2.22), we have that

inf
x12X1

E½c1x1 þQðx1, n2, n3Þ� � E inf
x12X1

fc1x1 þQðx1, n2, n3Þg

� �
: ð6:12Þ

We also have that the average of the optimal values of (6.10) is an unbiased
and consistent estimator of the right hand side of (6.12). Recall that the left
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hand side of (6.12) is the optimal value of two-stage relaxation (6.7)–(6.8) of
the considered three-stage problem. It follows that the average of the optimal
values of (6.10) provides a valid, but not consistent, statistical lower bound for
the optimal value of (6.7)–(6.8), and hence for the considered three-stage
problem.

Suppose that E½Qðx1, n2, n3Þ� is finite. Then by the LLN we have that

c1x1 þ
1

N

XN
i¼1

Qðx1, n
i
2, n

i
3Þ!c1x1þE½Qðx1, n2, n3Þ� w:p:1 as N !1,

ð6:13Þ

and the expected value of the left hand side of (6.13) is equal to the right hand
side of (6.13). Therefore, for any feasible x12X1 of the first stage problem, the
left hand side of (6.13) provides a valid upper statistical bound for the optimal
value of the two-stage problem (6.7)–(6.8). However, as we discussed earlier,
the optimal value of (6.7)–(6.8) is smaller than the optimal value of the
corresponding three-stage problem. Therefore, there is no guarantee that the
left hand side of (6.13) gives a valid upper statistical bound for the optimal
value of the three-stage problem.

In order to improve the above statistical lower bound let us consider the
following optimization problem

Min
x12X1

c1x1 þ
1

N

XN
i¼1

Qðx1, �
i
2, �

i
3Þ: ð6:14Þ

Problem (6.14) can be considered as a two-stage program with scenarios
ð�i2, �

i
3Þ, i¼ 1, . . . ,N, having equal probabilities N�1. We have that the optimal

value of (6.14) gives a valid and consistent statistical lower bound for the two-
stage problem (6.7)–(6.8). Yet for the three-stage problem it gives a valid, but
not consistent24 lower statistical bound.

Let us observe that if the number of scenarios of the considered (true) three-
stage problem is finite, then some of the generated second stage vectors �i2 can
be equal to each other. In that case we can view the generated sample as a
scenario tree and associate with it a (sample) three-stage stochastic pro-
gramming problem. The program (6.14) becomes then a two-stage relaxation
of the obtained three-stage sample program. Note, however, that if the
number of scenarios K1 at the second stage of the considered (true) three-stage
problem is very large, then the probability that some of ni2 are equal to each
other is very small unless the sample sizeN is comparable withK1. For example,

24 Unless the optimal value of the three-stage problem coincides with the optimal value of its two-stage

relaxation (6.7) and (6.8).
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if each scenario at the second stage can happen with equal probability K�11 ,
then the probability that at least two of ni2 are equal to each other is

N ¼ 1�
YN�1
i¼1

1�
i

K1

	 

	 1� e�NðN�1Þ=ð2K1Þ:

In order to attain N at a given level �2 (0, 1), one needs then a sample of size
N 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K1 log½ð1� �Þ�1�

p
. This shows that if K1 is very large, then trying to

construct a scenario tree by sampling from the distribution of the random
vector (n2, n3) does not help much in improving the statistical lower bound
derived from the program (6.14). Moreover, if n2 has a continuous
distribution, then the probability that some of ni2 are equal to each other is
zero for any sample size. Therefore, in that case such sampling will never
produce a scenario tree structure.

The above discussion shows that a valid upper statistical bound cannot be
obtained by a straightforward sampling. In order to compute such an upper
bound one needs to construct an implementable and feasible policy. Recall
that a sequence of mappings xt( � ), t¼ 1, . . . ,T, is called an implementable
policy if x1ð�Þ ¼ x1 2 R

n1 and each xtð�Þ 2 R
nt , t¼ 2, . . . ,T, is a function of

x1 and the history �½1,t� :¼ ð�1, . . . , �tÞ of the process up to time t. An
implementable policy is feasible if it satisfies, w.p.1., the corresponding
feasibility constraints at each stage t¼ 1, . . . ,T. Given any implementable and
feasible25 policy x1, x2ðx1, �½1,2�Þ, . . . , xT ðx1, �½1,T �Þ, the expectation

E½c1x1 þ c2x2ðx1, n½1,2�Þ þ � � � þ cTxT ðx1, n½1,T �Þ� ð6:15Þ

provides an upper bound for the optimal value of the true multistage problem.
The above expectation can be estimated by the average

1

N

XN
i¼1

½c1x1 þ ci2x2ðx1, �
i
½1,2�Þ þ � � � þ ciTxT ðx1, �

i
½1,T �Þ� ð6:16Þ

for a generated sample �i2, . . . , �
i
T of N realizations of the random process

n2, . . . , nT.
In the case of two-stage problem (i.e., for T¼ 2), one can construct an

implementable and feasible policy by choosing a feasible first stage point
x12X1 and computing x2(x1, �2) as an optimal solution of the corresponding
second stage problem26

Min
x2

c2x2 subject to A21x1 þ A22x2 ¼ b2, x2 � 0: ð6:17Þ

25 Recall that �1 is not random. Therefore, the decision variables actually do not depend on �1, we
write �1 in �[1,t] for uniformity of notation. In particular, x2(x1, �[1,2])¼ x2(x1, �2).
26 Recall that �2¼ (c2,A21,A22, b2).
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For such choice of the policy, we have that c2x2(x1, �2) is equal to the optimal
value of the above problem (6.17), and hence the statistical upper bound (6.16)
is the same as the one used in Section 4.1. For T>2 one would like to
construct x2(x1, �2) as an optimal solution of the problem (6.2), and so on for
x3(x1, �[1,3]), etc. Note, however, that this would require solving multistage
programming problems and numerically may be infeasible.

To summarize the discussion of this section we can say the following:


 Any SAA method provides a valid statistical lower bound for the
optimal value of the true stochastic program. However, direct sampling
from the distribution of the random data vector n¼ (n1, n2, . . . , nT) does
not give a consistent statistical lower bound if T� 3.


 If the (total) number K of scenarios is finite, then by direct sampling
from the scenario population, one can eventually reconstruct the
scenario tree of the true problem. However, for T� 3 and K very large,
the sample size which will be required for a reasonable approximation of
the true scenario tree would be comparable with K.


 For T� 3, by taking a feasible point x12X1 of the first stage program
and then applying the SAA procedure in a straightforward way, as it
was discussed above, to a generated random sample of n, does not give a
valid statistical upper bound for the optimal value of the corresponding
multistage program.


 In order to compute a valid statistical upper bound one needs to
construct an implementable and feasible policy. However, for T� 3, it
could be difficult to construct such a policy which will provide a tight
and numerically feasible upper bound.

In order to improve these bounds one needs to increase the sample size at
every stage conditionally on the scenarios generated at the previous stage. We
discuss this in the next section.

6.2 Conditional sampling of multistage programs

For the sake of simplicity we discuss in this section the linear multistage
program (6.1) with T¼ 3. Let us generate a random sample in the following
way. First we generate a random sample

�i2 ¼ ðc
i
2, A

i
21, A

i
22, b

i
2Þ, i ¼ 1, . . . , N1,

of N1 replications of the random vector n2. Then for every i2 {1, . . . ,N1}, we
generate a random sample

�ij3 ¼ ðc
ij
3 , A

ij
32, A

ij
33, b

ij
3 Þ, j ¼ 1, . . . , N2,
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from the conditional distribution of n3 given the event fn2 ¼ �
i
2g. In that way

we obtain the following three-stage stochastic program

Min
x1

c1x1 þ
1

N1

XN1

i¼1

Q̂Q2,N2
ðx1, �

i
2Þ subject to A11x1 ¼ b1, x1 � 0,

ð6:18Þ

where Q̂Q2,N2
ðx1, �

i
2Þ is the optimal value of

Min
x2

ci2x2þ
1

N2

XN2

j¼1

Q3ðx2, �
ij
3 Þ subject to Ai

21x1þA
i
22x2 ¼ bi2, x2 � 0,

ð6:19Þ

with Q3(x2, �3) being the optimal value of the problem (6.6).
We refer to the above sampling scheme as the conditional sampling. The

sample size of third stage scenarios, associated with each second stage
scenario, does not need to be the same, we assumed it to be constant for
the sake of simplicity. The constructed three-stage stochastic programming
problem (6.18)–(6.19) has N¼N1N2 scenarios, each with equal probability 1/
N. It can be noted that for any fixed j2 {1, . . . ,N2} in the above conditional
sampling, the corresponding sample ð�i2, �

ij
3 Þ, i¼ 1, . . . ,N1, is a random

sample of the type (6.9), i.e., is derived from the distribution of the random
vector (n2, n3). Therefore, if N2¼ 1, then the above conditional sampling
becomes the same as the sampling (6.9). Note also that at this stage we do
not specify how the conditional samples �ij3 are generated. For example, we do
not necessarily assume that for different i, k2 {1, . . . ,N1} the corresponding
random samples n

ij
3 and n

kj
3 , j¼ 1, . . . ,N2, are independent of each other

conditional on ni2 and nk2, respectively.
As it was discussed in the previous section (see (6.4) in particular), we have

that

Q2ðx1, �
i
2Þ ¼ inf

Ai
21
x1þA

i
22
x2¼b

i
2

x2�0

ci2x2 þ E
1

N2

XN2

j¼1

Q3ðx2, n
ij
3 Þ

����n2 ¼ �i2
" #( )

� E inf
Ai

21
x1þA

i
22
x2¼b

i
2

x2�0

ci2x2 þ
1

N2

XN2

j¼1

Q3ðx2, n
ij
3 Þ

( )����n2 ¼ �i2
2
64

3
75

¼ E Q̂Q2,N2
ðx1, n2Þjn2 ¼ �

i
2

h i
: ð6:20Þ
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We also have that

inf
x12X1

c1x1 þ E½Q2ðx1, n2Þ�
� �

� E inf
x12X1

c1x1 þ
1

N1

XN1

i¼1

Q2ðx1, n
i
2Þ

( )" #
:

ð6:21Þ

It follows from (6.20) and (6.21) that the optimal value v̂vN1,N2
of the first stage

(6.18), of the problem (6.18)–(6.19), gives a valid statistical lower bound for
the optimal value v* of the corresponding (true) three-stage stochastic
programming problem.

As it was shown in Section 2.1 (see Theorem 4 in particular), under mild
boundedness conditions, for any fixed x1 and �i2 the estimator Q̂Q2,N2

ðx1, �
i
2Þ

converges to Q2ðx1, �
i
2Þ w.p.1 as N2 tends to infinity. Therefore, it is natural to

expect that v̂vN1,N2
! v* w.p.1 as N1!1 and N2!1, i.e., that v̂vN1,N2

is a
consistent estimator of v*. And, indeed, it is possible to show that this holds
true under some regularity conditions. Note, however, that although
conceptually important such consistency result in itself is insufficient for a
justification of the conditional sampling. If, in the case of a finite number of
scenarios, the sample size, which is required for a reasonably accurate
approximation of the true problem, is comparable with the total number of
scenarios, one does not need sampling. Unfortunately, at this moment we do
not have a useful theory or numerical evidence for rates of convergence
of Monte Carlo sampling methods in multistage programming. Note also
that for T-stage problems the above conditional sampling, with the corres-
ponding branching of sizes N1,N2, . . . ,NT�1, results in N¼N1N2 � � � NT�1

number of scenarios. That is, in conditional sampling the total number
of scenarios of SAA problems grows fast with increase of the number of
stages.

6.3 An example of financial planning

In this section we discuss the example of ‘‘Financial Planning’’ described in
section ‘‘Examples of Multistage Models’’ of the chapter ‘‘Stochastic
Programming Models’’, to which we refer for details. We now briefly recall
the basic model. Let Rt¼ (R1t, . . . ,Rnt), t¼ 1, . . . ,T, be a random process
representing returns of n investment opportunities, and U(W ) be a chosen
utility function. For the sake of simplicity we assume that the process Rt is
Markovian, i.e., for all t¼ 1, . . . ,T�1, the conditional distribution of Rtþ 1

given (R1, . . . ,Rt) is the same as the conditional distribution of Rtþ 1 given Rt.
The associated (multistage) stochastic programming problem is defined by the
cost-to-go functions Qt(xt�1,Rt), t¼ 1, . . . ,T�1, and the following first stage
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problem at t¼ 0,

Max
x0

E½Q1ðx0, R1Þ�

s:t:
Xn
i¼1

xi0 ¼W0,

xi0 � 0, i ¼ 1, . . . , n: ð6:22Þ

Here W0 is the initial wealth, the function QT�1ðxT�2,RT�1Þ is the optimal
value of the problem

Max
xT�1

E U
Xn
i¼1

ð1þ RiT Þxi,T�1

" #����RT�1 ¼ RT�1

( )

s:t:
Xn
i¼1

xi,T�1 ¼
Xn
i¼1

ð1þ Ri,T�1Þxi,T�2,

xi,T�1 � 0, i ¼ 1, . . . , n, ð6:23Þ

and Qt(xt�1,Rt) is the optimal value of the problem

Max
xt

E½Qtþ1ðxt, Rtþ1ÞjRt ¼ Rt�

s:t:
Xn
i¼1

xit ¼
Xn
i¼1

ð1þ RitÞxi,t�1,

xit � 0, i ¼ 1, . . . , n, ð6:24Þ

for t¼T�2, . . . , 1. Note that the above is a maximization rather than
minimization problem.

As it was mentioned in the chapter ‘‘Stochastic Programming Models’’,
the cost-to-go function Qt(xt�1,Rt) depends on xt�1 through Wt ¼Pn

i¼1 ð1þ RitÞxi,t�1 only. That is, if ~QQtðWt,RtÞ is the optimal value of the
problem

Max
xt

E½Qtþ1ðxt, Rtþ1ÞjRt ¼ Rt�

s:t:
Xn
i¼1

xit ¼Wt,

xit � 0, i ¼ 1, . . . , n, ð6:25Þ

then Qtðxt�1,RtÞ ¼ ~QQtð
Pn

i¼1 ð1þ RitÞxi,t�1,RtÞ.
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We can define the following implementable and feasible policy for the
above problem. Choose a feasible vector x02R

n for the problem (6.22), and
define

xit :¼ ð1þ RitÞxi,t�1 ¼
Yt
�¼1

ð1þ Ri�Þ

" #
xi0, t ¼ 1, . . . , T � 1:

We have that xt is a function of R½1,t� :¼ ðR1, . . . ,RtÞ and x0, and hence defines
an implementable policy, and satisfies the constraints of (6.24) and hence
is feasible. This policy corresponds to the initial investment x0 without
rebalancing the portfolio at the later stages. It gives the following lower bound
(remember that this is a maximization problem) for the multistage problem
(6.22)–(6.24):

E U
Xn
i¼1

YT
t¼1

ð1þ RitÞ

" #
xi0

 !( )
: ð6:26Þ

In order to investigate the value of this lower bound suppose further that
U(W ):W. We have then that

QT�1ðxT�2, RT�1Þ ¼MT�1ðRT�1Þ
Xn
i¼1

ð1þ Ri,T�1Þxi,T�2, ð6:27Þ

where MT�1ðRT�1Þ :¼ max1�i�n E½1þ RiT jRT�1 ¼ RT�1�,

QT�2ðxT�3, RT�2Þ ¼MT�2ðRT�2Þ
Xn
i¼1

ð1þ Ri,T�2Þxi,T�3, ð6:28Þ

where

MT�2ðRT�2Þ :¼max
1�i�n

E max
1�i�n

E½1þRiT jRT�1�

	 

ð1þRi,T�1ÞjRT�2¼RT�2

� �
¼ max

1�i�n
E MT�1ðRT�1Þð1þ Ri,T�1ÞjRT�2 ¼ RT�2

� �
,

and so on with

Qtðxt�1, RtÞ ¼MtðRtÞ
Xn
i¼1

ð1þ RitÞxi,t�1, ð6:29Þ
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and MtðRtÞ :¼ max1�i�n EfMtþ1ðRtþ1Þð1þ Ri,tþ1ÞjRt ¼ Rtg, t¼T�2, . . . , 1.
In particular, suppose for the moment that the process Rt is between stages

independent. Then the optimal value v* of the multistage problem is given by

v* ¼W0

YT
t¼1

max
1�i�n

�it

	 

, ð6:30Þ

where �it :¼ 1þ E½Rit�. On the other hand, maximization of the expectation
(6.26), subject to the feasibility constraints of problem (6.22), gives the
following ‘‘best’’ lower bound of the form (6.26):

vL ¼W0 max
1�i�n

YT
t¼1

�it

 !
: ð6:31Þ

Therefore, one can easily construct examples where the ratio v*/vL can be
arbitrary large. It should be not surprising that this ratio could be large in
cases where the maximal value of the expected return moves from one asset to
another with the stages of the process. Recall that, in the considered case
U(W):W, the multistage problem can be solved in a completely myopic
fashion by investing everything in the asset with the maximal expected return
in the next period. Therefore, if �it¼�i do not depend on t, then there is no
need to rebalance the portfolio and v* ¼ vL ¼W0ðmax1�i�n �iÞ

T .
Suppose now that we relax the nonanticipativity constraints starting

from the second stage of the multistage problem (see section ‘‘The Case of
Finitely Many Scenarios’’ of chapter ‘‘Stochastic Programming Models’’ for a
discussion of such relaxation). The obtained two-stage stochastic program has
the following optimal value

vU ¼W0E

YT
t¼1

max
1�i�n

ð1þ RitÞ

" #
, ð6:32Þ

which gives an upper bound for v*. If we assume, further, the between stages
independence, then vU ¼W0

QT
t¼1 E½max1�i�nð1þ RitÞ�. We have that, for all t,

E max
1�i�n

ð1þ RitÞ

� �
� max

1�i�n
E½1þ Rit� ¼ max

1�i�n
�it: ð6:33Þ

The difference between the left and right hand sides of (6.33) tends to be bigger
if there is a larger number of assets with the maximal (or nearly) maximal
expected return.
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7 Stochastic generalized equations

In this section we discuss the following so-called stochastic generalized
equations. Consider a random vector n, whose distribution is supported on
a set ��R

d, a mapping �:Rn
��!R

n and a multifunction27 �:Rn
!
!

R
n.

Suppose that the expectation � (x) :¼E[�(x, n)] is well defined. We refer to

�ðxÞ 2 �ðxÞ ð7:1Þ

as true, or expected value, generalized equation and say that a point x* 2Rn is
a solution of (7.1) if � (x*)2�(x*).

The above abstract setting includes the following cases. If �(x) :¼ {0} for
every x2Rn, then (7.1) becomes the ordinary equation � (x)¼ 0. As another
example, let �( � ) :¼NX( � ), where X is a nonempty closed convex subset of Rn

and NX(x) denotes the outwards normal cone to X at x. Recall that by the
definition NX(x)¼D if x 62X. In that case x* is a solution of (7.1) iff x* 2X
and the following, so-called variational inequality, holds

ðx� x*ÞT�ðx*Þ � 0, 8 x 2 X : ð7:2Þ

Since the mapping � (x) is given in the form of the expectation, we refer to
such variational inequalities as stochastic variational inequalities. Note that if
X¼R

n, then NX(x)¼ {0} for any x2Rn, and hence in that case the above
variational inequality is reduced to the equation � (x)¼ 0. Let us also remark
that if �ðx, �Þ :¼ �rxFðx, �Þ, for some real valued function F(x, �), and the
interchangeability formula (4.17) holds, i.e., � (x)¼�rf(x), then (7.2)
represents first order necessary, and if f(x) is convex, sufficient conditions
for x* to be an optimal solution for the optimization problem (1.1).

Also if the feasible set X of the optimization problem (1.1) is defined by
constraints in the form (4.13), with gjðxÞ :¼ E½Gjðx, nÞ�, j¼ 1, . . . , p, then the
corresponding KKT optimality conditions (4.14) can be written in a form of
variational inequality. That is, let z :¼ ðx, 	Þ 2 R

nþp and

Lðz, �Þ :¼ Fðx, �Þ þ
Xp
j¼1

	jGjðx, �Þ ð7:3Þ

be the Lagrangian associated with the stochastic problem (1.1). Define

�ðz, �Þ :¼ ðrxLðz, �Þ, G1ðx, �Þ, . . . , Gpðx, �ÞÞ and �ðzÞ :¼ NK ðzÞ,

ð7:4Þ

27 Recall that �(x) is said to be a multifunction if it maps a point x2Rn into a subset of Rn.
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where K :¼ R
n
�R

q
�R

p�q
þ � R

nþp. Then assuming that the interchange-
ability formula holds, we have that

�ðzÞ :¼ E½�ðz, nÞ� ¼ rf ðxÞ þ
Xp
j¼1

	jrgjðxÞ, g1ðxÞ, . . . , gpðxÞ

 !
, ð7:5Þ

and hence variational inequality � (z)2NK(z) represents the KKT optimality
conditions for the true optimization problem.

We make the following assumption about the multifunction �(x).

(E1) The multifunction �(x) is closed, that is, the following holds: if xk! x,
yk2�(xk) and yk! y, then y2�(x).

The above assumption implies that the multifunction �(x) is closed valued,
i.e., for any x2Rn the set �(x) is closed. For variational inequalities
assumption (E1) always holds, i.e., the multifunction x � NX(x) is closed.

Now let �1, . . . , �N be a random sample of N realizations of the random
vector n, and �̂�NðxÞ :¼ N�1

PN
i¼1 �ðx, �iÞ be the corresponding sample

average estimate of � (x). We refer to

�̂�NðxÞ 2 �ðxÞ ð7:6Þ

as the SAA generalized equation. There are standard numerical algorithms for
solving nonlinear equations which can be applied to (7.6) in the case
�(x):{0}, i.e., when (7.6) is reduced to the ordinary equation �̂�NðxÞ ¼ 0.
More recently numerical procedures were developed for solving variational
inequalities. We are not going to discuss such numerical algorithms but rather
concentrate on statistical properties of solutions of SAA equations. We denote
by S and ŜSN the sets of (all) solutions of the true (7.1) and SAA (7.6)
generalized equations, respectively.

7.1 Consistency of solutions of the SAA generalized equations

In this section we discuss convergence properties of the SAA solutions.
Recall that D(A,B) denotes the deviation of the set A from the set B.

Proposition 19. Let C be a compact subset of Rn such that S�C. Suppose that:
(i) assumption (E1) holds, (ii) the mapping � (x) is continuous on C, (iii) w.p.1 for
N large enough the set ŜSN is nonempty and ŜSN � C, (iv) �̂�NðxÞ converges to
� (x) w.p.1 uniformly on C as N!1. Then DðŜSN ,SÞ ! 0 w.p.1 as N!1.

Proof. The above result basically is deterministic in the sense that if we view
�̂�NðxÞ ¼ �̂�Nðx,!Þ as defined on a common probability space, then it should be
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verified for a.e. !. Therefore, we omit saying ‘‘w.p.1’’. Consider a sequence
x̂xN 2 ŜSN . Because of the compactness assumption (iii), by passing to a
subsequence if necessary, we only need to show that if x̂xN converges to a point
x, then x 2 S (compare with the proof of Theorem 4). Now since it is assumed
that � ( � ) is continuous and �̂�NðxÞ converges to � (x) uniformly, it follows that
�̂�Nðx̂xNÞ ! �ðxÞ. Since �̂�Nðx̂xNÞ 2 �ðx̂xNÞ, it follows by assumption (E1) that
�ðxÞ 2 �ðxÞ, which completes the proof. u

A few remarks about the assumptions involved in the above consistency
result are now in order. By Proposition 7 we have that, in the case of iid
sampling, the assumptions (ii) and (iv) of the above proposition are satisfied
for any compact set C if the following assumption holds.

(E2) For every � 2� the function �( � , �) is continuous on C, and jj�(x, �)jj,
x2C, is dominated by an integrable function.

There are two parts to the assumption (iii) of Proposition 19, namely, that
the SAA generalized equations do not have a solution which escapes to
infinity, and that they possess at least one solution w.p.1 for N large enough.
The first of these assumptions can be often verified by ad hoc methods. The
second assumption is more subtle. We are going to discuss it next. The
following concept of strong regularity is due to Robinson (1980).

Definition 20. Suppose that the mapping � (x) is continuously differentiable.
We say that a solution x* 2S is strongly regular if there exist neighborhoods
N1 and N2 of 02Rn and x*, respectively, such that for every �2N1 the
following (linearized) generalized equation

�þ �ðx*Þ þ r�ðx*Þðx� x*Þ 2 �ðxÞ ð7:7Þ

has a unique solution in N2, denoted xð�Þ, and xð�Þ is Lipschitz continuous on
N1.

Note that it follows from the above conditions that xð0Þ ¼ x*. In case
�(x):{0}, strong regularity simply means that the n� n Jacobian matrix
J :¼r � (x*) is invertible, or in other words nonsingular. Also in the case of
variational inequalities, the strong regularity condition was investigated
extensively, we discuss this later.

Let V be a compact neighborhood of x*. Consider the space C1(V,Rn) of
continuously differentiable mappings  :V!R

n equipped with the norm:

k k1,V :¼ sup
x2V
ðk�ðxÞk þ kr�ðxÞkÞ:
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The following (deterministic) result is essentially due to Robinson (1982)
(see also Bonnans and Shapiro, 2000, Theorem 5.13, and the following up
discussion).

Suppose that � (x) is continuously differentiable on V, i.e., � 2C1(V,Rn).
Let x* be a strongly regular solution of the generalized equation (7.1). Then
there exists ">0 such that for any u2C1(V,Rn) satisfying jju�� jj1,V� ", the
generalized equation u(x)2�(x) has a unique solution x̂x ¼ x̂xðuÞ in a
neighborhood of x*, such that x̂xð�Þ is Lipschitz continuous (with respect the
norm jj � jj1,V), and

x̂xðuÞ ¼ xðuðx*Þ � �ðx*ÞÞ þ oðku� �k1,V Þ: ð7:8Þ

By employing the above results for the mapping uð�Þ :¼ �̂�Nð�Þ we immediately
obtain the following.

Proposition 21. Let x* be a strongly regular solution of the true generalized
equation (7.1), and suppose that � (x) and �̂�NðxÞ are continuously differentiable
in a neighborhood V of x* and k�̂�N � �k1,V ! 0 w.p.1 as N!1. Then w.p.1
for N large enough the SAA generalized equation (7.6) possesses a unique
solution x̂xN in a neighborhood of x*, and x̂xN ! x* w.p.1 as N!1.

The assumption that k�̂�N � �k1,V ! 0 w.p.1, in the above theorem, means
that �̂�NðxÞ and r�̂�NðxÞ converge w.p.1 to � (x) and r � (x), respectively,
uniformly on V. By Proposition 7, in the case of iid sampling this is ensured by
the following assumption.

(E3) For every �2� the mapping �( � , �) is continuously differentiable on V,
and jj�(x, �)jj and jjrx�(x, �)jj, x2V, are dominated by an integrable
function.

Note that the assumption that �( � , �) is continuously differentiable on
a neighborhood of x* is essential in the above analysis. By combining
Propositions 19 and 21 we obtain the following result.

Theorem 22. Let C be a compact subset of Rn and x* be a unique in C solution
of the true generalized equation (7.1). Suppose that: (i) assumption (E1) holds,
(ii) for every � 2� the mapping �( � , �) is continuously differentiable on C, and
jj�(x, �)jj and jjrx�(x, �)jj, x2C, are dominated by an integrable function,
(iii) the solution x* is strongly regular, (iv) �̂�NðxÞ and r�̂�NðxÞ converge w.p.1 to
� (x) and r � (x), respectively, uniformly on C. Then w.p.1 for N large enough
the SAA generalized equation possesses unique in C solution x̂xN converging to x*
w.p.1 as N!1.
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Note again that if the sample is iid, then the assumption (iv) in the above
theorem is implied by the assumption (ii) and hence is redundant.

7.2 Asymptotics of SAA estimators

By using the first order approximation (7.8) it is also possible to derive
asymptotics of x̂xN . Suppose for the moment that �(x):{0}. Then strong
regularity means that the Jacobian matrix J :¼r � (x*) is nonsingular, and
xð�Þ is the solution of the corresponding linear equations and hence can be
written in the form

xð�Þ ¼ x* � J�1�: ð7:9Þ

By using (7.9) and (7.8) with uð�Þ :¼ �̂�Nð�Þ, we obtain under certain regularity
conditions which ensure that the remainder in (7.8) is of order op(N

�1/2), that

N1=2ðx̂xN � x*Þ ¼ �J�1YN þ opðN
�1=2Þ, ð7:10Þ

where YN :¼ N1=2½�̂�Nðx*Þ � �ðx*Þ�. Moreover, in the case of iid sample, we
have by the CLT that YN)N(0,�), where � is the covariance matrix of the
random vector �(x*, n). Consequently, x̂xN has asymptotically normal
distribution with mean vector x* and the covariance matrix N�1J�1�J�1.

Suppose now that �( � ) :¼NX( � ), with the set X being nonempty closed
convex and polyhedral, and let x* be a strongly regular solution of (7.1). Let
xð�Þ be the (unique) solution, of the corresponding linearized variational
inequality (7.7), in a neighborhood of x*. Consider the cone

Cðx*Þ :¼ y 2 TX ðx*Þ : y
T�ðx*Þ ¼ 0

� �
,

called the critical cone, and the Jacobian matrix J :¼r � (x*). Then for all
� sufficiently close to 02Rn, we have that xð�Þ � x* coincides with the solution
dð�Þ of the variational inequality

�þ Jd 2 NCðx*ÞðdÞ: ð7:11Þ

Note that the mapping dð�Þ is positively homogeneous, i.e., for any �2Rn

and t� 0, it follows that dðt�Þ ¼ tdð�Þ. Similar to (7.10) we have, under
regularity conditions ensuring that the remainder term is of order op(N

�1/2),
that

N1=2ðx̂xN � x*Þ ) dðYÞ, ð7:12Þ
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where Y�N(0,�). It follows that x̂xN is asymptotically normal iff the mapping
dð�Þ is linear. This, in turn, holds if the cone C(x*) is a linear space.

In the case �( � ) :¼NX( � ), with the set X being nonempty closed convex and
polyhedral, there is a complete characterization of the strong regularity in
terms of the so-called coherent orientation associated with the matrix
(mapping) J :¼r � (x*) and the critical cone C(x*). The interested reader is
referred to Robinson (1992) and Gürkan et al. (1999) for a discussion of this
topic. Let us just remark that if C(x*) is a linear subspace of Rn, then the
variational inequality (7.11) can be written in the form

P�þ PJd ¼ 0, ð7:13Þ

where P denotes the orthogonal projection matrix onto the linear space C(x*).
Then x* is strongly regular iff the matrix (mapping) PJ restricted to the space
C(x*) is invertible, or in other words nonsingular.

Suppose now that S¼ {x*} is such that � (x*) belongs to the interior of
the set �(x*). Then, since �̂�Nðx*Þ converges w.p.1 to � (x*), it follows that
the event f�̂�Nðx*Þ 2 �ðx*Þg happens w.p.1 for N large enough. Moreover, by
the LD principle (see (8.15)) we have that this event happens with probability
approaching one exponentially fast. Of course, �̂�Nðx*Þ 2 �ðx*Þ means that
x̂xN ¼ x* is a solution of the SAA generalized equation (7.6). Therefore, in
such case one may compute an exact solution of the true problem (7.1),
by solving the SAA problem, with probability approaching one exponentially
fast with increase of the sample size. Note that if �( � ) :¼NX( � ) and
x* 2S, then � (x*)2 int�(x*) iff the critical cone C(x*) is equal to {0}.
In that case the variational inequality (7.11) has solution d*¼ 0 for any �,
i.e., dð�Þ:0.

The above asymptotics can be applied, in particular, to the generalized
equation (variational inequality) � (z)2NX(z), where � (z) and NX(z) are
defined in (7.4) and (7.5). Recall that this variational inequality represents the
KKT optimality conditions of the corresponding expected value optimization
problem. Therefore, in that way the asymptotics of the optimal solutions and
Lagrange multipliers of the associated SAA optimization problems can be
derived. In the case of optimization problems strong regularity of a point
z*¼ (x*, 	*), where x* 2S, is equivalent to a certain (strong) form of second
order optimality conditions. Also in that case the critical cone is a linear space,
and hence the SAA estimator ẑzN ¼ ðx̂xN , 	̂	NÞ is asymptotically normal, iff the
strict complementarity condition holds.

Let us finally remark the following. Consider variational inequality (7.2).
Suppose that the set X is defined by

X :¼ x 2 R
n : gjðxÞ � 0, j ¼ 1, . . . , p

� �
, ð7:14Þ
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where gj(x), j¼ 1, . . . , p, are convex real valued functions. Suppose further that
the Slater condition holds. Then, for any x2X,

NX ðxÞ ¼ z 2 R
n : z ¼

X
j2I ðxÞ

�jrgjðxÞ, �j � 0, j 2 I ðxÞ
( )

, ð7:15Þ

where I ðxÞ :¼ f j : gjðxÞ ¼ 0, j ¼ 1, . . . , pg. Therefore, in that case one can
proceed with statistical testing of a candidate solution x in exactly the same
way as in testing KKT optimality conditions in Section 4.2.

8 Appendix

8.1 Epiconvergence

Consider a sequence fk : R
n
! R, k¼ 1, . . . , of extended real valued

functions. It is said that the functions fk epiconverge to a function f : Rn
! R,

written fk!
e
f , if the epigraphs of the functions fk converge, in a certain set

valued sense, to the epigraph of f. It is also possible to define the
epiconvergence in the following equivalent way.

Definition 23. It is said that fk epiconverge to f if for any point x2Rn the
following two conditions hold: (i) for any sequence xk converging to x one has

lim inf
k!1

fkðxkÞ � f ðxÞ, ð8:1Þ

(ii) there exists a sequence xk converging to x such that

lim sup
k!1

fkðxkÞ � f ðxÞ: ð8:2Þ

Epiconvergence fk!
e
f implies that the function f is lower semicontinuous.

Epiconvergence is discussed extensively in Rockafellar and Wets (1998),
Chapter 7. We need a few basic results from that theory. We denote by
argmin f the set of minimizers of f, i.e., x 2 argmin f iff f ðxÞ ¼ inf f ðxÞ, where
the infimum is taken over all x2Rn. For "� 0 we say that a point x 2 R

n

is an "-minimizer28 of f if f ðxÞ � inf f ðxÞ þ ". Clearly, for "¼ 0 the set of
"-minimizers of f coincides with argmin f.

28 For the sake of convenience we allow in this section for a minimizer, or "-minimizer, x to be such

that f ðxÞ is not finite, i.e., can be equal to þ1 or �1.
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Proposition 24. Suppose that fk!
e
f . Then

lim sup
k!1

½inf fkðxÞ� � inf f ðxÞ: ð8:3Þ

Suppose, further, that: (i) for some "k#0 there exists an "k-minimizer xk of fk( � )
such that the sequence xk converges to a point x. Then x 2 argmin f and

lim
k!1
½inf fkðxÞ� ¼ inf f ðxÞ: ð8:4Þ

Proof. Consider a point x2Rn and let xk be a sequence converging to x such
that the inequality (8.2) holds. Then fk(xk)� inf fk(x). Together with (8.2) this
implies that

f ðxÞ � lim sup
k!1

fkðxkÞ � lim sup
k!1

½inf fkðxÞ�:

Since the above holds for any x, the inequality (8.3) follows.
Now let xk be a sequence of "k-minimizers of fk converging to a point x. We

have then that fk(xk)� inf fk(x)þ "k, and hence by (8.3) we obtain

lim inf
k!1

½inf fkðxÞ�¼ lim inf
k!1

½inf fkðxÞþ"k�� lim inf
k!1

fkðxkÞ� f ðxÞ� inf f ðxÞ:

Together with (8.3) this implies (8.4) and f ðxÞ ¼ inf f ðxÞ. This completes the
proof. u

Assumption (i) in the above proposition can be ensured by various
boundedness conditions.

The following result is taken from Rockafellar and Wets (1998), Theorem
7.17.

Theorem 25. Let fk : R
n
! R be a sequence of convex functions and

f : R
n! R be a convex lower semicontinuous function such that dom f has a

nonempty interior. Then the following are equivalent: (i) fk!
e
f , (ii) there exists a

dense subset D of Rn such that fk(x)! f(x) for all x2D, (iii) fk( � ) converges
uniformly to f( � ) on every compact set C that does not contain a boundary point
of dom f.

8.2 Uniform integrability, and Op( � ) and op( � ) notation

Let Yk, k¼ 1, . . . , be a sequence of random variables converging in
distribution to a random variable Y. In general, convergence in distribution
does not imply convergence of the expected values E[Yk] to E[Y], as k!1,
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even if all these expected values are finite. This implication holds under the
additional condition that Yk are uniformly integrable, that is

lim
c!1

sup
k2N

E½YkðcÞ� ¼ 0, ð8:5Þ

where Yk(c) :¼ jYkj if jYkj � c, and Yk(c) :¼ 0 otherwise. A simple sufficient
condition ensuring uniform integrability, and hence the implication that
Yk)Y implies E[Yk]!E[Y], is the following: there exists ">0 such that
supkE[jYkj

1þ "]<1.
The notation Op( � ) and op( � ) stands for a probabilistic analogue of the

usual order notation O( � ) and o( � ), respectively. That is, let Xk and Yk be
sequences of random variables. It is written that Yk¼Op(Xk) if for any ">0
there exists c>0 such that P(jYk/Xkj>c)� " for all k2N. It is written that
Yk¼ op(Xk) if for any ">0 it holds that limk!1 PðjYk=Xkj > "Þ ¼ 0. Usually
this is used with the sequence Xk being deterministic. In particular, the
notation Yk¼Op(1) asserts that the sequence Yk is bounded in probability,
and Yk¼ op(1) means that the sequence Yk converges in probability to zero.

8.3 Large deviations theory

Consider an iid sequence Y1, . . . ,YN of replications of a real valued
random variable Y, and let ZN :¼ N�1

PN
i¼1 Yi be the corresponding

sample average. Then for any real numbers a and t>0 we have that
PðZN � aÞ ¼ PðetZN � etaÞ, and hence, by Chebyshev’s inequality

PðZN � aÞ � e�taE½etZN � ¼ e�ta½Mðt=NÞ�N ,

where M(t) :¼E[etY] is the moment generating function of Y. Suppose that Y
has finite mean � :¼E[Y] and let a��. By taking the logarithm of both sides
of the above inequality, changing variables t0 ¼ t/N and minimizing over t0>0,
we obtain

1

N
log½PðZN � aÞ� � �IðaÞ, ð8:6Þ

where

IðzÞ :¼ sup
t2R

ftz��ðtÞg ð8:7Þ

is the conjugate of the logarithmic moment generating function �(t) :¼
logM(t). In the LD theory, I(z) is called the (large deviations) rate function,
and the inequality (8.6) corresponds to the upper bound of Cramér’s LD
Theorem.
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Note that the constraint t>0 is removed in the above definition of the rate
function I( � ). This is because of the following. Consider the function
 (t) :¼ ta��(t). The function �(t) is convex, and hence  (t) is concave.
Suppose that the moment generating function M( � ) is finite valued at some
t > 0. Then M(t) is finite for all t 2 ½0, t �, and it follows by the Dominated
Convergence Theorem that M(t), and hence the function �(t), are right side
differentiable at t¼ 0. Moreover, the right side derivative of M(t) at t¼ 0 is �,
and hence the right side derivative of  (t) at t¼ 0 is positive if a>�.
Consequently, in that case  (t)> (0) for all t>0 small enough, and hence
I(a)>0 and the supremum in (8.7) is not changed if the constraint t>0 is
removed. If a¼�, then the supremum in (8.7) is attained at t¼ 0 and hence
I(a)¼ 0. In that case the inequality (8.6) trivially holds. Now if M(t)¼ þ1
for all t>0, then I(a)¼ 0 for any a�� and the inequality (8.6) trivially holds.

Note that for a�� the upper bound (8.6) takes the form

1

N
log½PðZN � aÞ� � �IðaÞ: ð8:8Þ

The rate function I(z) is convex and has the following properties. Suppose that
the random variable Y has finite mean �. Then I(�)¼ 0 and I(z) attains its
minimum at z¼�. Suppose, further, that the moment generating function
M(t) is finite valued for all t in a neighborhood of t¼ 0. Then it follows by
the Dominated Convergence Theorem that M(t), and hence the function �(t),
are infinitely differentiable at t¼ 0, and �0(0)¼� and �00(0)¼ �2, where
�2 :¼Var[Y ]. It follows by the above discussion that in that case I(a)>0 for
any a 6¼�. We also have then that I 0(�)¼ 0 and I 00(�)¼ ��2, and hence by
Taylor’s expansion,

IðaÞ ¼
ða� �Þ2

2�2
þ oðja� �j2Þ: ð8:9Þ

Consequently, for a close to � we can approximate I(a) by (a��)2/2�2.
Moreover, for any ">0 there is a neighborhood N of � such that

IðaÞ �
ða� �Þ2

ð2þ "Þ�2
, 8 a 2 N : ð8:10Þ

In particular, we can take "¼ 1.
The constant I(a) in (8.6) gives, in a sense, the best possible exponential rate

at which the probability P(ZN� a) converges to zero. This follows from the
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lower bound

lim inf
N!1

1

N
log½PðZN � aÞ� � �IðaÞ ð8:11Þ

of Cramér’s LD Theorem, which holds for a��.
We also need to consider cases where the random variable Y can take value
þ1 with positive probability p. In such a case E[Y]¼ þ1 and ZN¼ þ1 if
at least one Yi¼ þ1. We have then that for any a2R,

PðZN � aÞ ¼ ð1� pÞNPfZN � ajYi < þ1, i ¼ 1, . . . , Ng: ð8:12Þ

Let Y0 be a random variable with probability distribution given by the pro-
bability distribution of Y conditional on Y<þ1, and let I0( � ) be the large
deviations rate function of Y0. It follows then from (8.8) and (8.12) that

1

N
log½PðZN � aÞ� � � logð1� pÞ�1 þ %ðaÞI0ðaÞ

 �
, ð8:13Þ

where %(a) :¼ 1 if a<E[Y0], and %(a) :¼ 0 if a�E[Y0].
The above, one dimensional, LD results can be extended to multivariate

and even infinite dimensional settings, and also to non iid random sequences.
In particular, suppose that Y is a d-dimensional random vector and let
� :¼E[Y] be its mean vector. We can associate with Y its moment generating
function M(t), of t2Rd, and the rate function I(z) defined in the same way as
in (8.7) with the supremum taken over t2Rd and tz denoting the standard
scalar product of vectors t, z2Rd. Consider a (Borel) measurable set A�R

d.
Then, under certain regularity conditions, the following Large Deviations
Principle holds:

� inf
z2intðAÞ

IðzÞ � lim inf
N!1

N�1 log½PðZN 2 AÞ�

� lim sup
N!1

N�1 log½PðZN 2 AÞ� � � inf
z2clðAÞ

IðzÞ, ð8:14Þ

where int(A) and cl(A) denote the interior and topological closure,
respectively, of the set A. In the above one dimensional setting, the LD
principle (8.14) was derived for sets A :¼ [a, þ1).

We have that if �2 int(A) and the moment generating functionM(t) is finite
valued for all t in a neighborhood of 02Rd, then infz2RdnðintAÞ IðzÞ is positive.
Moreover, if the sequence is iid, then

lim sup
N!1

N�1 log½PðZN 62 AÞ� < 0, ð8:15Þ

420 A. Shapiro



i.e., the probability P(ZN2A)¼ 1�P(ZN 62A) approaches one exponentially
fast as N tends to infinity. For a thorough discussion of the Large Deviations
theory, the interested reader is referred to Dembo and Zeitouni (1998), for
example.

9 Bibliographic notes

The idea of using Monte Carlo sampling for solving stochastic optimization
problems of the form (1.1) certainly is not new. There is a variety of sampling
based optimization techniques, which were suggested in the literature. It will
be beyond the scope of this chapter to give a comprehensive survey of these
methods, we mention a few approaches related to the material of this chapter.
One approach uses the Infinitesimal Perturbation Analysis (IPA) techniques
to estimate the gradients of f( � ), which consequently are employed in the
Stochastic Approximation (SA) method. For a discussion of the IPA and SA
methods we refer to Ho and Cao (1991), Glasserman (1991), Kushner and
Clark (1978) and Nevelson and Hasminskii (1976), respectively. For an
application of this approach to optimization of queueing systems see Chong
and Ramadge (1993) and L’Ecuyer and Glynn (1994), for example. Closely
related to this approach is the Stochastic Quasi-Gradient method (see
Ermoliev, 1983).

Another class of methods uses sample average estimates of the values of the
objective function, and may be its gradients (subgradients), in an ‘‘interior’’
fashion. Such methods are aimed at solving the true problem (1.1) by
employing sampling estimates of f( � ) and rf( � ) blended into a particular
optimization algorithm. Typically, the sample is updated or a different sample
is used each time function or gradient (subgradient) estimates are required at a
current iteration point. In this respect we can mention, in particular, the
statistical L-shaped method of Infanger (1994) and the stochastic decomposi-
tion method of Higle and Sen (1996b).

In this chapter we mainly discussed an ‘‘exterior’’ approach, in which a
sample is generated outside of an optimization procedure and consequently
the constructed SAA problem is solved by an appropriate deterministic
optimization algorithm. There are several advantages in such approach. The
method separates sampling procedures and optimization techniques. This
makes it easy to implement and, in a sense, universal. From the optimization
point of view, given a sample �1, . . . , �N, the obtained optimization problem
can be considered as a stochastic program with the associated scenarios
�1, . . . , �N, each taken with equal probability N�1. Therefore, any optimization
algorithm which is developed for a considered class of stochastic programs
can be applied to the constructed SAA problem in a straightforward way.
Also the method is ideally suited for a parallel implementation. From the
theoretical point of view, as it was shown in the previous sections, there is
available a quite well developed statistical inference of the SAA method. This,
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in turn, gives a possibility of error estimation, validation analysis and hence
stopping rules. Finally, various variance reduction techniques can be
conveniently combined with the SAA method.

It is difficult to point out an exact origin of the SAA method. The idea is
simple indeed and it was used by various authors under different names.
Variants of this approach are known as the stochastic counterpart method
(Rubinstein and Shapiro, 1990, 1993) and sample-path optimization
(Plambeck et al., 1996; Robinson, 1996), for example. Also similar ideas were
used in statistics for computing maximum likelihood estimators by Monte
Carlo techniques based on Gibbs sampling (see, e.g., Geyer and Thompson,
1992 and references therein). Numerical experiments with the SAA approach,
applied to linear and discrete (integer) stochastic programming problems, can
be also found in more recent publications (Ahmed and Shapiro, 2002;
Linderoth et al., 2002; Verweij et al., 2003).

Statistical theory of the SAA estimators is closely related to the statistical
inference of the Maximum Likelihood (ML) method and M-estimators.
Starting with a pioneering work of Wald (1949), consistency properties of the
Maximum Likelihood and M-estimators were studied in numerous
publications. Epi-convergence approach to studying consistency of statistical
estimators was developed in Dupačová and Wets (1988). In the context of
stochastic programming, consistency of SAA estimators was also investigated
by tools of epi-convergence analysis in King and Wets (1991) and Robinson
(1996). Uniform Laws of Large Numbers take their origin in the Glivenko–
Cantelli theorem. For a further discussion of the uniform LLN we refer to
van der Vaart and Wellner (1996), and for applications to stochastic
programming to the recent paper by Pflug et al. (1998).

Asymptotic normality of M-estimators was proved, under quite weak
differentiability assumptions, in Huber (1967). For a further discussion, and
additional references, of the asymptotics of SAA optimal solutions see chapter
‘‘Stochastic Optimization and Statistical Influence’’ of this book. Theorems 10
and 11 are taken from Shapiro (1991).

It is possible to show that in smooth (differentiable) cases, and under some
mild regularity conditions, the (unconstrained) SAA estimators x̂xN converge
to the (unique) optimal solution x* of the true problem at the same asymptotic
rate as the corresponding stochastic approximation estimators based on the
asymptotically optimal step sizes (Shapiro, 1996). As it is shown in Section 3,
the situation is quite different in cases where the feasible set X is finite or the
problem is polyhedral. Presentation of Sections 3.1 and 3.2 is based on
Kleywegt et al. (2001), and of Section 3.3 on Shapiro and Homem-de-Mello
(2000). The discussion of conditioning of stochastic programs is based on
Shapiro et al. (2002). It is somewhat surprising that some problems with
astronomically large number of scenarios are very well conditioned and can be
solved exactly with a small sample size (see Linderoth et al., 2002 for such
numerical examples). Exponential rates of convergence in stochastic
programming were also studied in Kaniovski et al. (1995) and Dai et al. (2000).
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The statistical bounds of Section 4.1 were suggested in Norkin et al. (1998),
and developed further in Mak et al. (1999). The ‘‘common random numbers’’
estimator dgapgapN,MðxÞ of the optimality gap was introduced in Mak et al. (1999).
Proposition 16 is due to Norkin et al. (1998) and Mak et al. (1999). The KKT
statistical test, discussed in Section 4.2, was developed in Shapiro and
Homem-de-Mello (1998), so that the material of that section is based on
Shapiro and Homem-de-Mello (1998). See also Higle and Sen (1996a).
Proposition 17 is taken from Shapiro and Homem-de-Mello (2000).

For a discussion of variance reduction techniques in Monte Carlo sampling
we refer to Fishman (1999) and a survey paper by Avramidis and Wilson
(1996), for example. In the context of stochastic programming, variance
reduction techniques were discussed in Rubinstein and Shapiro (1993),
Dantzig and Infanger (1991), Higle (1998) and Bailey et al. (1999), for example.

Section 6 is based on Shapiro (2002). It appears by now that statistical
behavior of two-stage stochastic programming problems is quite well
understood with theoretical developments supported by numerical experi-
ments. It was demonstrated that huge two-stage linear programs, with
astronomically large number of scenarios, can be solved efficiently with a
proved accuracy. On the other hand, little is known about large scale
multistage programs. In a sense the conclusions of Section 6 are mostly
negative. At this moment we do not have a useful theory or numerical
evidence which can guide us in solving large multistage problems. So further
research in this direction is needed.

An extension of the SAA method to stochastic generalized equations is a
natural one. Stochastic variational inequalities were discussed by Gürkan et al.
(1999). Proposition 21 and Theorem 22 are similar to Theorems 1 and 2 in
Gürkan et al. (1999).
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Chapter 7

Stochastic Optimization and Statistical Inference

G.Ch. Pflug
Department of Statistics and Decision Support Systems, University of Vienna,

Universitätsstrasse 5, A-1090 Vienna, Austria

Abstract

If the distribution of the random parameters of a stochastic program is
unknown, the empirical distribution based on a sample may be used as a proxy.
This empirical approximation is related to the ‘‘true’’ stochastic program in the
same way as a statistical estimate is related to the true parameter value.
Properties of statistical estimators, like consistency, asymptotical distributions
and the construction of confidence regions are reviewed in the realm of
stochastic optimization. The entropic size of a stochastic program determines
the quality of the approximation. In case that random constraints are present,
the notion of epiconvergence replaces in a natural way the notion of uniform
convergence of functions. The asymptotic structures are described by the
asymptotic stochastic program associated to the sequence of empirical
programs.

Key words: Empirical program, statistical estimates, asymptotic statistics, risk
functionals, entropic size, epiconvergence, asymptotic stochastic programs.

1 Uncertain and ambiguous optimization problems

In deterministic optimization, a decision x must be found, which minimizes
a known cost function f(x) among all possible candidates x lying in the feasible
set X�Rd, a closed subset of the euclidean d-dimensional space

Min
x2X

f ðxÞ:

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
� 2003 Elsevier Science B.V. All rights reserved.
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In stochastic optimization, the cost function is not exactly known at the time
when the decision is made. Only a stochastic model F(x, �) for the costs is
known, where � is some random vector defined on a probability space
(�0,A0,P), taking its values in Rm. The crucial point is that although the
particular value of � is unknown, its distribution is completely known. We
refer to this situation as the uncertainty problem. Since the decision maker is
not clairvoyant and does not know the actual value of �, he/she cannot
minimize the cost function for each value of � separately, but has to minimize
some real functional F, which summarizes the random costs F(x, �) in an
appropriate manner. Think of the expectation functional E as the summariz-
ing functional for the moment. The uncertainty problem reads

Min
x2X
f f ðxÞ ¼ E½Fðx, �Þ�g ð1:1Þ

or—using a more general summarizing functional—

Min
x2X
f f ðxÞ ¼ F½Fðx, �Þ�g: ð1:2Þ

Any functional F : G!F R, which maps G, a set of distribution functions on R,
onto the real line may be used as summarizing functional. We call such
functionals risk functionals. Examples for risk functionals are the expectation,
the variance, the median, quantiles, etc. A collection of widely used risk
functionals can be found in Section 4.

For simplicity, we assume for the moment that the set of constraints X does
not depend on the random vector �. In Sections 7 and 8 of this chapter, we will
indicate how to deal with additional ‘‘random constraints’’, i.e., constraints
involving random variables such as

X \ fx : E½F1ðx, �Þ� � b1, . . . , E½FJðx, �Þ� � bJg:

Example 1. A one-period portfolio optimization problem. An investor has a
budget B to spend in m investment categories, like bonds, stocks or other
contracts. If one currency unit is invested in the ith category, then the value
after the holding period is �i. Here �¼ (�1,. . . , �m) is a vector of random price
changes. If xi denotes the amount invested in category i, then
Fðx, �Þ ¼

Pm
i¼1 xi�i is the value of the portfolio at the end of the holding

period. The decision maker wants to maximize the risk-adjusted expected
return. He chooses for instance the expectation minus 10% of the mean
absolute deviation as risk functional, i.e.,

F½Fðx, �Þ� ¼ E½Fðx, �Þ� �
1

10
� EjFðx, �Þ � E½Fðx, �Þ�j:
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This value should be maximized (or its negative value should be minimized)
under the budget and the nonnegativity constraints

Min �F½Fðx, �Þ� :
Xm
i¼1

xi ¼ B, xi � 0

( )
:

This is a typical stochastic optimization problem of the form (1.2).

The assumption that the distribution P, i.e., P(A)¼P{� 2A} of the random
part � of the cost function is exactly known is rarely fulfilled. Typically, the
probability measure P is unknown (this is called the ambiguity problem) and
only some information about it is available.

In the ambiguity situation, the stochastic optimization problem gets an
additional difficulty: the unknown probability P has to be guessed through the
available information and this gives an additional source of error.

Typically, the available information is contained in a sample of historic
data. In other situations, moments or some other characteristics of the
unknown probability measure are known (see e.g., Gaivoronski et al., 1985).

In this chapter, we consider the case that a sample �1,. . . , �N of independent,
identically distributed random variables with distribution P is available. This
sample may be used in two ways:

� The parametric approach: A parametric family (P�) of probability
measures is chosen as the true model and the parameter � is estimated by
an estimate �̂� on the basis of the sample. The probability measure P�̂� is
then taken as the distribution of � in (1.2).

� The nonparametric approach: No assumption about a parametric family
is made. The empirical measure P̂PN (see (2.4) below for its formal
definition), which puts mass 1/N on each observation in the sample,
serves as a proxy of the unknown P.

For illustration, consider the above portfolio optimization example: no
financial analyst knows correct distribution of the price change vectors.
Typically, either the historical data distribution is used directly (the
nonparametric approach, called historic simulation by finance managers) or
some theoretical models are fitted using prior knowledge and some data (the
parametric approach).

In this chapter, we treat only the nonparametric approach and study the
quality of this approximation. The quality of the parametric approach
depends strongly on the right choice of the parametric model.

The fact that the true probability measure P is unknown and replaced by
some data-based estimate apparently makes the problem harder, since one has
to cope with the statistical estimation error in addition. However, as a positive
effect of this approximation, one typically gets an easier problem to solve,
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since the empirical distribution generated by the data sits on finitely many
points. To deal with such discrete distributions is much easier than to deal
with arbitrary (continuous) distributions. Just think of the fact, how much
easier it is to numerically calculate a finite sum than a multidimensional
integral.

The advantage in the numerical treatment of the finite-sample approxima-
tion sometimes outweighs the disadvantage of the additional approximation
error. As a consequence, an artificially generated sample may be used to
replace a nonambiguous model. The results for sampling approximation carry
of course over to the case of artificially generated samples. Notice, however,
that in the case that the sample is artificially generated, one has the freedom to
choose the sample in various ways. Instead of mimicking randomness by
pseudo-random numbers (Monte-Carlo method, see chapter Monte Carlo
Sampling Methods by Shapiro in this volume), one could also use a
nonrandom low-discrepancy quasi-random sequence (Quasi-Monte Carlo
method, see Niederreiter, 1992) or some other, well chosen discrete
approximation. The Monte-Carlo method allows to generate an approxima-
tion in a very simple way, however, it produces only random approximations
of the unknown distribution P, which is a disadvantage since the quality of the
approximation can only be stated in statistical terms.

In this chapter, we will only treat the approximation by sampling from a
sequence of either observed or artificially generated random variables.

2 The empirical problem

Denote by Gx the distribution function of the costs, parameterized by the
decision x

GxðuÞ ¼ PfFðx, �Þ � ug ¼

Z
1fFðx, !Þ�ug dPð!Þ: ð2:3Þ

Here 1B is the indicator function of the set B

1BðuÞ ¼
1 u 2 B
0 u 62 B

�

Let �1,. . . , �N be a random sample, independently and identically distributed
with the same distribution P. Denote by P̂PN the empirical distribution
generated by this sample, i.e.,

P̂PNðAÞ ¼
1

N

XN
n¼1

1f�n2Ag: ð2:4Þ
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Notice that P̂PN depends on the random sample and is therefore a random
probability measure. For every fixed set A, P̂PNðAÞ converges almost surely to
P(A) due the Strong Law of Large Numbers. If P is a probability measure on
a separable metric space, then P̂PN converges as a measure almost surely in the
weak sense to P as N tends to infinity. This basic fact of statistics was proved
by Varadarajan (1958).

Based on the empirical distribution P̂PN of the random part of the cost
function, we may form the empirical cost distribution ĜGx,N , parameterized by
the decision x

ĜGx,NðuÞ ¼
1

N

XN
n¼1

1fF ðx,�nÞ�ug ¼

Z
1fFðx,!Þ�ug dP̂PNð!Þ, ð2:5Þ

which is the empirical counterpart of (2.3).
The risk functional F maps distributions to real numbers. By a slight abuse

of notation, but with no danger of confusion, we use the notation F(Z) for a
random variable Z and F(GZ) for its distribution GZ in parallel. The main
problem (1.2) in new notation reads now

Min
x2X
f f ðxÞ ¼ F½Gx�g: ð2:6Þ

Its empirical counterpart, which is based on the sample �1,. . . , �N is

Min
x2X
f f̂fNðxÞ ¼ F½ĜGx,N �g: ð2:7Þ

The relation between f and f̂fN is like in statistical estimation theory: f̂fNð�Þ
is an estimate of the unknown objective function f( � ) and argminx2X f̂fNðxÞ is
an estimate of the unknown solution argminx2X f(x). Recall here the notion
of the argmin set

arg min
x2X

f ðxÞ :¼ z 2 X : f ðzÞ ¼ min
x2X

f ðxÞ

� �
:

The argmin set is empty if the minimum is not attained.
In statistics, the function f is called the criterion function. Estimates of the

argmin type are the most important group of estimates in statistics: they
include maximum-likelihood estimates, M-estimates, minimum-contrast and
minimum-distance estimates. In the usual setup of statistical estimation
theory, the sample �1,. . . , �N stems from a distribution P, which is a member of
some family P. Here P may be a parametric family P ¼ ðP�Þ�2� or a
nonparametric family. In either case, suppose that a parametric function
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P2P! �(P) is given. This unknown parametric function is estimated by an
estimator �̂�N ¼ �̂�Nð�1, . . . , �NÞ based on the observed data.

Statistical convergence results are formulated for the whole family P, i.e., a
typical result reads: if the data stem from P*, then the estimate �̂�N converges to
the true �*¼ �(P*), for all P* 2P (Table 7.1).

Example 2. Quantile estimation and the newsboy problem. Suppose that we are
interested in estimating the �-quantile �* from a random distribution P with
distribution function G and continuous density g. Suppose that g(x)>0, if
G(x)¼�. Then the �-quantile �*¼G�1(�) is uniquely determined. The
statistician estimates �* by the sample quantile.

The newsboy problem, introduced in the chapter Stochastic Programming
Models by Ruszczynski and Shapiro in this volume is a stochastic
optimization version of the quantile estimation problem. Recall that the
profit function, i.e., the negative cost function is

Fðx, �Þ ¼ ðs� cÞxþ ðr� sÞ½x� ��þ,

where x is the decision, � is the demand variable, s is the sell price, c is the buy
price and r is the return price (0<r<c<s). Let G(u)¼P{�� u} and Gð1ÞðuÞ ¼
Eð½u� ��þÞ ¼

R u
�1
ðu� vÞdGðvÞ ¼

R u
�1

GðvÞdv. The objective function is

f ðxÞ ¼ E½Fðx, �Þ� ¼ ðs� cÞxþ ðr� sÞGð1ÞðxÞ:

By simple calculus one sees that every optimal solution �* 2 argmin(�f )
satisfies the necessary condition G(�*)¼ (s�c)/(s�r), i.e., is an �-quantile of G,

Table 7.1
The relation between Statistical Estimation and Stochastic Optimization

Statistics Stochastic optimization

The true probability measure P* is a member of a family P. P* is unknown, but a sample
�1, . . . , �N is available

A parametric function P � �(P), P2P is
given. The statistician wants to estimate
�*¼ �(P*), where P* is the true probabil-
ity measure

The cost function F and a functional F,
both representing some economic decision
problem are given

The statistician chooses a criterion func-
tion F and a functional F in such a way
that �(P)¼ argmin x2X F[F(x, �)], where �
is distributed according to P

The estimate is in both cases

�̂�N 2 argmin
x
ff̂fN ¼ F½Fðx, �Þ�g,

where � is distributed according to the empirical measure P̂PN based on the sample �1, . . . , �N
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where �¼ (s�c)/(s�r). Moreover, the argmin is unique. Thus, the newsboy
problem of stochastic optimization turns out to be equivalent to the quantile
estimation problem in statistics. All results about properties of the sample
quantile estimate carry over to the newsboy stochastic optimization problem.

Generally spoken, the same type of results about convergence, asymptotics
and confidence regions hold for the estimation of statistical parameters of the
argmin type and for the solution of empirical stochastic programs. Notice,
however, that the interpretation is slightly different: in statistics the emphasis
is on the identification of a parameter or the distribution itself. In stochastic
optimization the goal is to make optimal decisions, the unknown probability
measure is not in the center of interest. In statistical estimation, the loss
function plays the role of the cost function. It is typically up to the statistician
to choose an appropriate loss function. In contrast, the cost function is given
in a stochastic optimization problem.

The estimate of the objective function (the criterion function) lies in some
metric space of functions, for instance the space of continuous functions
endowed with the sup-norm, the space of lower semicontinuous functions
endowed with epigraphical distance (see Section 7) or the space of cad-lag
functions endowed with the Skorohod-distance. The argmins need not be
singletons in general, they may be sets, and the argmin estimates lie in some
metric space of sets (e.g., the metric space of closed sets endowed with the
Hausdorff distance or some variant of it).

We denote by �̂�N an estimate of an unknown value �*, based on a sample
�1,. . . , �N. Assume that �̂�N and �* lie in a metric space (�, d ). This notation is
valid for the estimation of criterion functions (in which case � is a space of
functions) or argmin sets (in which case � is a space of sets) or singleton
argmins (in which case � is the Rd).

There are some fundamental concepts of describing the quality of statistical
estimates: an estimate �̂�N is good if it is close to the true value �*, i.e., if the
random variable dð�̂�N , �*Þ is small. Since there are several ways of expressing
the fact that a random variable is ‘‘small’’, there are several quality notions for
estimates. We describe some of them in the next section.

3 Properties of statistical estimates

Let �̂�N ¼ �̂�Nð�1, . . . , �NÞ be a sequence of estimates for an unknown true
value �* based on the sample �1,. . . , �N. Assume that the estimates and the true
value lie in a metric space (�, d ).

� Consistency.

A sequence (�̂�N) of estimates is weakly consistent, if

dð�̂�N , �*Þ ! 0 ð3:8Þ
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in probability, i.e., for every ">0

Pfdð�̂�N , �*Þ > "g ! 0 as N !1:

The sequence (�̂�N) is strongly consistent, if

dð�̂�N , �*Þ ! 0 almost surely, as N !1, ð3:9Þ

i.e.,

Pfdð�̂�N , �*Þ ! 0g ¼ 1:

Strong consistency implies weak consistency. Consistency is a minimal
requirement to qualify the estimate as an acceptable approximation of
the unknown true value.

� Speed of convergence.

Let �(N ) be an appropriate blow-up function, i.e., a function which
satisfies �(N )!1 as N!1.

The sequence (�̂�N) is weakly �(N)-consistent, if �ðNÞ dð�̂�N , �*Þ stays
bounded in probability as N tends to infinity, i.e., for every ">0, there is
a K" such that

Pf�ðNÞ dð�̂�N , �*Þ > K"g � " ð3:10Þ

for sufficiently large N (by possibly enlarging K", the condition (3.10)
may be assumed to hold for all N).

The sequence (�̂�N) is strongly �(N)-consistent, if �ðNÞ dð�̂�N , �*Þ is
almost surely bounded, i.e.,

P sup
N
�ðNÞ dð�̂�N , �*Þ <1

� �
¼ 1: ð3:11Þ

� Asymptotic distribution.

If the parameter space is a linear normed space (�, k � k), then one may
consider the difference between estimate and true value rescaled with
some blow-up function �(N)!1, i.e.,

�ðNÞ½�̂�N � �*�: ð3:12Þ

The sequence of estimates (�̂�N) has an asymptotic distribution, if the
expression in (3.12) converges in distribution to a nondegenerate limit.
In regular cases the appropriate blow-up function is �(N)¼N1/2 (see
Section 9).
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The knowledge of the asymptotic distribution gives a precise statement
about the situation for large sample sizes, but may give only little
information about the quality of the estimate for a realistic sample size
N: suppose one knows that �ðNÞ½�̂�N � �*� converges in distribution to
some nondegenerated random variable V. Then for every K, which is a
continuity point of kVk

Pf�ðNÞk�̂�N � �*k � Kg ! PfkVk � Kg ð3:13Þ

as N tends to infinity. A confidence set �̂�*
N may be constructed as

�̂�*
N ¼ f� : dð�̂�N , �Þ � K=�ðNÞg,

where dð�1, �2Þ ¼ k�1 � �2k and K is chosen such that the right hand side
in (3.13) is not larger than "0. Then �̂�*

N is an asymptotic confidence set,
i.e., it satisfies

lim sup
N

Pf�* 62 �̂�*
Ng � "0:

� Universal bounds.

For getting good small sample confidence bounds, it is not necessary
that the sequence �ðNÞ½�̂�N � �*� possesses an asymptotic distribution. It is
only necessary that �ðNÞdð�̂�N , �*Þ is bounded in probability. We say that
�ðNÞdð�̂�N , �*Þ is bounded in probability with explicit tail behavior, if we
can find an explicit function K � "(K ), with the property that "(K )! 0
for K!1 such that for all K

sup
N

Pf�ðNÞdð�̂�N , �*Þ � Kg � "ðKÞ:

Explicit tail functions allow the construction of universal confidence
sets. Let

�̂�*
N ¼ f� : dð�̂�N , �Þ � K=�ðNÞg:

This is a universal confidence set: choosing first the desired level 1�"0
and then K such that "(K )� "0 one gets that

sup
N

Pf�* 62 �̂�*
Ng � "ðKÞ � "0: ð3:15Þ
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Based on the size of �̂�*
N the decision maker may decide to stop or to

increase the sample size by continuing sampling and data collection.

It is one purpose of this chapter to discuss universal bounds for empirical
stochastic programs. The basic notion is rigorously introduced in the
following definition.

Definition 2. Let "(K ) be a nonnegative function on (0,1) with the property
that "(K)! 0 as K!1.

(i) A sequence of random variables (ZN) is bounded in probability with tail
function "(K), if for all K>0

sup
N

PfjZN j � Kg � "ðKÞ:

(ii) The sequence of random variables (ZN) is bounded in probability with
normal tails, if it fulfills (i) and the function "(K) satisfies

"ðKÞ � C1 expð�C2K
2Þ ð3:16Þ

for all K>0 and some constants C1>0, C2>0.

The name in (ii) comes from the following property of the standard normal
distribution function �: the two sided tail probability "ðKÞ ¼ �ð�KÞþ
1��ðKÞ satisfies (3.16) with C1 ¼

ffiffiffiffiffiffiffiffi
2=�
p

and C2¼ 1/2 (Mill’s ratio).
Recall that the main goal is to judge the quality of approximation of a

stochastic optimization problem by the pertaining empirical problem and to
find good error bounds. To this end, we discuss three different, but related
questions: (Q1) the quality of the approximation of the objective function as a
whole, (Q2) the quality of the approximation of the optimal value and (Q3)
the quality of the approximation of the solution (or the solution set if the
solution is not unique).

3.1 The three basic questions about the approximation quality of a
stochastic program

Consider a stochastic optimization problem of type (2.6)

Min
x2X
f f ðxÞ ¼ F½Gx�g ð3:17Þ

and its empirical counterpart (see (2.7))

Min
x2X
f f̂fNðxÞ ¼ F½ĜGx,N �g: ð3:18Þ
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The basic questions about the approximation quality of the true problem
by the empirical problem are:

(Q1) Approximation of the objective function:

Under which conditions is

�ðNÞ sup
x2X
j f̂fNðxÞ � f ðxÞj ð3:19Þ

bounded in probability for some blow-up function �(N)? Does one get
the explicit tail behavior? Does the normal tail behavior hold?

(Q2) Quality of the solution:

Under which conditions is

�ðNÞ sup f ð yÞ : y 2 arg min
x2X

f̂fNðxÞ

� �
�min

x2X
f ðxÞ

� �
ð3:20Þ

bounded in probability for some blow-up function �(N)? Does one get
the explicit tail behavior? Does the normal tail behavior hold?

(Q3) Approximation of the argmin:

Suppose for the moment that all argmins are singletons. Then the
question is: under which conditions is

�ðNÞkarg min
x2X

f̂fNðxÞ � arg min
x2X

f ðxÞk ð3:21Þ

bounded in probability for some blow-up function �(N)? Does one get
the explicit tail behavior? Does the normal tail behavior hold?

The assumption that all argmins are singletons is restrictive. Often argmins
are (closed) sets. We introduce therefore the Hausdorff distance between sets:
the distance between a point x2Rd and a set B�Rd is defined as

dðx, BÞ ¼ inffkx� yk : y 2 Bg:

The one-sided Hausdorff distance between sets A and B is

dðA k BÞ ¼ supfdðx, BÞ : x 2 Ag: ð3:22Þ

We set d(B k ;)¼1 and d(;,B)¼ 0 for the empty set ;. dðAkBÞ is asymmetric
as is illustrated in Fig. 1. The Hausdorff distance between A and B is

dðA, BÞ ¼ maxfdðA k BÞ, dðB k AÞg: ð3:23Þ
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For closed sets A and B, d(A kB)¼ 0 if and only if A�B and d(A,B)¼ 0 if
and only if A¼B.

In the set-valued notation, the question (Q3) has to be formulated as (Q3a)
or (Q3b).

(Q3a) Asymptotic dominance of the argmin set

Under which conditions is

�ðNÞ d arg min
x2X

f̂fNðxÞ k arg min
x2X

f ðxÞ

� �
ð3:24Þ

bounded in probability for some blow-up function �(N). Does one get
the explicit tail behavior? Does the normal tail behavior hold?

Introducing the "-fattening of a set B as

½B�" ¼ fx : dðx, BÞ � "g,

the property (3.24) can be reformulated as follows: the relation

arg min
x2X

f̂fNðxÞ � arg min
x2X

f ðxÞ

� �K=�ðNÞ

holds with arbitrarily high probability, if K and N are large enough.
(Q3b) Asymptotic convergence of the argmin set

Under which conditions is

�ðNÞ d arg min
x2X

f̂fNðxÞ, arg min
x2X

f ðxÞ

� �
ð3:25Þ

bounded in probability for some blow-up function �(N). Does one get
the explicit tail behavior? Does the normal tail behavior hold?

Fig. 1. An example, where d(A jjB)¼ " but d(B jjA) is large.
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The property (3.25) can be reformulated that both relations

arg min
x2X

f ðxÞ � arg min
x2X

f̂fNðxÞ

� �K=�ðNÞ

arg min
x2X

f̂fNðxÞ � arg min
x2X

f ðxÞ

� �K=�ðNÞ
hold with arbitrarily high probability, if K and N are large enough.

If there is a positive answer to (Q3a) or (Q3b), then a confidence region
for the argmin may be constructed in a canonical way. Let the confidence
region ĈCN be

ĈCN ¼ x : d x, arg min
x2X

f̂fNðxÞ

� �
� K=�ðNÞ

� �

where K has to be chosen in such a way that "(K)� "0, with 1�"0 being the
desired level of confidence. If (3.24) has been established with tail function
"(K), then ĈCN is a weak universal confidence set, i.e.,

sup
N

P ĈCN \ arg min
x2X

f ðxÞ ¼ ;

� �
� "0: ð3:26Þ

If even (3.25) holds, then ĈCN is a strong universal confidence set, i.e.,

sup
N

P arg min
x2X

f ðxÞ 6� ĈCN

� �
� "0:

The term universal refers to the fact that the inequality is valid for all N, in
contrast to an asymptotic confidence set, which is valid only for large N.
Notice that (3.26) can be established, if (3.24) holds and argminx2X f ðxÞ is a
singleton. Unfortunately, no other method for proving (3.26) is known at the
time being.

3.2 Relations between the different types of approximation errors

The basic question (Q1) is the fundamental one. Questions (Q2) and (Q3)
are related to (Q1) as is shown in this section.

Proposition 3. If the answer to (Q1) is positive, then the answer to (Q2) is also
positive. More precisely, if

�ðNÞ sup
x2X
j f̂fNðxÞ � f ðxÞj
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is bounded in probability with tail function "(K), and argminx2X f̂fNðxÞ is
nonempty, then

�ðNÞ sup f ð yÞ : y 2 arg min
x2X

f̂fNðxÞ

� �
�min

x2X
f ðxÞ

� �

is also bounded in probability with tail function "(K/2).

Proof. The proposition is established, if we show that for two functions f, g

sup f ð yÞ : y 2 arg min
x2X

gðxÞ

� �
�min

x2X
f ðxÞ � 2 sup

u2X
j gðuÞ � f ðuÞj

ð3:27Þ

and apply the result for gðxÞ ¼ f̂fNðxÞ. Suppose first that the minima of f
and g are attained. Let y 2 argminu2X gðuÞ and x 2 argminu2X f ðuÞ. Then
f ð yÞ�f ðxÞ�gð yÞ�gðxÞþjg ð yÞ � f ð yÞj þ jgðxÞ � f ðxÞj � 2 supu2X jgðuÞ� f ðuÞj,
since g( y)�g(x)� 0. If the minima of f and g are not attained, they may be
approximated with an error at most ". The same argument as before together
with the fact that " is arbitrary leads to (3.27). u

The relation between (Q3) and (Q1) depends on the validity of some growth
condition.

Definition 4. Growth functions. The function f possesses the growth function
�(d) on X, if � is a strictly increasing function on (0,1) satisfying �(d)! 0 as
d! 0 and

f ðxÞ � inf
y2X

f ð yÞ þ� d x, arg min
z2X

f ðzÞ

� �� �
: ð3:28Þ

Notice that this definition requires that argminz2X f ðzÞ is nonempty.

Proposition 5. Suppose that f is a lower semicontinuous function (see Section 7
for the definition) having growth function � where limd!0 ð�ðdÞÞ=d

� ¼ C: If the
answer to (Q1) is positive, then also the answer to (Q3) is positive in the
following sense:

(i) If �ðNÞ supx2X j f̂fNðxÞ � f ðxÞj is bounded in probability with tail function
"(K), then

½�ðNÞ�1=� d arg min
x2X

f̂fNðxÞ k arg min
x2X

f ðxÞ

� �

is bounded in probability with tail function "(CK�/2).
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(ii) Let �ðd Þ ¼ �ðd Þ=d and suppose that �ðd Þ is strictly increasing and
satisfies �ðdÞ ! 0 as d! 0. If the difference quotients have the property
that

�ðNÞ sup
x,y2X ,x6¼y

j f̂fNðxÞ � f̂fNð yÞ � f ðxÞ þ f ð yÞj

kx� yk

is bounded in probability with tail function "(K), then

½�ðNÞ�1=ð��1Þd arg min
x2X

f̂fNðxÞ k arg min
x2X

f ðxÞ

� �

is bounded in probability with tail function "ðCK��1Þ.

Proof. The proof rests on the following inequalities:

(i) If supx j f ðxÞ � gðxÞj � " then for each minimizer xþ of g

dðxþ, arg min f Þ � ��1ð2"Þ: ð3:29Þ

(ii) If for all x 6¼ y we have that j f ðxÞ � gðxÞ � f ð yÞ þ gð yÞj � "kx� yk,
then for each minimizer xþ of g

dðxþ, arg min f Þ � �
�1
ð"Þ: ð3:30Þ

where �ðdÞ ¼ �ðdÞ=d: We show (3.29) first. Let x* 2 argmin f such that
kxþ�x*k¼ d(xþ , argmin f ). Such a point xþ exists because argmin f is
closed by the lower semicontinuity property. Since � is a growth function,

0 � gðxþÞ � gðx*Þ � f ðxþÞ � f ðx*Þ � j f ðx*Þ � gðx*Þj � j f ðxþÞ � gðxþÞj

� �ðkx* � xþkÞ � 2"

whence (3.29) follows. To show (ii), we use the following inequality

0 � gðxþÞ � gðx*Þ � f ðxþÞ � f ðx*Þ � j f ðx*Þ � gðx*Þ � f ðxþÞ þ gðxþÞj

� �ðkx* � xþkÞ � "kx* � xþk
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whence �ðkx* � xþkÞ=kx* � xþk ¼ �ðkx* � xþkÞ � " and we have estab-
lished (3.29). The proposition follows from setting gðxÞ ¼ f̂fNðxÞ and "=(k)/
(�(N)). u

Example 2. The Newsboy problem (continued). Recall again this problem from
the chapter Stochastic Programming Models of this volume. It was already
shown earlier that the objective function has the representation

f ðxÞ ¼ E½Fðx, �Þ� ¼ ðs� cÞxþ ðr� sÞGð1ÞðxÞ,

where Gð1ÞðuÞ ¼
R u
�1
ðu� vÞdGðvÞ ¼

R u
�1

GðvÞ dv. Suppose that G has contin-
uous density g and that it is known that in a symmetric neighborhood of
diameter 2h this density is not smaller than a constant g0>0. Then the
following function � is a growth function for f:

�ðdÞ ¼
ðr� sÞ 12 g0d

2 d � h

ðr� sÞðg0dh�
1
2
g0h

2Þ d > h

(

Thus f is locally quadratic in a neighborhood of x*, but grows globally only at
a linear rate. The curvature at the minimum is f 00ðx*Þ ¼ ðr� sÞgðx*Þ > 0. The
function �f(x) is depicted in Fig. 1. In addition, this figure shows three
empirical estimates f̂fNðxÞ, each based on a sample size of N¼ 10. Observe that
the approximating function may be quite far from the true function, but the
argmins may be rather close (Fig. 2).

Fig. 2. Solid line: The negative objective function of the newsboy problem (r¼ 9, c¼ 10,

s¼ 15, ��N(100, 8)). This function is locally quadratic, but globally only of linear growth.

Dotted lines: Three empirical approximations of the objective function.
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The growth function depends on the feasible set. If one knows that the
approximating solution is already in a small neighborhood of the true
solution, then usually a better growth function can be established and hence a
smaller confidence interval can be found. For practical purposes, a two stage
procedure may be used: in a first stage, the validity of some confidence region
may be shown using a global growth function. In a second stage this
confidence region may be improved using a local growth function.

3.3 The uniform boundedness property

We have seen so far that the crucial question is (Q1), i.e., to bound
the approximation error of the objective function. How can this be done? The
approach we will use here is to impose Lipschitz continuity properties on the
risk functional F and to use uniform bounds for the Law of Large Numbers.

The first step is to introduce some sup-metrics dH. Let H be a set of
measurable functions on R and let GH the class of those distributions G, for
which all functions from H have finite integrals:

GH ¼ G :

Z
hðuÞ dGðuÞ is well defined and finite for all h 2 H

� �
:

On GH one may define a semidistance through

dHðG1, G2Þ ¼ sup
��� Z hðuÞ dG1ðuÞ �

Z
hðuÞ dG2ðuÞ

��� : h 2 H
� �

:

Recall the definition of the Lipschitz property: F is Lipschitz continuous w.r.t.
dH if there is a constant L (called the Lipschitz constant) such that

���FðG1Þ � FðG2Þ

��� � L � dHðG1, G2Þ: ð3:31Þ

Example. If F¼E, i.e., if the risk functional is the expectation, then (3.31)
holds with L¼ 1, ifH contains the identity function h(x)¼ x. Other, less trivial
examples are discussed in Section 4.

The relation between distances of probability measures and the pertaining
stochastic programs is extensively studied in chapter Stability of Stochastic
Programming Problems by Römisch in this volume. Here we are interested in
uniform approximations of the true program by the empirical program. The
uniform approximation may be expressed in terms of a uniform boundedness
principle of appropriate families F of integrable functions.
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Definition 6. A family F of integrable functions defined on a probability space
(�,A,P) has the uniform boundedness property with blow-up function �(N ) and
explicit tail function "(K), if for i.i.d. random variables (�n) with distribution P,

�ðNÞ sup
F2F

��� 1
N

XN
n¼1

Fð�nÞ � E½Fð�Þ�
���

is bounded in probability with tail function "(K ), i.e.,

sup
N

P �ðNÞ sup
F2F

��� 1
N

XN
n¼1

Fð�nÞ � E½Fð�Þ�
��� � K

( )
� "ðKÞ

(compare with Definition 2 (i)). If the tail function "(K) satisfies (3.16), then
the tails are called normal.

The uniform boundedness property of classes of function is the key for
proving uniform bounds for the error in the objective function, i.e., the
difference between f(x)¼ F(Gx) and f̂fNðxÞ ¼ FðĜGx,NÞ, compare (2.6) and (2.7).
The following theorem is obvious, but crucial.

Theorem 7. Suppose that F is Lipschitz continuous w.r.t. dH, i.e., that (3.31) is
fulfilled.

(i) If the family FH ¼ fh 	 Fðx, �Þ : x 2 X , h 2 Hg satisfies the uniform boun-
dedness property with blow-up function �(N) and explicit tail function
"(K), then

�ðNÞ sup
x2X
j f̂fNðxÞ � f ðxÞj

is bounded in probability (see Definition 2) with tail function "(K/L). Thus,
under the assumptions of Proposition 5,

½�ðNÞ�1=� d arg min
x2X

f̂fNðxÞ k arg min
x2X

f ðxÞ

� �

is bounded in probability with tail function "(C(K/L)�/2).
(ii) If the family FrH ¼ fðh 	 Fðx, �Þ � h 	 Fðy, �ÞÞ=ðkx� ykÞ : x,y 2 X; x 6¼ yg

satisfies the uniform boundedness property with blow-up function �(N)
and explicit tail function "(K), then

�ðNÞ sup
x,y2X ,x6¼y

j f̂fNðxÞ � f̂fNð yÞ � f ðxÞ þ f ð yÞj

kx� yk
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is bounded in probability with tail function "(K/L). Thus, under the
assumptions of Proposition 5,

½�ðNÞ�1=ð��1Þ d arg min
x2X

f̂fNðxÞ k arg min
x2X

f ðxÞ

� �

is bounded in probability with tail function "ðCðK=LÞ��1Þ.

To summarize the results of this section, we have seen that bounds for the
uniform approximation of the objective function gives automatically bounds
for the quality of the solution. Bounding the approximation error of the
argmin is a more difficult problem, since it depends on the curvature of the
objective f (the growth condition). If the objective is flat near its argmin, a
small error in function value may cause a large error in the argmin. Also,
bounds for the differences of the objective give much better bounds for the
solutions than bounds for function values only.

If the risk functional F is the expectation, uniformity in the class
F ¼ fFðx, �Þ : x 2 Xg or Fr ¼ fðFðx, �Þ � Fð y, �ÞÞ=ðkx� ykÞ : x, y 2 X; x 6¼ yg
is required. If the risk functional is not the expectation, but at least Lipschitz
continuous w.r.t. dH, then uniform versions of the Law of Large
Numbers are needed for larger classes FH ¼ fh 	 Fðx, �Þ : x 2 X , h 2 Hg or
FrH ¼ fðh 	 Fðx, �Þ � h 	 Fð y, �ÞÞ=ðkx� ykÞ : x, y 2 X; x 6¼ yg.

In most applications, the quality of the solution matters much more than
the argmin error. But even if one is interested in the argmin error, the error in
the objective function has to be bounded first: all methods of dealing with the
argmin error are based on bounds for the error in the objective function. Two
steps are necessary for this goal: first to establish the Lipschitz continuity for
the risk functional (this step can be omitted if the risk functional is the
expectation) and then to prove uniformity for the appropriate function class
F. The first step will be considered in the next Section 4, the second step is
done in the subsequent Section 5.

4 Risk functionals and Lipschitz properties

The expectation is not the only functional which appears in stochastic
optimization problems. Especially in recent years it has been well understood
that risk management is done by controlling various risk parameters like
variance, quantiles etc., of the cost, wealth or income distribution.

To minimize the expected costs makes sense for situations which contain
many repetitions of the same problem. Examples are the optimal design of
service systems, manufacturing systems and inventory systems. If, however,
the decision is only to be made once, then it is questionable whether the
expectation is the appropriate risk functional for the problem. In portfolio
optimization for instance, the use of variance risk adjusted expectation
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FðGxÞ ¼ EðGxÞ � � �VarðGxÞ as objective has become a standard (the so called
Markowitz model).

Recall that any probability functional can be seen as a statistical parameter.
The basic question, whether and how fast the empirical version of this
parameter converges to the true one, depends on the continuity properties of
this parameter with respect to appropriate distances.

Based on a set of integrable functions H, we have already defined the
semidistance dH for distributions G1, G2 as

dHðG1, G2Þ ¼ sup
��� Z hðuÞ dG1ðuÞ �

Z
hðuÞ dG2ðuÞ

��� : h 2 H
� �

:

If H is separating on GH, i.e., if
R
hðuÞ dG1ðuÞ ¼

R
hðuÞ dG2ðuÞ for all h2H

implies that G1¼G2, then dH is a distance. The larger the class H, the finer is
the topology generated by dH.

Notice also that enlarging the set H to its convex hull conv(H) does not
change the semidistance dH.

4.1 A list of distances for probability measures

� If H is chosen as the class of indicator functions of half-open intervals
in R1

KS ¼ f1ð�1,a�ðuÞ : a 2 Rg,

the Kolmogorov–Smirnov distance dKS is obtained.
� If H is chosen as the class of Lipschitz-continuous functions with

Lipschitz-constant 1

Lip ¼ fh : jhðuÞ � hðvÞj � ju� vjg,

the Wasserstein distance dLip(G1,G2) is obtained.
� Define the Lipschitz-constant of order p of h as

Lpð f Þ ¼ inffL : jhðuÞ � hðvÞj � Lju� vj maxð1, jujp�1, jvjp�1Þg:

Choosing H as the class of all functions with Lp� 1, we get the Fortet–
Mourier distance.

� IfH is chosen as the class of the indicator functions 1A of all measurable
sets (or equivalently the class Mþ

b ð1Þ of all nonnegative measurable
functions bounded by 1), the variational distance is obtained

dMþ

b
ð1ÞðG1, G2Þ ¼ sup

A

Z
1AðuÞ d½G1 � G2�ðuÞ:

446 G.C. Pflug



� Consider the class of power functions given by

Hk ¼ fsignðuÞjuj
k1fu�ag : a 2 Rg ð4:1Þ

for integer k. The corresponding distance will be briefly denoted by

dkðG1, G2Þ instead of dHk
ðG1, G2Þ: ð4:2Þ

By definition, if X1�G1 and X2�G2, then

dkðG1, G2Þ ¼ supfjEðXk
11fX1�agÞ � EðXk

2 1fX2�agÞj : a 2 Rg:

In particular, jEðXk
1 Þ � EðXk

2 Þj � dkðG1,G2Þ. The distance d0 coincides with the
Kolmogorov–SmirnovmetricdKS, since supu jG1ðuÞ�G2ðuÞj¼supu jð1�G1ðuÞÞ�
ð1� G2ðuÞÞj. We also introduce

dk ¼ maxfdl : l ¼ 0, . . . , kg: ð4:3Þ

4.2 A list of frequently used risk functionals

Recall that risk functionals are real valued mappings G!F R defined on the
family of G of all probability measures on R or some subfamily.

� Location equivariant measures (location parameters).

They have the property that

F½Gð� � aÞ� ¼ F½Gð�Þ� þ a

for all a. Examples are the expectation

EðGÞ ¼

Z
u dGðuÞ,

the value-at-risk (at level �)

V@R�ðGÞ ¼ G�1ð1� �Þ,

the conditional value-at-risk (at level �)

CV@R�ðGÞ ¼
1

�

Z 1

1��

G�1ðvÞ dv ¼
1

�

Z
ðG�1ð1��Þ,1Þ

u dGðuÞ:
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Alternatively, CV@R may be defined as

CV@RðGÞ ¼ inf aþ
1

1� �

Z
½u� a�þ dGðuÞ : a 2 R

� �

(see Rockafellar and Uryasev, 1999).
� Location invariant measures (pure risk measures).

They have the property that

F½Gð� � aÞ� ¼ F½Gð�Þ�

for all a. Examples arethe mean absolute deviation

MadðGÞ ¼

Z
ju� EðGÞj dGðuÞ,

the upper semi-deviation

MadþðGÞ ¼

Z
½u� EðGÞ�þ dGðuÞ,

the variance

VarðGÞ ¼

Z
½u� EðGÞ�2 dGðuÞ,

the upper semi-variance

VarþðGÞ ¼

Z
ð½u� EðGÞ�þÞ

2 dGðuÞ:

� Other risk measures.

The expected utility

Z
UðvÞ dGðvÞ,

where U is a nonnegative, monotone utility function, the excess
probability (over threshold t)

1� GðtÞ:
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4.3 Continuity properties of risk functionals

Suppose that we may prove that the functional F is continuous w.r.t dH.
Then the convergence of ĜGx,N to Gx in metric dH implies the convergence
of FðĜGx,NÞ to F(Gx). If F is Lipschitz, then every estimate for dHðĜGx,N ,GxÞ

implies in a simple manner an estimate for jFðĜGx,NÞ � FðGxÞj. Uniformity of
the convergence in x carries over.

The following Proposition 8, which is stated without proof uses the
distances dk and dk introduced in (4.2) and (4.3).

Proposition 8. Continuity of probability functionals. Let X1�G1 and X2�G2.
Then

(i) jG1(t)�G2(t)j � d0(G1,G2)

(ii) jE(G1)�E(G2)j � d1(G1,G2)

(iii) jMadðG1Þ �MadðG2Þj � d1ðG1,G2Þ þ 2d1ðG1,G2Þ

(iv) jVarðG1Þ �VarðG2Þj � d2ðG1,G2Þ þ d1ðG1,G2ÞðEX1 þ d1ðG1,G2Þ

(v) jVarþðG1Þ�VarþðG2Þj�d2ðG1,G2Þð2EX1þ1Þþd1ðG1,G2Þ½3þEjX1�EX1j�

(vi) Suppose that G1(q)¼� and that G1ðuÞ � G1ðqÞ � cðu� qÞ for ju�qj � ".
Then, if d0(G1,G2)� ",

jV@R�ðG1Þ �V@R�ðG2Þj �
1

c
d0ðG1, G2Þ:

(vii) jCV@R�ðG1Þ�CV@R�ðG2Þj�d0ðG1,G2ÞþjV@R�ðG1Þ�V@R�ðG2Þj

5 Arithmetic means of of i.i.d. random variables

This section reviews some results from probability theory, which are
relevant for deriving statistical properties of the estimates in stochastic
optimization.

5.1 Basic properties

Let (Xn) be a sequence of i.i.d. random variables. We are interested in the
behavior of their arithmetic mean

XN ¼
1

N

XN
n¼1

Xn

as N tends to infinity. There are four basic theorems, which describe the
pointwise and distributional properties of XN : the Strong Law of Large
Numbers (SLLN), the Central Limit Theorem (CLT), the Law of Iterated
Logarithm (LIL) and the Large Deviations Theorem (LDT).
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Theorem 9. (Strong Law of Large Numbers-SLLN) Let (Xn) be a sequence of
i.i.d. random variables. If X1 is integrable, then

XN ¼
1

N

XN
n¼1

Xn! EX1 almost surely:

Proof. See Etemadi (1981). u

Theorem 10. (Central Limit Theorem-CLT). Assume that X1 has finite variance
�2¼Var(X1). Then, for all u,

P
1

�
ffiffiffiffi
N
p

XN
n¼1

½Xn � EX1� � u

( )
! �ðuÞ ¼

1ffiffiffiffiffiffi
2�
p

Z u

�1

e�v
2=2 dv:

Proof. See Shiryaev (1996, pp. 328–341) for this and more on the CLT. u

Theorem 11. (Law of iterated logarithm-LIL). Under the assumptions of the
previous theorem the following limit relations hold almost surely

lim sup
N!1

1

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log log N

p XN
n¼1

½Xn � EX1� ¼ 1

lim inf
N!1

1

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log log N

p XN
n¼1

½Xn � EX1� ¼ �1:

Proof. See Shiryaev (1996), Theorem 1, p. 397. u

The LDT will be presented in the next section.

5.2 Universal probability bounds

Assume as before that (Xn) is an i.i.d sequence. Let all Xn have the same
distribution as X. If X has exponential moments of order s 6¼ 0 (i.e., E(esX)
exists for some s 6¼ 0), then interesting inequalities and tight bounds may be
derived. The first basic step is Chernoff’s inequality for s>0:

PfX � tg ¼ PfesX � estg � e�stEðesX Þ:

Applied to the arithmetic mean of the centered variables 1
N

PN
n¼1 Xn�

EX ¼ XN � EX , the Chernoff bound reads

PfXN � EX � tg � e�stN ½EðesðX�EXÞÞ�N : ð5:1Þ
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This bound is one-sided, but putting together this inequality and the corres-
ponding inequality for �X one gets easily the two-sided version, since for
t� 0,

PfjXN � EXj � tg � PfXN � EX � tg þ Pf�XN þ EX � tg: ð5:2Þ

If the random variables Xn are bounded in [a, b], then the Hoeffding bound

PfXN � EX � tg � e�2t
2N=ðb�aÞ2 ð5:3Þ

can be obtained (see Devroye and Lugosi, 2001). Consequently, if the Xn are
bounded and take values in [�C,C ], we get normal tail behavior for the
arithmetic mean blown up with

ffiffiffiffi
N
p

in the sense of Definition 2

P jXN � EXj � K=
ffiffiffiffi
N
pn o

� 2e�K
2=2C2

ð5:4Þ

by setting t ¼ K=
ffiffiffiffi
N
p

.
If the random variables Xn are unbounded, Hoeffding’s bound is not

applicable, but a similar bound may be derived using the logarithmic moment
generating function of X�EX:

MX ðsÞ ¼ log EðesðX�EXÞÞ:

We assume that MX(s) is finite for s in a neighborhood [�", "] of 0. Outside
this neighborhood MX may be equal 1. The region of finiteness of MX is
determined by the tail behavior of X: if X is bounded, then MX is finite on the
whole R. The lighter are the tails, the larger is the interval of finiteness of MX.
MX is a convex, extended real function which satisfies

MX ð0Þ ¼ 0, M0X ð0Þ ¼ 0, M00X ð0Þ ¼ VarðXÞ:

Let M*
X be the conjugate (dual) function of MX

M*
X ðuÞ ¼ supfsu�MX ðsÞ : s 2 Rg ð5:5Þ

which is also convex. Taking the infimum over all s in (5.1) we get

PfXN � EX � tÞ � inf
s

e�stN ½EðesðX�EXÞÞ�N

¼ inf
s

expðN½MX ðsÞ � st�Þ ¼ expð�NM*
X ðtÞÞ: ð5:6Þ
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Notice that the inequality (5.6) holds for all t and all N. The following lemma
links the growth of the conjugate logarithmic moment generating function to
the tail behavior of the arithmetic mean.

Lemma 12.
(i) If the logarithmic moment generating function MX satisfies

MX ðtÞ � �t
2, ð5:7Þ

for all t and for some constant �, then the arithmetic mean has normal tail
behavior:

P XN � EX � K=
ffiffiffiffi
N
pn o

� e�K
2=4�: ð5:8Þ

(ii) If MX(s)��s
2 for jsj � ", then

P XN � X � K=
ffiffiffiffi
N
pn o

�
e�K

2=4� if N � K2

4�2"2

e�
ffiffiffi
N
p

K"=2 otherwise

(
ð5:9Þ

i.e., the arithmetic mean has normal tails for sufficiently large N.

Proof. (i) If MX(s)��s
2, then M*

X ðtÞ � t2=4�. (5.8) follows from setting t ¼
K=

ffiffiffiffi
N
p

in (5.6). In case (ii) M*
X ðtÞ �

t2

4� 1fjtj�2�"g þ ðjtj"� �"
2Þ1fjtj>2�"g �

t2

4� 1fjtj�2�"g þ ðjtj"=2Þ1fjtj>2�"g and this must be used in (5.6). u

A slight generalization of the just proven result is Cramer’s theorem (see
Deuschel and Strook, 1989).

Theorem 13. (Large deviations theorem-LDT). For every closed set A

lim sup
N

1

N
log PfXN 2 Ag � �inffM*

X ðtÞ : t 2 Ag

Remark. A lower bound is also valid (see also Deuschel and Strook, 1989): for
every open set B

lim inf
N

1

N
log PfXN 2 Bg � �inffM*

X ðtÞ : t 2 Bg:
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5.3 Uniformity

Let F be a class of measurable functions on (�,A,P) and let (�n) be a
sequence of i.i.d. random variables with values in �. If the F contains only one
function F, then setting Xn¼F(�n), we know that this sequence fulfills under
the appropriate conditions SLLN, CLT, LIL, LDT.

For the applications we have in mind, uniform versions of these theorems
are needed. Let F be a class of functions defined on Rm and (�n) a sequence of
i.i.d. random variables with values in Rm.

We want to know under which conditions for F a uniform Law of Large
Numbers with explicit tail behavior as introduced in Definition 6 holds, i.e.,

sup
F2F

�ðNÞ
��� 1
N

XN
n¼1

Fð�nÞ � EFð�1Þ
��� ð5:10Þ

is uniformly bounded in probability with explicit tail behavior.
For measurability assumptions, we assume throughout this chapter that F

is a countable family of functions.
If the measurability of the supremum error can be ensured, then the family

F may be uncountable as well. In our application, F will be the family of all
cost functions F ¼ fFðx, �Þ : x 2 Xg. If x � F(x, �) is a.s. lower semicontin-
uous (see Section 7), then countably many x2X suffice to determine the
supremum error. Therefore, all results hold for the uncountable set F in this
case.

We begin with just a uniform Law of Large Numbers without blowing up
function and explicit tail behavior.

Definition 14. The countable class F of integrable functions is said to fulfill a
uniform Strong Law of Large Numbers (SLLN), if

sup
F2F

1

N

XN
n¼1

½Fð�nÞ � E½Fð�1Þ�� ! 0 ð5:11Þ

almost surely, as N tends to infinity.

Uniform SLLN Theorems are also known under the name of Glivenko–
Cantelli Theorems. The original Glivenko–Cantelli Theorem was indepen-
dently formulated by Glivenko and Cantelli for the function class
F ¼ f1ð�1,u�ðvÞ : u 2 Rg. Uniformity holds in a trivial manner, if the class
F contains only finitely many functions. Typically, sufficient conditions for
uniformity for infinite F require that this set may be approximated in a certain
sense by finitely many functions. One distinguishes between shattering type
conditions and covering type conditions.
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Theorem 15. Vapnik–Cervonenkis shattering type theorem Let U be a
subfamily of measurable sets. The Vapnik–Cervonenkis (VC ) index V(U ) of U is
defined as

VðUÞ ¼ inf n : max
x1,...,xn

#fU \ fx1, . . . , xng : U 2 Ug < 2n
� �

:

Here # denotes the cardinality. If V(U )<1, then

sup
U2U
jP̂PNðUÞ � PðUÞj ! 0 a:s:

Proof. See Shorack and Wellner (1986), p. 828. u

The VC index was formulated for families of sets, but it has also a version
for families of functions: as an easy corollary one gets the following theorem: a
class of functions F satisfies a uniform SSLN (5.11), if the collection of all
level sets {x:F(x)<t}, t2R, F2F has finite VC index.

The finiteness of the VC index guarantees that the function class satisfies
the uniform SLLN, but does not allow finer estimates of the deviation of the
empirical functions from the true functions. A more refined analysis is made
possible by the notion of the metric entropy. Define first the notion of a
bracket [G,H]: for two real, measurable functions G�H, let the bracket be
defined as

½G, H� ¼ fF : G � F � H a:s:g:

The bracket is empty, if G�H a.s. does not hold.

Definition 16. Metric entropy (with bracketing).Define kFk1 ¼
R
jFð!Þj dPð!Þ.

Let F be a family of integrable functions. The metric entropy of F is defined as

N1ð	Þ ¼ min k : There exist integrable functions G1�H1, . . . , Gk�Hk,
	

such that F � [
k

i¼1
½Gi, Hi� and kHi � Gik1 < " for all i

o

Function classes with finite entropy satisfy a uniform Law of Large
Numbers as the next theorem shows.

Theorem 17. Blum-de Hardt metric entropy type theorem. Suppose that N1(") is
finite for every ">0. Then the uniform SLLN (5.11) holds.
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Proof. Choose an arbitrary ">0. It is sufficient to show that

lim sup
N

sup
F2F

1

N

XN
n¼1

Fð�nÞ � E½Fð�Þ� � "

a.s. Let ðGi,HiÞi¼1,...,N1ð"Þ be chosen as in Definition 16. Then

sup
F2F

1

N

XN
n¼1

Fð�nÞ � E½Fð�Þ� ¼ max
i¼1,...,N1ð"Þ

sup
F2½Gi ,Hi�

1

N

XN
n¼1

Fð�nÞ � E½Fð�Þ�

� max
i¼1,...,N1ð"Þ

1

N

XN
n¼1

Hið�nÞ � E½Gið�Þ�

� max
i¼1,...,N1ð"Þ

1

N

XN
n¼1

Hið�nÞ � E½Hið�Þ� þ "

By the standard Law of Large Numbers, the lim sup of this expression for
N!1 is bounded by " and the theorem is shown. u

A more refined analysis relates the growth of the function N1(") to the tail
behavior of the sequence (5.10). If an assumption about the growth of the
function " � N1(") can be made, then good estimates of the approximation
error are possible. The assumptions about N1(") are called covering type
conditions.

5.4 Covering types and universal bounds

Definition 18. A set A
Rd is said to be of covering type (v,V), if for every
">0 one can find at most 8(V"/")

v
9 balls B1,B2,. . . ,BN"

, each with diameter
", which cover A, i.e., A � [N"

i¼1 Bi and lim"! 0V"¼V.

Example 5. The unit cube in Rd is of covering type ðd, 2
ffiffiffi
d
p
Þ.

Definition 19. Let (�,A,P) be a probability space. A family F of L2-functions
is of covering type (v,V), if for every ">0 there are at most N2(")¼ 8(V/")v9
pairs of functions ðG1,H1Þ, . . . , ðGN2ð"Þ,HN2ð"ÞÞ with the properties

(i) Gi(!)�Hi(!) a.s. for 1� i�N2(");
(ii)

R
ðHið!Þ � Gið!ÞÞ

2Pðd!Þ � "2;
(iii) For each F2F there is a index i2 {1,. . . ,N2(")} such that

Gið!Þ � Fð!Þ � Hið!Þ:
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Property (iii) may be expressed in the following way:

F �
[N2ð"Þ

i¼1

½Gi, Hi�:

The covering type is essential for uniform confidence bands as was
demonstrated by Talagrand (1994).

Theorem 20. Let jF(w)j � 1 for all F2F. Suppose that F is countable and of
covering type (v,V ). Then

P sup
F2F

��� 1
N

XN
n¼1

Fð�nÞ � EF
��� � Kffiffiffiffi

N
p

( )

� MðVÞ
Kffiffiffi
v
p

� �v

expð�2K2Þ, ð5:12Þ

where M( � ) is a universal function. To put it differently, F satisfies the
uniform boundedness property of Definition 6 with blow-up function
�ðNÞ ¼

ffiffiffiffi
N
p

and normal tails.

Proof. See Talagrand (1994) or Van der Vaart and Wellner (1996). u

The theorem holds also for uncountable classes F, provided that the
supremum is measurable.

Remark. Notice that the factor Kv appearing in the tail function does not
affect the normal tail behavior, since

Kv expð�2K2Þ � expð�v=2Þ
v

2�


 �v=2
expð�ð2� �ÞK2Þ

for all 0<�<2. Thus the tail behavior is normal for all v>0. If the functions F
are bounded by C, then the right hand side has to be replaced by
ðMðVÞK=ðC

ffiffiffi
v
p
ÞÞ
v expð�2K2=C2Þ, still with normal tails.

If the family F is unbounded, then the foregoing result has to be modified.
If uniform exponential moments exist, then a similar result may be proved,
but the price is an extra [log(N)]�1 term in the blow-up function. A bounding
technique is used to show this result: let for any random variable X and c>0

Xc ¼

c if X > c
�c if X < �c
X otherwise

8<
:
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Theorem 21. Suppose that F is countable and of covering type (v,V ). Suppose
further that the functions Sc ¼ supF2F fF � Fc � E½F � � E½Fc�g satisfy the
following conditions

(i) ESc� e�c/2

(ii) logE exp(s[Sc�ESc])��s
2 for all c. Then

P sup
F2F

��� 1
N

XN
n¼1

Fð�nÞ � EF
��� � K logðNÞffiffiffiffi

N
p

( )

� MðVÞ
Kffiffiffi
v
p

� �v

expð�K2=2Þ þ exp
1

4�

� �
exp
�K2 log2 N

32�

� �
, ð5:13Þ

where M( � ) is a universal function. To put it differently, F satisfies the
uniform boundedness property (see Definition 6) with blow-up function
�ðNÞ ¼

ffiffiffiffi
N
p

=logðNÞ and normal tails.

Proof. We use a truncation argument and set cN¼ log(N).

P sup
F2F

1

N

XN
n¼1

Fð�nÞ � EF �
K logðNÞffiffiffiffi

N
p

( )

� P sup
F2F

1

N

XN
n¼1

FcN ð�nÞ � EFcN �
K logðNÞ

2
ffiffiffiffi
N
p

( )

þ P sup
F2F

1

N

XN
n¼1

½Fð�nÞ � FcN ð�nÞ � EFð�nÞ þ EFcN � �
K logðNÞ

2
ffiffiffiffi
N
p

( )

� P sup
F2F

1

N

XN
n¼1

1

cN
FcN ð�nÞ � E

1

cN
FcN

� �
�

K

2
ffiffiffiffi
N
p

( )

þ P
1

N

XN
n¼1

sup
F2F
½Fð�nÞ � FcN ð�nÞ � EF þ EFcN � �

K logðNÞ

2
ffiffiffiffi
N
p

( )

� MðVÞ
K

2
ffiffiffi
v
p

� �v

expð�K2=2Þ

þ P
1

N

XN
n¼1

ScN ð�nÞ � EScN �
K logðNÞ

2
ffiffiffiffi
N
p � EScN

( )
:

It remains to show the bound for the second summand.
By assumption, EScN � expð�logN=2Þ ¼ N�1=2. Therefore, ðK logðNÞ=

ð2
ffiffiffiffi
N
p
Þ � EScN Þ

2
� ððK � 2ÞlogðNÞ=ð2

ffiffiffiffi
N
p
Þ
2:
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Using Lemma 12, the second summand can be estimated by

P
1

N

XN
n¼1

ScN ð�nÞ � EScN �
K logðNÞ

2
ffiffiffiffi
N
p � EScN

( )

� P
1

N

XN
n¼1

ScN ð�nÞ � EScN �
K logðNÞ � 2

2
ffiffiffiffi
N
p

( )

� exp �
ðK log N � 2Þ2

16�

� �
� exp

1

4�

� �
exp �

K2 log2 N

32�

� �
,

which gives the claimed bound. u

The following inequality is helpful for finding bounds for truncated random
variables, which have exponential moments.

Lemma 22. Suppose that the random variable X satisfies E[exp sX ]<1 for
some s>0. Then for c>0

E½X � c�þ �
e�sc

s
E½exp sX �:

Proof. By the convexity of the exponential function, expðsXÞ � expðscÞ þ
s expðscÞðX � cÞ � s expðscÞðX � cÞ. Thus,

Eð½X � c�þÞ �
e�sc

s
E½exp sX1X�c� �

e�sc

s
E½exp sX �: u

Example. Consider the Newsboy Example of Section 1. Suppose that
x2 [a, b], but � is unbounded. Then Fðx, �Þ ¼ �xþ �½x� ��þ
is also unbounded. Here we have set s�c¼� and r�s¼�. Using now the
symbol c for the truncation and assuming that c��b, we get F � Fc ¼

½ð�þ �Þx� �� � c�þ. The supremum of ½F � Fc � EF þ EFc� is bounded by
�½ð�þ �� cÞ=�� ��þ� �Gð1Þðð�þ �� cÞ=�Þ. If � has some finite exponential
moments (e.g., if � has normal tails) then conditions (i) and (ii) are fulfilled.

6 Entropic sizes of stochastic programs

In this section we specialize the results about covering types to stochastic
optimization problems. We treat only problems with nonrandom constraints
of the form Minx2X f f ðxÞ ¼ F½Fðx, �Þ�g.

If the risk functional is the expectation, then—in view of Section 5.4—one
has to consider the entropic size of the family F ¼ fFðx, �Þ : x 2 Xg.
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Suppose that the covering type of F is (v,V ) and that the functions F are
bounded by 1. Then by Theorem 20,

P
ffiffiffiffi
N
p

sup
x2X
j f̂fNðxÞ � f ðxÞj � K

� �
� MðVÞ

Kffiffiffi
v
p

� �v

expð�2K2Þ:

This gives a positive answer to the basic question (Q1) of Section 3, showing
the blowing up function is

ffiffiffiffi
N
p

and the tail behavior is normal. If the functions
F(x, �) are unbounded, then Theorem 21 has to be used instead. The answers
to questions (Q2), resp. (Q3), i.e., about the quality of the solution and
the approximation of the argmin set, can then be found using Propositions 3
resp. 5.

In view of Theorem 7, a better estimate for the approximation of the
argmin set can be found, if the entropic size of the family Fr ¼ fðFðx, �Þ�
Fð y, �ÞÞ=ðkx� ykÞ : x, y 2 X; x 6¼ yg can be calculated.

If the risk functional F is not the expectation, but Lipschitz w.r.t. the
distance dH, then the entropic sizes of the families FH ¼ fh 	 Fðx, �Þ : x 2 X;
h 2 Hg resp. FrH ¼ fðh 	 Fðx, �Þ � h 	 Fð y, �ÞÞ=ðkx� ykÞ: x, y2X; x 6¼y; h 2 Hg
have to be determined.

We illustrate the method of determining the entropic size of a stochastic
program for the case F¼ E. It consists in studying: (1) the covering type of the
feasible set X, and (2) the structure of the mappings x � F(x, �).

Assumption A1. The constraint set X is a compact set in Rd, which has
covering type (d,V ). This means that it can be covered by N" ¼ 8ðV" Þ

d
9 balls of

radius ", i.e., for every ">0, there are balls Bðx1, "Þ, . . . ,BðxN"
, "Þ with xi2X

such that

X �
[N"

i¼1

Bðxi, "Þ:

For a collection of square integrable functions F¼ {F(�)}, let the diameter be
defined as

diam2
ðF Þ ¼ E½supfF : F 2 F g � inffF : F 2 F g�2:

The diameter is well defined only if sup and inf are measurable and square
integrable.

A ‘‘Lipschitz condition’’ of order 
 links the covering type of X with the
covering type of F.

Lemma 23. Suppose that the Assumption A1 is fulfilled, i.e., X is of covering
type (d,V ), and that F(x, �) satisfies for each x02X and �>0

diamðfFðx, �Þ : x 2 Bðx0, �ÞgÞ � L�
 ð6:1Þ
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for some exponent 
>0 and some constant L. Then F ¼ fFðx, �Þ : x 2 Xg is of
covering type (d/
,V
L).

Proof. Let �¼ ("/L)1/
. Cover X by N� ¼ 8 V
� 9

d balls B(xi, �) of radius �. By
(6.1), the diameter of fFðx, �Þ : x 2 Bðx0, �Þg is at most L�
¼ ". The number of
balls needed is

N� ¼
V

�

� �d

¼
V
L

"

� �d=


: u

Theorem 24. Suppose that Assumption A1 holds and that the following
conditions are fulfilled

(i) x � F(x, �) is Lipschitz continuous with Lipschitz constant L(�), i.e.,

jFðx, �Þ � Fðy, �Þj � Lð�Þ kx� yk:

(ii) L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EL2ð�Þ

p
<1: ThenF¼fFðx, �Þ : x 2 Xg is of covering type ðd,VLÞ.

Proof. This result is a consequence of Lemma 23, since diam2
ðfFðx, �Þ : x 2

Bðx0, �Þg � �
2EðL2ð�ÞÞ ¼ �2L

2
. Thus, 
¼ 1 in (6.1). u

6.1 Example: The entropic size of a linear recourse problem

As a typical example, consider a linear recourse problem, where the
functions F(x, �) are of the form

Fðx, �Þ ¼ minfqð�ÞTy : Wð�Þy ¼ bðx, �Þ, y � 0g

with q(�)2Rm, W(�) a random [k�m] matrix and b(x, �) a Rk-valued random
function.

We make the following assumption:

Assumption A2.
(i) There exists a measurable function ~uu : �! Rm and a constant C1 such

that

~uuð�Þ 2 fu : Wð�ÞTu � qð�Þg � fu : kuk � C1g:

(ii) The function b:X��!Rk is differentiable w.r.t. x and satisfies
kb(x, �)k�C0 a.s. and

R
supx2X krbðx, �Þk

2Pðd�Þ ¼ C2
2 <1.
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Theorem 25. Let Assumptions A1 and A2 be fulfilled. Then

FX ¼ fFðx, �Þ : x 2 Xg ¼ fminfqð�ÞTy :Wð�Þy ¼ bðx, �Þ, y � 0g : x 2 Xg

is of covering type (d,C1C2V ).

Proof. By duality, we may write F as the solution of the dual program, i.e., as
the maximum of a finite number of K functions v1,. . . , vK.

Fðx, �Þ ¼ max
k¼1,...,K

bðx, �ÞTvkð�Þ: ð6:2Þ

Here vk are the vertices of the dual feasible polyhedron fu : Wð�Þ
Tu � qð�Þg and

K is their maximal number. Since kb(x, �)k�C0 and kvk(�)k�C1, we get

jFðx, �Þj � C0C1:

Finally, for all x0,

diam2
fFðx, �Þ : x 2 Bðx0, �Þg � �

2

Z
C2

1 sup
x2X
krbðx, �Þk2Pðd�Þ

� �2C2
1C

2
2: ð6:3Þ

Apply now Lemma 23. u

The most important special case is that of a linear b(x,!):

bðx, �Þ ¼ kð�Þ � Tð�Þx:

Since krb(x, �)k¼kT(�)k, independent of x, the constant C2 is here simply

C2
2 ¼

Z
kTð�Þk2Pðd�Þ:

7 Epiconvergence

Up to now, the distance for measuring the approximation error of the
objective functions was the supremum norm. The pertaining topology is
uniform convergence on compacta. This setup is standard in statistical
parameter estimation. However, the approach fails for stochastic programs
with probabilistic constraints, i.e., constraints involving random variables. A
conceptually sound way to deal with constraints and especially with stochastic
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constraints is to consider the extended problem by introducing the extended
indicator function

iX ðxÞ ¼
0 if x 2 X
1 if x 62 X

�
ð7:1Þ

and to add iX to the objective function as a penalty term. The two
optimization problems

ðIÞ minf f ðxÞ : x 2 X � Rdg

and

ðIIÞ minf f ðxÞ þ iX ðxÞ : x 2 Rdg

are clearly equivalent. The problem (II) is only seemingly unconstrained. For
algorithmic purposes, there is no difference between the formulations (I) and
(II). Conceptually, there is, however, a difference: problem (II) has the
advantage that is entirely formulated in terms of the objective extended real
function. A disadvantage of (II) is that the notion of uniform convergence is
not applicable. This is the main reason for introducing a new concept of
convergence, especially suited for extended real functions: the concept of
epiconvergence. The standard reference is the book by Rockafellar and Wets
(1998). We give here a short introduction into the theory.

Recall that an extended real valued function f defined on Rd is called lower
semicontinuous (lsc), if for all x and all sequences xN!x, it follows that
lim infN f(xN)� f(x). f is lower semicontinuous if and only if it is the pointwise
supremum of a countable family of continuous functions.

The epigraph of a function f defined on Rd is

epi f ¼ fðx, �Þ : � � f ðxÞ; x 2 Rd; � 2 Rg:

A function f is lower semicontinuous if and only if epi f is a closed set in Rdþ 1.
Let B(x, r) be the closed ball with center x and radius r in an euclidean

space, i.e., Bðx, rÞ ¼ fy : ky� xk � rg. The unit ball is denoted by B¼B(0, 1).
Let C be the family of all closed sets in Rdþ 1 (including the empty set ;). We

introduce the topology of setwise convergence. Let (CN) be a sequence of
closed sets in C. We define the (topological) limes superior (ls) and limes
inferior (li) as

li CN ¼ x : 9ðxNÞ, xN 2 CN , x ¼ lim
N

xN

� �

ls CN ¼ x : 9ðxNk
Þ, xNk

2 CNk
, x ¼ lim

k
xNk

� �
:
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Obviously, liCN� lsCN. The sequence (CN) of closed sets converges setwise to
C (in the sense of Painlevé–Kuratowski, in symbol CN!

set
C), if

li CN ¼ ls CN ¼ C: ð7:2Þ

The topology of !
set

convergence can be metrizised by the following metric:

�ðC1, C2Þ ¼
X1
k¼1

2�k
dðC1 \ kB, C2 \ kBÞ

1þ dðC1 \ kB, C2 \ kBÞ

where B is the unit ball in Rdþ 1 and d is the Hausdorff metric (see (3.23)). The
localization to the sets kB is necessary, because d(C1,CN) may be infinite for
all N, even if CN!

set
C. The family C of all closed sets Rdþ 1 is a separable,

metric space. A countable dense family of sets is given by all finite sets with
points having rational coordinates.

A sequence of lsc functions ( fN) epiconverges to a lsc function f ( fN!
epi
f ) if

the following properties hold for all x2Rd

(i) for all sequences (xN) with xN! x, lim infN fN(xN)� f(x)
(ii) there is a sequence yN!x such that lim supN fN( yN)� f(x).

Setwise convergence and epiconvergence of functions are closely related:
fN epiconverges to f if and only if epi fN!

set
epi f . On the other hand, the

sequence of closed sets AN converges setwise to A if and only if the extended
indicator functions iAN

epiconverge to iA.
The family of all l.s.c. extended real functions is a separable metric space

under the topology of epiconvergence. A countable dense set of functions is
given by functions of the form f(xi)¼ ri for a finite set of rational points xi and
rational values ri and f(x)¼1 elsewhere.

Epiconvergence does not imply and is not implied by pointwise
convergence.

Example 26. Consider the following sequence of functions

f
ð1Þ
N ¼

�Nx if 0 � x � 1=N
Nx� 2 if 1=N�x�2=N
0 otherwise

f
ð2Þ
N ¼

�Nx� 1 if �1=N�x�0
�1þNx if 0 � x � 1=N
0 otherwise

8<
:

8<
:

Both sequences epiconverge to f(x)¼�1{x¼ 0}. The first sequence converges
pointwise to another limit, namely 0. The second sequence converges also
pointwise, but not uniformly to f(x). Uniform convergence of a sequence of lsc
functions to a limit function implies, however, that the limit is lsc and that
epiconvergence holds.
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Most important is the relation between epiconvergence and the
convergence of minima and argminima.

Lemma 27. Let fN!
epi
f . Then

(i) lsN argmin fN 
 argmin f :
(ii) If for all ">0 there is an index N" and a compact set K" such that

inff fNðxÞ : x 2 K"g � inff fNðxÞ : x 2 Rdg þ " for all N�N", then

inf
x

fNðxÞ ! inf
x

f ðxÞ:

(iii) Suppose that there is a compact set K such that argmin fN
K, for suffi-
ciently large N. Suppose further that argmin f¼ {x*} is a singleton. Then

lsN arg min fN ¼ fx*g,

i.e., for every selection xN2 argmin fN, xN! x* as N!1.

Proof. (i) Let xNk
2 argmin fNk

and suppose that xNk
! x. We have to show

that x2 argmin f. By epiconvergence lim infk fNk
ðxNk
Þ � f ðxÞ and by (7.3)

lim supk fNk
ðxNk
Þ � infu f ðuÞ. Combining the two inequalities, we get f ðxÞ �

infu f ðuÞ and therefore x2 argmin f. (ii) Let x such that f ðxÞ < infu f ðuÞ þ ".
There is a sequence ( yN)!x with lim supN fNð yNÞ � f ðxÞ and therefore
lim supN infu fNðuÞ � lim supN fNð yNÞ � f ðxÞ � infu f ðuÞ þ ". Since " was arbi-
trary,

lim sup
N

inf
u

fNðuÞ � inf
u

f ðuÞ: ð7:3Þ

To show the opposite inequality we choose an " and a sequence of points
(xN)2K" with the property that fNðxNÞ � infu fNðuÞ þ 2". We can choose a
subsequence (xNk

) which converges to some x2K". By epiconvergence,
lim infN infu fNðuÞ � lim infN fNðxNÞ � 2" � f ðxÞ � 2" � infu f ðuÞ � 2". Since "
is arbitrary, (ii) follows. (iii) Every selection xN2 argmin fN has cluster points,
because of compactness. But every cluster point must be in argmin f, i.e., must
be equal to x*. u

The inclusion in (i) may be strict as is shown by the following example:

fNðxÞ ¼
x=N if 0 � x � 1
1 otherwise

:

�
fN epiconverges to

f ðxÞ ¼
0 if 0 � x � 1
1 otherwise

,

�

but argmin fN¼ {0} does not converge to argmin f¼ [0, 1].
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However, if we introduce the notion of "-argmin

"-arg min f :¼ x : f ðxÞ � inf
u

f ðuÞ þ "
n o

,

the following lemma can be shown.

Lemma 28. Suppose that fN!
epi
f and that infx fNðxÞ ! infx f ðxÞ. Then there is

a sequence "N! 0 such that "N-argmin fN ! f . Conversely, if "N! 0 and
"N-argmin fN ! f then infx fNðxÞ ! infx f ðxÞ.

Proof. See Rockafellar and Wets (1998), Theorem 7.31. u

Besides this qualitative statement, a quantitative statement of the relation
between the epidistance of functions and the distance of the argmins is highly
desirable. The following Theorem 29 links the epidistance of functions with
the distance of "-argmins. Such a theorem can be used to formulate an
analogue to Proposition 5 (which was formulated for sup-norms) within the
epiconvergence setup.

For the formulation of the result, we introduce two new distances for
functions:

d̂dð f , gÞ ¼ dðepi f , epi gÞ

where d is the Hausdorff distance introduced in (3.23) and a variant

d̂dþð f , gÞ¼ inff� : f ðxÞ� inf gy2Bðx,�Þ��; gðxÞ� inf fy2Bðx,�Þ�� for all xg:

We have that

d̂dþð f , gÞ � d̂dð f , gÞ �
ffiffiffi
2
p

d̂dð f , gÞ

(see Rockafellar and Wets, 1998, Proposition 7.61, p. 284).

Remark. The original definition of d̂d and d̂dþ in Rockafellar and Wets (1998)
includes the restriction to a ball �B. In some applications, this restriction may
be necessary. The concept and idea, however, may be demonstrated without
this restriction.

If two functions f and g are close to each other w.r.t. distance d̂dþ, both their
min’s and their "-argmin’s are close to each other according to the following
theorem.
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Theorem 29. Suppose that f and g are lsc convex functions on a compact set �
in Rd. Suppose further that dð0, 3"-argmin f Þ � �, dð0, 3"-argmin gÞ � � for
some constant �. Then d̂dþð f , gÞ ¼ � and �<" implies that

(i) jmin f�min gj � �
(ii) d̂dð"-argmin f , "-argmin gÞ � �þ 2�

"þ2� 2�.

Proof. The proof is a modification of the proof of Theorem 7.69, p. 291 in
Rockafellar and Wets (1998). Let xþ 2 argmin f. By the definition of
d̂dþð f , gÞ < �, min g � miny2Bðxþ,�Þ gðyÞ � f ðxþÞ þ � ¼ min f þ �. Exchanging f
and g, wet get (i). Next we show that

"-arg min f � ð"þ 2�Þ-arg min g:

Suppose that x 2 "-argmin f . Let y2B(x, �) such that g(y)� f(x)þ �. Then
gðyÞ � min f þ "þ � � min gþ "þ 2�. Finally, we show that

ð"þ 2�Þ-arg min g � ð"-arg min gÞ þ
2�

"þ 2�
2�

� �
B: ð7:4Þ

Let �0¼min g, �1¼min gþ ", �2¼min gþ "þ 2�. Let x 2 ð"þ 2�Þ-argmin g,
i.e., g(x)��2. and let x* 2 argmin g. Let y ¼ ð1� Þxþ x*, where  ¼
ð�2��1Þ=ð�2��0Þ ¼ 2�=ð"þ 2�Þ. Then, by convexity, gðyÞ � ð1� Þ�2 þ �0 ¼
�1. Thus, y 2 "-argmin g. Since kx� yk ¼ kx� x*k � 2dð0, 3"-argmin gÞ
� 2�, (7.4) is established. Putting the pieces together, we have shown that

"-arg min f � "-arg min gþ �þ
2�

"þ 2�
2�

� �
B

which is equivalent to dð"-argmin f k "-argmin gÞ � �þ 2�
"þ2� 2�. By exchan-

ging the roles of f and g we get the assertion (ii). u

For the application of the concept of epiconvergence in statistics and
stochastic optimization it has to be extended to stochastic processes. A
stochastic process ðx,!Þ�Zðx,!Þ is called a random lower semicontinuous
function if it is jointly measurable and for all !2�, x � Z(x,!) is lower
semicontinuous.

If Z is a random lsc process on Rd, then epiZ induces a probability measure
on the Borel sets of the metric space (Cdþ 1, �). For a sequence (ZN) of random
lsc processes, the notion of a.s. convergence in the epi sense is well defined: ZN

epiconverges to Z almost surely, if

PfZN!
epi
Zg ¼ 1:
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Of course, also the notion of convergence in distribution is defined: (ZN)

epiconverges in distribution to Z (in symbol: ZN !
epi-D

Z), if the probability
distributions induced by epiZN on the separable metric space (Cdþ 1, �) weakly
converge to that induced by epiZ.

An equivalent formulation of the epiconvergence in distribution is given by
the following theorem.

Theorem 30. Let ZN(x, � ) be a l.s.c. process. Then ZN epiconverges in

distribution (ZN !
epi-D

Z) if and only if for all k, all collections of closed rectangles
R1,. . . ,Rk and all reals �1,. . . , �k

P inf
x2R1

Zðx, �Þ > �1, . . . , inf
x2Rk

Zðx, �Þ > �k

� �

� lim inf
N

P inf
x2R1

ZNðx, �Þ > �1, . . . , inf
x2Rk

ZNðx, �Þ > �k

� �

� lim sup
N

P inf
x2Ro

1

ZNðx, �Þ � �1, . . . , inf
x2Ro

k

ZNðx, �Þ � �k

� �

� P inf
x2Ro

1

Zðx, �Þ � �1, . . . , inf
x2Ro

k

Zðx, �Þ � �k

� �
:

Proof. See Salinetti and Wets (1986) and Pflug (1992). u

8 Epipointwise convergence for stochastic programs

In this section we consider a stochastic program with random constraints

Min
x2X\y

f f ðxÞ ¼ EP½Fðx, �Þ�g

where

Y ¼ fx : E½F1ðx, �Þ� � b1, . . . , E½FJðx, �Þ� � bJg:

The empirical counterpart of f is f̂fNðxÞ ¼
1
N

P1
n¼1 Fðx, �nÞ and the empirical

counterpart of the constraint set Y is

ŶYN¼ x :
1

N

XN
n¼1

F1ðx, �nÞ�b1þ
log Nffiffiffiffi

N
p , . . . ,

1

N

XN
n¼1

FJðx, �nÞ�bJþ
log Nffiffiffiffi

N
p

( )
:
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The extra term logNffiffiffi
N
p is added for consistency reasons. Consider the extended

function

f eðxÞ ¼ f ðxÞ þ iYðxÞ

and its empirical counterpart

f̂f eNðxÞ ¼ f̂fNðxÞ þ iŶYN
ðxÞ

where i, the extended indicator function, is given by (7.1).
f̂f eNðxÞ converges a.s. pointwise to f e(x), but not uniformly. Epiconvergence

holds often in addition to that. The combination of pointwise convergence
and epiconvergence leads to the following definition.

Definition 31. The extended real functions fN converges epipointwise to
f (in symbol: fN !

epipw
f ), if

(i) xN!x implies that lim infN fNðxNÞ � f ðxÞ
(ii) fN(x)! f(x) for all x.

Epipointwise convergence is a stronger concept than just epiconvergence:
take the functions f

ð1Þ
N and f

ð2Þ
N of Example 26. While f

ð2Þ
N converge to f ðxÞ

¼ �1fx¼0g in the epipointwise sense, the functions f
ð1Þ
N do not converge in this

sense. On the other hand, epipointwise convergence is weaker than uniform
convergence. There is an equivalent definition for epipointwise convergence.

Lemma 32. For lsc functions, fN !
epipw

f if and only if

lim inf
x2R

fNðxÞ ¼ inf
x2R

f ðxÞ

for all compact rectangles R.

Proof. Suppose that fN !
epipw

f . Let x2R such hat f ðx*Þ ¼ infx2R f ðxÞ. Then,
since fNðx*Þ ! f ðx*Þ, lim sup infx2R fNðxÞ � infx2R f ðxÞ. Together with
lim sup infx2R fNðxÞ � infx2R f ðxÞ this implies the assertion. Conversely, let
lim infx2R fNðxÞ ¼ infx2R f ðxÞ for all compact R. By setting R¼ {x} pointwise
convergence follows. Let xN!x. Suppose that lim inf fNðxNÞ ¼ f ðxÞ � ",
where ">0. We may find a compact rectangle R such that x lies in its
interior and such that infy2R f ðyÞ � f ðxÞ � "=2. By assumption, f ðxÞ � " ¼
lim inf fNðxNÞ � limy2R inf fNðyÞ infy2R f ðyÞ � f ðxÞ � "=2. This contradiction
proves the lemma. u
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It is in general not true that fN!
epi
f and gN!

epi
g implies that fN þ gN!

epi
f þ g

(as a counter example, take the functions fN ¼ f
ð2Þ
N of Example 26 and

gN¼�fN. Then because of the asymmetry of the epiconvergence, fNþ gN:0,
but fþ g¼�1{x¼ 0}). However, epipointwise convergence is compatible with
sums.

Lemma 33. If fN !
epipw

f and gN !
epipw

g, then fN þ gN !
epipw

f þ g.

Proof. Since lim infN fNðxNÞ þ gNðxNÞ � lim infN fNðxNÞ þ lim infN gNðxNÞ,
the assertion follows from the definition of epipointwise convergence
(Definition 31). u

As an important consequence of this lemma one sees that for the epi-
pointwise convergence of f̂f eN one may consider the two parts f̂fNðxÞ and iŶYN

ðxÞ
separately.

Assume that the functions F(x, �) and Fj(x, �), j¼ 1,. . . , J have for x2X the
uniform boundedness property (see Definition 6). Suppose that the constraint
set Y fulfills the following condition:

Condition (B). There is a function "(�)>0, for �>0 such that the following
implications hold: if x2Y, then infy2Bðx,�Þ fjðxÞ < bj � "ð�Þ for at least one
j2 [1,. . . , J ]. If B(x, �)\Y¼;, then fj(x)>bjþ "(�) for at least one j2 [1,. . . , J].

Theorem 34. Suppose that f̂fN converges a.s. uniformly to f and that f̂fN,j converge
a.s. uniformly to fj for all j. Suppose further that supxVarðFjðx, �ÞÞ ¼ � <1.
Then, under Condition (B), f̂fN þ iŶYN

converges a.s. epipointwise to fþ iY.

Proof. In view of Lemma 33, we have only to show that iŶYN
converges a.s.

epipointwise to iY. We show first the pointwise convergence. If x 62Y, then
there is a j such that fj (x)>bj for some j. Therefore, since f̂fN, jðxÞ ! fjðxÞ a.s.,
for every ! there is an N0(!) such that f̂fN, j > bj þ ðlogN=

ffiffiffiffi
N
p
Þ for N�N0.

Consequently, iŶYN
� i
f f̂fN,j ðxÞ�bjþðlogNÞ=

ffiffiffi
N
p g ! 1 ¼ iffj ðxÞ�bjg. If x2Y, then by the

LIL (Theorem11) f̂fN, jðxÞ � bj þ 2� ðlog logNÞ=
ffiffiffiffi
N
p

a.s., where� is the standard
deviation of Fj(x, �). Therefore, also in this case i

ff̂fN,jðxÞ�bjþðlogNÞ=
ffiffiffi
N
p
g

! 0 ¼ iffjðxÞ�bjg.

For the epiconvergence property, we have to show that for all x and all �>0,

P sup
x

inf
y2Bðx,�Þ

iŶYN
ðyÞ � iY � �

� �
! 0

and

P inf
x

inf
y2Bðx,�Þ

iYðyÞ � iŶYN
ðxÞ � �

� �
! 0:
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Since we assume that 1�1¼ 0, this is equivalent to

Pf9x 2 Y : for all y 2 Bðx, �Þ : y 62 ŶYNg ! 0

Pf9x 2 ŶYN : for all y 2 Bðx, �Þ : y 62 Yg ! 0

By Assumption (B), if x2Y, then there is a j and some y2B(x, �) such
that fj(y)<bj�"(�). But this implies that Pf fN, jðyÞ > bj þ ðlogNÞ=

ffiffiffiffi
N
p
g ! 0.

On the other hand, if for all y2B(x, �), y 62Y, then there is a j such that
f(x)>bjþ "(�), which implies that Pf f̂fj,NðxÞ � bj þ ðlogNÞ=

ffiffiffiffi
N
p
g ! 0. u

9 Asymptotic stochastic programs

Consider a stochastic program in the extended form

Min
x2Rd
f f eðxÞ ¼ E½Fðx, �Þ� þ iX g ð9:1Þ

where iX the extended indicator function of the constraint set X, is defined as
in (7.1). We assume that the constraint set X is closed, convex and nonran-
dom. Program (9.1) has the empirical counterpart

Min
x2Rd

f̂f eNðxÞ ¼
1

N

XN
n¼1

Fðx, �nÞ þ iX

( )
: ð9:2Þ

Let v be the minimal value of (9.1) and v̂vN the (random) minimal value of (9.2).
Any measurable selection of the empirical argmin set x̂xN 2 X̂X *

N , where

X̂X *
N ¼ arg min

x2Rd

1

N

XN
n¼1

Fðx, �nÞ þ iX

( )

is called an empirical solution.
We study first the asymptotic behavior of the empirical minima v̂vn and later

the asymptotic behavior of the empirical argminima x̂xN .
The basic observation is: if f̂f eNð�Þ converges (a.s. or in probability) to f e( � ) in

some function space and the min-operator f �Mð f Þ ¼ minx f ðxÞ is continuous
in this function space, then v̂vN converges (a.s. or in probability) to v.

A more refined analysis considers the errors in more detail: suppose that

YNðxÞ ¼ �ðNÞð f̂f
e
NðxÞ � f eðxÞÞ ð9:3Þ
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converges in distribution to a nondegenerate limit process Y in a function
space. If the min-operator is differentiable in this function space, then
�ðNÞðv̂vN � vÞ converges in distribution to a limit law. A theorem of this kind is
stated below.

Theorem 35. Suppose that �ðNÞð f̂f eNðxÞ � f eðxÞÞ converges in the Banach space
C(X ) of continuous functions to a limiting distribution Y. If X is compact, then

�ðNÞðv̂vN � vÞ converges in law to min
x2X*

YðxÞ

where X* is the set of solutions of (9.1).

Proof. The ‘‘delta’’ method of proof was already mentioned (see Shapiro,
1993): if M is an (at least directionally (Hadamard-) differentiable operator
in C(X) and YN given by (9.3) converges in law to Y, then �ðNÞ½M
ðf̂f eNðxÞÞ �Mð f eðxÞÞ� converges in law to M0ðMð f eðxÞÞ,YÞ. Here M0ð f , gÞ ¼
limh#0

1
h
½Mð f þ hgÞ �Mð f Þ�. It is easy to see that the directional derivative of

the min-operator M in C(X) is

M0ð f , gÞ ¼ minfgðxÞ : x 2 arg min f g:

A more direct proof (which is also applicable, if the function space is not
a Banach space) shows that the asymptotic distribution of �ðNÞ
½minx2X f̂f eNðxÞ� minx2X f eðxÞ� is the same as the asymptotic distribution
of �ðNÞ½minx2X* f̂f

e
NðxÞ �minx2X* f

eðxÞ� ¼ minx2X* �ðNÞ½ f̂f
e
NðxÞ � f eðxÞ�. The

latter expression has asymptotic distribution minx2X* YðxÞ. u

For studying the limiting distribution of the solutions we suppose that (9.1)
has a unique solution

x* ¼ arg min
x2Rd

fE½Fðx, �Þ� þ iX g, ð9:4Þ

and that x̂xN is a measurable selection from X̂X *
N .

The goal is to find the limiting distribution of

��1N ðx̂xN � x*Þ,

where �N is an appropriately chosen sequence of regular matrices.
The basic equation is

��1N ðarg min
x

f̂f eNðxÞ � x*Þ ¼ arg min
t

f̂f eNðx* þ �NtÞ: ð9:5Þ
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Here t is called the local coordinate around the solution x*. The left hand side
of (9.5) appears as the argmin of a stochastic program in local coordinates.
Evidently, the right hand side may be written as

arg min
t

f̂f eNðx* þ �NtÞ ¼ arg min
t

�N ½ f̂f
e
Nðx* þ �NtÞ � f ðx*Þ�

¼ arg min ZNðtÞ ðsayÞ

where �N>0 is arbitrary. Now, suppose that �N and �N are chosen such that
the extended real stochastic process ZNð�Þ ¼ �N ½f̂f

e
Nðx* þ �NtÞ � f ðx*Þ� con-

verges to a limiting process Z( � ). Then, using a M-theorem (Minimizer
theorem) of the form

lim
N

arg min
t

ZNðtÞ ¼ arg min
t

lim
N

ZNðtÞ ð9:7Þ

we may identify the limiting distribution of ��1N ðx̂xN � x*Þ as the distribution of
argmint Z(t). A useful M-theorem will be given below (see Theorem 37).

Under rather general assumptions ZN( � ) converges in distribution to a
limiting process

Zð�Þ ¼ Dð�Þ þ Sð�Þ þ iXþð�Þ, ð9:8Þ

where D(t) is a regularly varying deterministic function, S(t) is a zero mean
stochastic process on Rd, which by the classical result of P. Lévy, must be
infinitely divisible, and Xþ is some closed convex set.

To be more precise about the type of convergence, we assume that

�N
XN
n¼1

½Fðx* þ �Nt, �nÞ � Fðx*, �nÞ� converges to DðtÞ þ SðtÞ

in distribution in the sup-norm sense, whereas

iX ðx* þ �NtÞ converges to iXþðtÞ

in distribution in the epi-sense (which is equivalent to setwise convergence of
the constraint sets).

The sum then converges also in the epi-sense. We consider the process ZN

as a random element in the separable metric space of lsc functions on Rd (see
Section 7).
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Definition 36. Suppose that ZN( � ) defined by (9.6) epiconverges in distribu-
tion to Z( � ) given by (9.8). Then the stochastic program

Min
t

ZðtÞ ¼Min
t2Xþ
fDðtÞ þ SðtÞg ð9:9Þ

is called the asymptotic stochastic program associated to (9.1).

Notice that S(t) is a stochastic process and hence the argmin of (9.9) is a
random variable or a random set.

Now we make the cited M-theorem (9.7) precise.

Theorem (M-Theorem) 37. Suppose that the l.s.c. processes ZN( � ) epiconverge
in distribution to a l.s.c. limiting process Z( � ). Suppose further that these
processes satisfy the assumptions of Lemma 27 (iii), i.e., there is a (random)
compact set K(!) such that argminZNð!Þ � Kð!Þ a.s. and that argminZ is a.s.
a singleton. Then any measurable selection from argmint ZNðtÞ converges in
distribution to argmint ZðtÞ.

Proof. Using the Shorohod–Wichura–Dudley theorem (see Shorack and
Wellner, 1986, p. 47), one may construct, on an appropriate probability space,
versions ~ZZN and ~ZZ of the processes ZN and Z, which converge almost surely in
the episense. These versions satisfy for almost all !, the assumptions of
Lemma 27(iii). Thus, all measurable selections from argmin ~ZZN converge to
argmin ~ZZ almost surely. A fortiori, convergence in distribution of any
selection from argminZN to the distribution of argminZ holds. u

The technique to prove the asymptotics of a stochastic program consists
therefore in two steps

� identification of the asymptotic stochastic program,
� calculation of the argmin distribution of the asymptotic program.

There are some classes of stochastic processes Z( � ) which may occur as
limits. In principle, by letting � be a degenerate random variable, one sees that
the class of limiting stochastic programs is at least as large as the class of
deterministic programs. However, by a general result due to P. Lévy, a
nondegenerate limiting process appearing in (9.8) must be a stable process.
The simplest stable process is the normal shift process, i.e., SðtÞ ¼ tTY , where
Y � Nð0,�Þ. Here tT denotes the transposition. Examples for other stable
processes appearing as limits of stochastic programs, like Wiener type
processes and Poisson type processes were given by Pflug (1995).

We consider here only the smooth case, which leads to normal shift limit
process. The other mentioned limit processes may appear only for cost
functions having jumps.
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There is a distinction to be made between the two cases

� The optimum x* lies in the interior of the feasible set X, no constraints
appear in the limiting stochastic program. This is case 1.

� The optimum x* lies on the boundary of X. This is case 2.

9.1 Case 1: No constraints in the limit

The basic assumption concerns the local behavior of x � F(x, �) near the
optimum x*. We introduce the following set of assumptions:

Condition C1. F(x, �) is a smooth function in the sense that it allows an
expansion

Fðx* þ t, �Þ ¼ Fðx*, �Þ þ tT ½kð�Þ� þ tTQð�Þtþ rðt, �Þ

such that jrðt, �Þj ¼ rð�Þoðktk2Þ for a function r satisfying Eðrð�ÞÞ <1. All
entries of the vector k(�) are square integrable and all entries of the matrix
Q(�) are integrable.

Theorem 38. Let Assumption C1 be satisfied and suppose that x* lies in the
interior of X. Then with �N ¼

1ffiffiffi
N
p I

ZNðtÞ ! ZðtÞ ¼ tTY þ tTAt

in distribution, uniformly on compact sets, where A ¼ EðQð�ÞÞ and Y � Nð0,�Þ
with � ¼ Eðkð�Þ � kð�ÞT Þ.

Proof. Expand ZN(t) as

ZNðtÞ ¼
XN
n¼1

F x* þ t=
ffiffiffiffi
N
p

, �n


 �
� Fðx*, �nÞ

¼ t=
ffiffiffiffi
N
p XN

n¼1

kð�nÞ þ 1=N
XN
n¼1

tTQð�iÞtþ
XN
n¼1

r x* þ t=
ffiffiffiffi
N
p

, �n


 �
¼ tTYN þ tTANtþ rNðtÞ ðsayÞ:

Here YN ¼ N�1=2
PN

n¼1 kð�nÞ converges by the CLT in distribution to a
normal distribution Y � Nð0,�Þ with � ¼ Eðk � kT Þ and hence tTYN ! tTY .
(Notice that Eðkð�ÞÞ ¼ 0 because of the optimality condition). By the Strong
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Law of Large Numbers (9) 1=N
PN

n¼1 tTQð�nÞt! tTEðQð�ÞÞt ¼ tTAt almost
surely. By Assumption C1, for all T,

sup
ktk�T

jrNðtÞj ¼ sup
ktk�T

���XN
n¼1

r x* þ t=
ffiffiffiffi
N
p

, �n


 ����
¼ oð1ÞkTk2 1=N

XN
n¼1

rð�nÞ ! 0 a:s: u

The argmin distribution of the process Z appearing in Theorem 38 is
normal, since

arg minftTY þ tTAt : t 2 Rdg ¼
1

2
A�1Y � N 0,

1

4
½A�1�T�A�1

� �
:

9.2 Case 2: The limiting argmin lies on the boundary of the constraint set

Suppose that the solution x* lies on the boundary of the convex set X�Rd.
Let k be the gradient of the objective function at point x*. Necessarily, �k
points outwards X. By a possible translation and rotation of the parameter
space X, we may standardize the problem such that x* is the origin and k is a
positive multiple of the first unit vector e1.

Suppose therefore w.l.o.g. that x*¼ 0 and k=kkk ¼ e1. The asymptotics
depend on the local curvature of the convex set X near its boundary point 0 as
will be defined now.

Define the function �X on the sphere S :¼ fs : ksk ¼ 1g of Rd with values in
[0,1] as

�X ðvÞ ¼ supf� : � � v 2 Xg: ð9:10Þ

�X(v) characterizes X completely. The tangential cone X0 of X at 0 is the
closure of fv : �X ðvÞ > 0g. Recall that a point x is extremal in a convex set Z, if
x cannot be represented as x ¼ 1

2
z1 þ

1
2
z2, where zi2Z and z1 6¼ z2.

Assumption C2. Either 0 is extremal in the tangential cone X0, in which case
we set �¼ 1 (see Figs. 3 and 4), or there is an �>1 such that for all s?e1

�X ðsþ �e1Þ ¼ cðsÞ�1=ð��1Þð1þ oð1ÞÞ ð9:11Þ

where o(1)! 0 uniformly in s as �! 0 and s � c(s) is upper semicontinuous.
The constant � is called the degree of curvature of X at 0.
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The blow-up matrices will be chosen as

�N ¼

�N 0 � � � 0
0 �N � � � 0

..

. ..
. . .

. ..
.

0 0 . .
.

�N

0
BBB@

1
CCCA ð9:12Þ

Proposition 39. Let Assumption C2 be satisfied with �>1. If �N! 0 and
�N�

��
N ! 1 then with �N given by (9.12) XN ¼ ��1N X!setX*, where

X * ¼ f�sþ �e1 : s ? e1; � � cðsÞ � ��; �,� � 0g: ð9:13Þ

Fig. 3. A convex set X (left) and its asymptotic set X* (right) expanded at the origin using

the blow-up matrices �N with �N¼N�1, �N¼N�1. Here the local curvature is �¼ 1.

The asymptotic set is a cone.

Fig. 4. A convex set X (left) and its asymptotic set X* (right) expanded at the origin using

the blow-up matrices �N with �N¼N�1, �N¼N�1/2. Here the local curvature is �¼ 2.

The asymptotic set is a parabola.
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If, however, �N�
��
N !1 then XN ¼ ��1N X!setX 0, where X 0 is the tangential cone

X0 ¼ f�sþ �e1 : s ? e1; �, � � 0g ð9:14Þ

which is a half-space.

Proof. See Pflug (1995). u

The situation is illustrated in Figs. 3 and 4.

Theorem 40. Let Assumptions C1 and C2 be satisfied with �>1 being the
degree of curvature of X at x*. Set �¼min(�, 2). Let

�N ¼

N��=2ð��1Þ 0 � � � 0
0 N�1=2ð��1Þ � � � 0
..
. ..

. . .
. ..

.

0 0 . .
.

N�1=2ð��1Þ

0
BBB@

1
CCCA,

and �N ¼ Nð2��Þ=ð2��2Þ. Then ZN epiconverges in distribution to Z, where Z( � ) is
of the following form: if �<2, then

ZðtÞ ¼ tTkþ tTY þ iX*ðtÞ;

if �¼ 2, then

ZðtÞ ¼ tTkþ tTY þ tTPTAPtþ iX*ðtÞ;

if �>2, then

ZðtÞ ¼ tTkþ tTY þ tTPTAPtþ iX0ðtÞ:

Here P ¼ I � kkk�2k k
T

is the projection operator onto the orthogonal
complement of k, � ¼ PTEðkkT ÞP and Y � Nð0,�Þ. X * is given by (9.13)
and X 0 is the tangential cone.

Proof. See Pflug (1995). u

Example 41. Consider the following program

Minfx1 þ E½x1�1 þ x2�2� : kjx2j
� � x1 � 0g ð9:15Þ
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where 1<�<2, E(�1)¼ E(�2)¼ 0 and

Covð�1, �2Þ ¼ � ¼
�21 �12
�12 �22

� �
:

It is evident that x*¼ (0, 0) is the solution of (9.15). Let 
¼ 1/(2��1) and

�N ¼
N��
 0
0 N�


� �
:

Let (�1,n, �2,n) be an i.i.d. sequence distributed like (�1, �2). The empirical
program pertaining to (9.15) is

Min N�
 N��
t1þN
�
N�1t2

XN
n¼1

�2,iþN
��
N�1t1

XN
n¼1

�1,n

" #
:kjt2j

��t1�0

( )

¼Min t1 þN�1=2t2
XN
n¼1

�2,iþ : kjt2j
� � t1 � 0

( )

which converges to the asymptotic program

Minft1 þ t2Y : kjt2j
� � t1 � 0g ð9:16Þ

where Y � Nð0, �22Þ. Let (T1,T2) be distributed according to the argmin-
distribution of (9.16). Then T1 ¼ k1=ð1��Þj Y� j

�=ð��1Þ and T2 ¼ signðYÞj Y
k� j

1=ð��1Þ.
For the case �¼ 2, T1 has a �

2 distribution and T2 has a normal distribution.

Remark. If the curvature �¼ 1, then an asymptotic distribution exists if
E(k(�))¼ 0. In this case the asymptotic stochastic program is
MinfZðtÞ ¼ tTY þ iX0ðtÞg. The appropriate localizing sequence is �N¼N�1I.

Instead of using the just presented ‘‘local coordinates’’ one may use in
smooth cases the ‘‘generalized delta method’’. The idea of this method is to
relate the variations of the objective function to the variations of the argmins:
suppose that xðvÞ ¼ argminx2X f ðxÞ þ x � v. The mapping v�xðvÞ may be
complicated. Only in very simple cases it is linear or locally linear. As an
example, take X¼Rd, f ðxÞ ¼ 1

2
xTAx for a positive definite A. Then

xðvÞ ¼ �A�1v, hence linear. If the criterion function f is, however, not locally
quadratic or some constraints are active in the optimum, then this function is
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not locally linear. The idea of the generalized delta method is to use the
following argument

arg min f̂fNðxÞ ¼ arg min
x
f f ðxÞ þ ½ f̂fNðxÞ � f ðxÞ� � ½ f̂fNðx*Þ � f ðx*Þ�g

¼ arg min
x
f f ðxÞþðx�x*Þ½rf̂fNðx*Þ�rf ðx*Þ�þremainderg

¼ arg min
x
f f ðxÞ þ x½rf̂fNðx*Þ � rf ðx*Þ� þ remainderg

� xðrf̂fNðx*Þ � rf ðx*ÞÞ:

(see Shapiro, 1993). The random variable ½ rf̂fNðx*Þ � rf ðx*Þ� may be normal
in regular cases. The random variable xð½rf̂fNðx*Þ � rf ðx*Þ�Þ is normal only in
the special case, when x is locally linear. One way to look at
xðrf̂fNðx*Þ � rf ðx*ÞÞ is to find its directional derivatives x0ð0, dÞ. This method
is elaborated in the book by Bonnans and Shapiro (1999).

If the constraints are also random, then the asymptotic results may be
based on a generalized equation approach and a Z-theorem (Zero Theorem):
suppose for instance, that the stochastic program is

Minff ðxÞ ¼ E½Fðx, �Þ� : gðxÞ ¼ E½Gðx, �Þ� � 0, x 2 Xg: ð9:17Þ

Assuming convexity of f, g and the set X, the generalized equations, which
characterize the solution, are

0 2 rf ðxÞ þ yrgðxÞ þNX ðxÞ

0 2 �gðxÞ þNðyÞ

Here NX ðxÞ ¼ fu : u
T ðv� xÞ � 0, v 2 Xg and Nð yÞ ¼ fu � 0 : uTy ¼ 0g.

The abstract Z-theorem reads: if the set-valued process ĤHNð�Þ converges to
H( � ), then the solutions x̂xN of the generalized equation 0 2 ĤHNðxÞ converge to
the solution x* of 02H(x).

Such an approach was used by King and Rockafellar (1993) and Shapiro
(1993). For Z-theorems see Anisimov and Pflug (2000) and the chapter
Stability of Stochastic Programs by Römisch in this volume and references
therein.

10 Bibliographic remarks

Glivenko and independently Cantelli proved what is now called the
Glivenko–Cantelli Theorem in 1933. It states the uniformity of the empirical
measure convergence for intervals. Blum (1955) and DeHardt (1971) gave the
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first bracketing conditions for uniformity. This idea was further developed by
Ossiander (1987) and Van der Vaart (1994) and many others. In 1971 Vapnik
and Cervonenkis published their seminal paper on the shattering dimension of
a class of sets and the relation to uniformity. The first uniform entropy result
is due to Pollard (1982). Ledoux and Talagrand introduced in their 1991 book
about probability in Banach spaces isoperimetric methods. These methods are
extensively used in Talagrand’s fundamental paper about sharper bounds. The
1996 book by van der Vaart and Wellner summarizes various results about
Glivenko–Cantelli and Donsker classes of functions. It also contains a
simplified proof of Talagrand’s theorem.

The foregoing results were obtained for i.i.d. random variables. For
robustness reasons, one is also interested in ‘‘slightly’’ dependent variables.
Whereas Laws of Large Numbers are well known for dependent variables
(Andrews, 1988; Andrews and Pollard, 1994), tight bounds are still missing.
The most promising direction of generalization of the i.i.d. case goes through
mixing conditions (Doukhan et al., 1994, 1995), see also the book by De la
Peña and Giné (1999). Talagrand’s measure concentration techniques were
generalized by Marton (1996).

The notion of epiconvergence was introduced by Wijsman (1964). This
reference and much more can be found in the book Rockafellar and Wets
(1998). Salinetti and Wets (1986) introduced the concept of convergence in
probability for sequences of closed-set valued random variables. Vogel (1994)
considered ‘‘one-sided’’ versions of it by defining upper and lower semi-
convergence in probability.

Asymptotic distribution for solutions of stochastic programs were given by
King and Rockafellar, Dupacova and Wets, Shapiro, Römisch, Pflug and
many others.

There is a close relation between the asymptotic theory of stochastic
optimization programs and the asymptotic theory of statistical estimation
under constraints. Among the large number of papers in the latter area, we
cite here: Geyer (1994), Dong and Wets (2000) and Shapiro (2000).
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Chapter 8

Stability of Stochastic Programming Problems

Werner Römisch
Institute of Mathematics, Humboldt-University Berlin, D-10099 Berlin, Germany,

E-mail: romisch@mathematik.hu-berlin.de

Abstract

The behaviour of stochastic programming problems is studied in case of the
underlying probability distribution being perturbed and approximated, respec-
tively. Most of the theoretical results provide continuity properties of optimal
values and solution sets relative to changes of the original probability distribu-
tion, varying in some space of probability measures equipped with some con-
vergence and metric, respectively. We start by discussing relevant notions of
convergence and distances for probability measures. Then we associate a
distance with a stochastic program in a natural way and derive (quantitative)
continuity properties of values and solutions by appealing to general perturba-
tion results for optimization problems. Later we show how these results relate to
stability with respect to weak convergence and how certain ideal probability
metrics may be associated with more specific stochastic programs. In particular,
we establish stability results for two-stage and chance constrained models.
Finally, we present some consequences for the asymptotics of empirical
approximations and for the construction of scenario-based approximations of
stochastic programs.

Key words: Stochastic programming, stability, weak convergence, probability
metric, Fortet–Mourier metric, discrepancy, risk measure, two-stage, mixed-
integer, chance constrained, empirical approximation, scenario reduction.

1 Introduction

Stochastic programming is concernedwithmodels for optimizationproblems
under stochastic uncertainty that require a decision on the basis of given
probabilistic information on random data. Typically, deterministic equiva-
lents of such models represent finite-dimensional nonlinear programs whose

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
� 2003 Elsevier Science B.V. All rights reserved.

483



objectives and/or constraints are given by multivariate integrals with respect
to the underlying probability measure. At the modelling stage these pro-
bability measures reflect the available knowledge on the randomness at hand.
This fact and the numerical challenges when evaluating the high-dimensional
integrals have drawn great attention to the stability analysis of stochastic
programs with respect to changes in the underlying probability measure. In
this chapter we present a unified framework for such a stability analysis by
regarding stochastic programs as optimization problems depending on the
probability measure varying in some space of measures endowed with some
distance. We give stability results both for general models and for more
specific stochastic programs like two-stage and chance constrained models and
include most of the proofs. Moreover, we discuss some conclusions about
specific approximation procedures for stochastic programs.

To specify the stochastic programming models for our analysis, we recall
that many deterministic equivalents of such models are of the form

min

Z
�

F0ðx, �Þ dPð�Þ : x 2 X ,

Z
�

Fjðx, �Þ dPð�Þ � 0, j ¼ 1, . . . , d

8<
:

9=
;, ð1:1Þ

where the set X � Rm is closed, � is a closed subset of Rs, the functions Fj

from Rm �� to the extended reals R are random lower semicontinuous
functions for j ¼ 0, . . . ,d, and P is a Borel probability measure on �.

The set X is used to describe all constraints not depending on P, and the set
� contains the supports of the relevant measures and provides some flexibility
for formulating the models and the corresponding assumptions. We recall that
Fj is a random lower semicontinuous function if its epigraphical mapping
�� epiFjð�, �Þ :¼ fðx, rÞ 2 Rm � R : Fjðx, �Þ � rg is closed-valued and measur-
able, which implies, in particular, that Fjð�, �Þ is lower semicontinuous for each
� 2 � and Fjðx,�Þ is measurable for each x 2 Rm.

Although, our stability analysis mainly concerns model (1.1) and its
specifications, we also provide an approach to the stability of more general
models that contain risk functionals and are of the form

min F0 P½F0ðx, �Þ�
�1

� �
: x 2 X , FjðP½Fjðx, �Þ�

�1Þ � 0, j ¼ 1, . . . , d
� �

, ð1:2Þ

where the risk functionals Fj, j ¼ 0, . . . , d,, map from suitable subsets of the
set PðRÞ of all probability measures on R to R. In general, the functionals
Fj depend on a measure in PðRÞ in a more involved way than the expecta-
tion functional FeðGÞ :¼

R
R
r dGðrÞ, for which we have FeðP½F0ðx, �Þ�

�1
Þ ¼R

R
r dP½F0ðx, �Þ�

�1
ðrÞ ¼

R
� F0ðx, �ÞdPð�Þ. Another example is the variance

484 W. Römisch



functional FvðGÞ :¼
R
R
r2 dGðrÞ � ð

R
R
r dGðrÞÞ2. We also refer to the value-at-

risk functional in Example 1 and to the examples in Section 2.4.
We illustrate the abstract models by the classical newsboy example (see e.g.,

Dupačová (1994), Example 1 in Ruszczyński and Shapiro (2003)).

Example 1. (newsboy problem) A newsboy must place a daily order for a
number x of copies of a newspaper. He has to pay r dollars for each copy and
sells a copy at c dollars, where 0 < r < c. The daily demand � is random with
(discrete) probability distribution P 2 PðNÞ and the remaining copies
yð�Þ ¼ maxf0, x� �g have to be removed. The newsboy might wish that the
decision x maximizes his expected profit or, equivalently, minimizes his
expected costs, i.e.,

Z
R

F0ðx, �Þ dPð�Þ :¼

Z
R

½ðr� cÞxþ cmaxf0, x� �g� dPð�Þ

¼ ðr� cÞxþ c
X
k2N

�kmax 0, x� kf g

¼ rx� cx
X
k2N
k�x

�k � c
X
k2N
k<x

�kk

where �k is the probability of demand k 2 N. The unique integer solution is
the maximal k 2 N such that

P1
i¼k �i �

r
c
. Another possibility is that the

newsboy wishes to maximize his profit and, at the same time, to minimize his
risk costs cs where s bounds the number y(�) of copies that remain with
probability p. The minimal s corresponds to his value-at-risk at level p. The
resulting stochastic program reads

min
x2Rþ

ðr� cÞxþ c inf fs 2 Rþ : Pðyð�Þ � sÞ � pg
� �

:

The latter program is equivalent to the chance constrained model

min
ðx,sÞ2R2

þ

ðr� cÞxþ cs :
X
k2N
x�s�k

�k � p

8<
:

9=
; ð1:3Þ

whose unique integral solution is ðk,0Þ with the maximal k 2 N such thatP1
i¼k �i � p. Hence, the minimum risk solution is more pessimistic than the

minimal expected cost solution if r
c
< p < 1, i.e., if the newsboy wants to be

sure with high probability that no copies of the newspaper remain.
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However, the inherent difficulty of all these approaches is that the newsboy
does not know the probability distribution P of the demand and has to use
some approximation instead. Hence, he is interested in the stability of his
decision which means that it does not vary too much for small perturbations
of the data. For instance, his decision might be based on n independent
identically distributed observations �i, i ¼ 1, . . . , n, of the demand, i.e., on
approximating P by the empirical measure Pn (cf. Section 4.1) and, in case of
minimal expected costs, on solving the approximate problem

min
x2Rþ

ðr� cÞxþ
c

n

Xn
i¼1

maxf0, x� �ig

( )
: ð1:4Þ

Of course, this approach is only justified if some optimal solution xn of the
approximate problem (1.4) is close to some original solution for sufficiently
large n. Both variants of the newsboy problem represent specific two-stage and
chance constrained stochastic programs, respectively. Their discussion will be
continued in the Examples 15, 19 and 54.

Throughout we will denote the set of all Borel probability measures on �
by Pð�Þ, the feasible set of (1.1) by X(P), the optimal value by #(P) and the
("-approximate) solution set of (1.1) by X*

" ðPÞ and X*ðPÞ, respectively, i.e.,

XðPÞ :¼ x 2 X :

Z
�

Fjðx, �Þ dPð�Þ � 0, j ¼ 1, . . . , d

8<
:

9=
;, ð1:5Þ

#ðPÞ :¼ inf

Z
�

F0ðx, �Þ dPð�Þ : x 2 XðPÞ

8<
:

9=
;, ð1:6Þ

X*
" ðPÞ :¼ x 2 X ðPÞ :

Z
�

F0ðx, �Þ dPð�Þ � #ðPÞ þ "

8<
:

9=
; ð" � 0Þ, ð1:7Þ

X*ðPÞ :¼ X*
0 ðPÞ ¼ x 2 XðPÞ :

Z
�

F0ðx, �Þ dPð�Þ ¼ #ðPÞ

8<
:

9=
;: ð1:8Þ

In this chapter, stability mostly refers to continuity properties of the
optimal value function #( � ) and the ("-approximate) solution-set mapping
X*
" ð�Þ at P, where both #( � ) and X*

" ð�Þ are regarded as mappings given on a set
of probability measures endowed with a suitable distance. The distance has to
be selected such that it allows to estimate differences of objective and
constraint function values, and, that it is optimumadapted to themodel at hand.
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Fortunately, there exists a diversity of convergence notions and metrics in
probability theory and statistics that address different goals and are based on
various constructions (see, e.g., Rachev (1991) and van der Vaart (1998)). We
will use so-called distances with �-structure that are given as uniform distances
of expectations of functions taken from a class F of measurable functions
from � to R, i.e.,

dF ðP,QÞ ¼ sup
F2F

���Z
�

Fð�Þ dPð�Þ �

Z
�

Fð�Þ dQð�Þ
���: ð1:9Þ

In a first step we choose the class F as the set fFjðx,�Þ : x 2 X \ clU, j ¼
0, . . . ,dg, where U is a properly chosen open subset of Rm, and derive some
(qualitative and quantitative) stability results in the Sections 2.2 and 2.3. Such
a distance forms a kind of minimal information (m.i.) metric for the stability of
(1.1). Some of the corresponding results (e.g., the Theorems 5 and 9) work
under quite weak assumptions on the underlying data of (1.1). In particular, if
possible differentiability or even continuity assumptions on the functions
x�

R
� Fjðx,�ÞdPð�Þ are avoided for the sake of generality. The approach is

inspired by general perturbation results for optimization problems in Klatte
(1987, 1994); Attouch and Wets (1993) and in the monographs by Bank et al.
(1982) and Rockafellar and Wets (1998) and Bonnans and Shapiro (2000).

Since the m.i. metrics are often rather involved and difficult to handle, we
look, on the one hand, for implications of the general qualitative result on
stability with respect to the topology of weak convergence. On the other hand,
we look for another metric having �-structure by enlarging the class F and,
hence, bounding the m.i. metric from above. Our strategy for controlling this
enlargement procedure consists in adding functions to the enlarged class that
share the essential analytical properties with some of the functions Fj(x, � ). As
a result of this process we obtain ideal metrics that are optimum adjusted to
the model (1.1) or to a whole class of models and that enjoy pleasant pro-
perties (e.g., a duality and convergence theory). In Section 3, we show for
three types of stochastic programs how such ideal metrics come to light in a
natural way by revealing the analytical properties of the relevant functions
Fj(x, � ). At the same time, we obtain quantitative stability results for all models.

For two-stage models containing integer variables and for chance con-
strained models, the relevant functions are discontinuous and their ideal classes
contain products of (locally) Lipschitzian functions and of characteristic
functions of sets describing regions of continuity (see Sections 3.2 and 3.3).

When using stability results for designing or analyzing approximation
schemes or estimation procedures, further properties of the function classes F
and of the metrics may become important. For example, we derive covering
numbers of certain function classes and discuss their implications on
probabilistic bounds for empirical optimal values and solution sets.

The chapter is organized as follows. First Section 2 contains some
prerequisites on convergences and metric distances of probability measures.
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This is followed by our main qualitative stability result (Theorem 5) and its
conclusions on the stability with respect to weak convergence of probability
measures. We continue with the quantitative stability results for solution sets
of (1.1) (Theorems 9 and 12) and a Lipschitz continuity result (Theorem 13)
for "-approximate solution sets of convex models. We add a discussion of how
to associate ideal metrics with more specific stochastic programs. Section 2 is
finished by discussing the challenges and by presenting first results of a
perturbation analysis for stochastic programs containing risk functionals
(1.2). In Section 3 we consider linear two-stage, mixed-integer two-stage and
linear chance constrained stochastic programs and present various perturba-
tion results for such models. The potential of our general perturbation
analysis is explained in Section 4 for two types of approximations of the
underlying probability measure P. First, we consider empirical measures as
nonparametric estimators of P and derive asymptotic statistical properties of
values and solutions by using empirical process theory. Secondly, we discuss
the optimal construction of finitely discrete measures based on probability
metrics and sketch some results and heuristic algorithms for the optimal
reduction of discrete measures. We conclude the chapter with some
bibliographical notes on the relevant literature.

2 General stability results

2.1 Convergences and metrics of probability measures

Let us consider the set Pð�Þ of all Borel probability measures with support
contained in a closed subset � of Rs. We will endow the set Pð�Þ or some of its
subsets with different convergences and distances, which are adapted to the
underlying stochastic program or to a whole class of stochastic programs. The
classical convergence concept in probability theory is the weak convergence of
measures in Pð�Þ (see e.g., Billingsley (1968) and Dudley (1989)). A sequence
(Pn) in Pð�Þ is said to converge weakly to P 2 Pð�Þ, shortly Pn!

w
P, if

lim
n!1

Z
�

gð�Þ dPnð�Þ ¼

Z
�

gð�Þ dPð�Þ ð2:10Þ

holds for each g in the space Cbð�Þ of bounded continuous functions from �
to R. It is well known that the topology �w of weak convergence is metrizable
(e.g., by the bounded Lipschitz metric (2.11)) and that Pn!

w
P holds iff the

sequence of probability distribution functions of Pn converges pointwise to the
distribution function FP of P at all continuity points of FP. Another important
property of weak convergence is the continuous mapping theorem: If Pn!

w
P

and g : �! R is measurable, bounded and P-continuous, i.e., Pðf� 2 �: g is
not continuous at �gÞ ¼ 0, we have (2.10).
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Most of the distances on (subsets of) Pð�Þ that will be considered are of the
form dF in (1.9), where F is a class of measurable functions from � to R, and
are defined on the set PF :¼ fQ 2 Pð�Þ : supF2F j

R
� Fð�ÞdQð�Þj <1jg, where

dF is finite. A uniform distance of the form (1.9) is called a distance having
�-structure (see Zolotarev (1983) and Rachev (1991)). Clearly, dF does not
change if the set F is replaced by its convex hull. It is nonnegative, symmetric
and satisfies the triangle inequality, i.e., a pseudometric on PF. dF is a metric if
the class F is rich enough to preserve that dF (P,Q)¼ 0 implies P¼Q. Next we
list some important examples of distances having �-structure, where the classes
F range from (locally) Lipschitz continuous functions to piecewise constant
functions with a prescribed structure of discontinuity sets.

Example 2. (metrics with �-structure)

(a) For p ¼ 0 and p � 1 we introduce classes F pð�Þ of locally Lipschitz
continuous functions that increase with p

F pð�Þ :¼ F : ��R :
���Fð�Þ � Fð ~��Þ

��� � cpð�, ~��Þk� � ~��k,8�, ~�� 2 �
n o

,

F 0ð�Þ :¼ F 1ð�Þ \ F 2 Cbð�Þ : sup
�2�

���Fð�Þ��� � 1

( )
:

Here, k � k denotes some norm on Rs and
cpð�, ~��Þ :¼ maxf1,k�k,k ~��kg

p�1

for all �, ~�� 2 � and p � 1 describes the
growth of the local Lipschitz constants. The corresponding distance
with �-structure for p ¼ 0 is the bounded Lipschitz metric (Section 11.3
of Dudley (1989))

�ðP, QÞ :¼ sup
F2F 0ð�Þ

���Z
�

Fð�Þ dPð�Þ �

Z
�

Fð�Þ dQð�Þ
��� ð2:11Þ

and metrizes the weak convergence on Pð�Þ. For p ¼ 1 we arrive at the
Kantorovich metric

�1ðP, QÞ :¼ sup
F2F 1ð�Þ

���Z
�

Fð�Þ dPð�Þ �

Z
�

Fð�Þ dQð�Þ
��� ð2:12Þ

and for p � 1 at the p-th order Fortet–Mourier metrics (see Fortet and
Mourier (1953) and Rachev (1991))

�pðP, QÞ :¼ sup
F2F pð�Þ

���Z
�

Fð�Þ dPð�Þ �

Z
�

Fð�Þ dQð�Þ
��� ð2:13Þ
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on the set Ppð�Þ :¼ fQ 2 Pð�Þ
R
� k�k

p dQð�Þ <1g of probability
measures having finite p-th order absolute moments. It is known that
a sequence ðPnÞ converges to P in ðPpð�Þ,�pÞ iff it converges weakly and

lim
n!1

Z
�

k�kp dPnð�Þ ¼

Z
�

k�kp dPð�Þ

holds. Furthermore, the estimate

��� Z
�

k�kp dPð�Þ �

Z
�

k�kp dQð�Þ
��� � p�pðP, QÞ

is valid for each p � 1 and all P,Q 2 Ppð�Þ (Section 6 in Rachev
(1991)). Hence, closeness with respect to �p implies the closeness of q-th
order absolute moments for q 2 ½1, p�.

(b) Let B denote a set of Borel subsets of � and consider the class
FB :¼ f�B : B 2 Bg of their characteristic functions �B taking the value
1 if the argument belongs to B and 0 otherwise. The distance with
�-structure generated by FB is defined on Pð�Þ. It takes the form

�BðP, QÞ :¼ dFB ðP,QÞ ¼ sup
B2B
jPðBÞ �QðBÞj

and is called B-discrepancy. The following instances play a special role
in the context of stability in stochastic programming:

(b1) Let� be convex and Bcð�Þ the set of all closed convex subsets of�.
(b2) Let � be polyhedral and Bphkð�Þ the set of all polyhedra being
subsets of � and having at most k faces.
(b3) Let � ¼ Rs and Bhð�Þ be the set of all closed half-spaces in Rs.
(b4) Let � ¼ Rs and BKð�Þ :¼ fð�1,�� : � 2 Rsg be the set of all cells.

The corresponding distances are the isotrope discrepancy
�c, the polyhedral discrepancy �phk , the half-space discrepancy �h and
the Kolmogorov metric. The latter metric coincides with the uniform
distance of distribution functions on Rs and is denoted by dK, i.e.,

dKðP, QÞ ¼ �BK
ðP, QÞ ¼ sup

�2Rs
jPðð�1, ��Þ �Qðð�1, ��Þj:

A sequence ðPnÞ converges to P in Pð�Þ with respect to �B, where B
is a class of closed convex subsets of �, iff ðPnÞ converges weakly to P
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and PðbdBÞ ¼ 0 holds for each B 2 B (with bdB denoting the
boundary of the set B).

The examples reveal some relations between the weak convergence of
probability measures and their convergence with respect to a uniform metric
dF for some classes F. Such relations have already been explored more
systematically in the literature. A class F of measurable functions from � to R
is called a P-uniformity class if

lim
n!1

dF ðPn,PÞ ¼ 0 ð2:14Þ

holds for each sequence ðPnÞ that converges weakly to P. Necessary conditions
for F to be a P-uniformity class are that F is uniformly bounded and that
every function in F is P-continuous. Sufficient conditions are given in
Billingsley and Topsøe (1967), Topsøe (1967, 1977) and Lucchetti et al. (1994).
For example, F is a P-uniformity class if it is uniformly bounded and it
holds that Pðf� 2 �: F is not equicontinuous at �gÞ ¼ 0 (Topsøe (1967)).
Unless F is uniformly bounded, condition (2.14) cannot be valid for any
sequence (Pn) that converges weakly to P. In that case, a uniform integra-
bility condition with respect to the set fPn : n 2 Ng has to be additionally
imposed on F. The set F is called uniformly integrable with respect to
fPn : n 2 Ng if

lim
R!1

sup
n2N

sup
F2F

Z
Fð�Þ>R

jFð�ÞjdPnð�Þ ¼ 0: ð2:15Þ

Note that condition (2.15) is satisfied if the moment condition

sup
n2N

sup
F2F

Z
�

jFð�Þj1þ"dPnð�Þ <1 ð2:16Þ

holds for some " > 0 (Section 5 in Billingsley (1968)). Then the condition
(2.14) is valid for any sequence ðPnÞ that converges weakly to P in PF and has
the property that F is uniformly integrable with respect to fPn : n 2 Ng if the
set FR :¼ f½F �Rð�Þ :¼ maxf�R, minfFð�Þ, Rgg : F 2 F g of truncated functions
of F is a P-uniformity class for large R > 0. Since the class FR is uniformly
bounded, it is a P-uniformity class if Pðf� 2 �: FR is not equicontinuous
at �gÞ ¼ 0. Sufficient conditions for classes of characteristic functions of
convex sets to be P-uniformity classes are mentioned in Example 2(b).
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2.2 Qualitative stability

Together with the original stochastic programming problem (1.1) we
consider a perturbation Q 2 Pð�Þ of the probability distribution P and the
perturbed model

min

Z
�

F0 x, �ð Þ dQ �ð Þ : x 2 X ,

Z
�

Fj x, �ð Þ dQ �ð Þ � 0, j ¼ 1, . . . , d

8<
:

9=
; ð2:17Þ

under the general assumptions imposed in Section 1. To fix our setting, let k � k
denote the Euclidean norm and �,�h i the corresponding inner product. By B we
denote the Euclidean unit ball and by dðx,DÞ the distance of x 2 Rm to the set
D � Rm. For any nonempty and open subset U of Rm we consider the follow-
ing sets of functions, elements and probability measures

FU :¼ Fjðx,�Þ : x 2 X \ cl U, j ¼ 0, . . . , d
� �

,

XUðQÞ :¼ x2X\ cl U :

Z
�

Fjðx,�Þ dQð�Þ�0, j ¼ 1, . . . , d

8<
:

9=
; ðQ2PFU ð�ÞÞ,

PFU ð�Þ :¼fQ2Pð�Þ :�1<
Z
�

inf
x2X\ rB

Fj x,�ð Þ dQð�Þ for each r>0 and

sup
x2X\ cl U

Z
�

Fjðx,�Þ dQð�Þ <1 for each j ¼ 0, . . . , dg,

and the pseudometric on PFU :¼ PFU ð�Þ

dFU ðP,QÞ :¼ sup
F2FU

���Z
�

Fð�ÞðP�QÞðd�Þ
���¼sup

j¼0,...,d
x2X\ cl U

���Z
�

Fjðx,�ÞðP�QÞðd�Þ
���:

Thus, dFU is a distance of probability measures having �-structure. It
is nonnegative, symmetric and satisfies the triangle inequality (see also
Section 2.1). Our general assumptions and the Fatou Lemma imply that the
objective function and the constraint set of (2.17) are lower semicontinuous on
X and closed in Rm, respectively, for each Q 2 PFU ð�Þ. Our first results
provide further basic properties of the model (2.17).
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Proposition 3. Let U be a nonempty open subset of Rm. Then the mapping
ðx,QÞ�

R
�
Fjðx, �ÞdQð�Þ from ðX \ clUÞ � ðPFU ,dFU Þ to R is sequentially

lower semicontinuous for each j ¼ 0, . . . , d.

Proof. Let j ¼ 0, . . . , d, x 2 X \ clU, Q 2 PFU , ðxnÞ be a sequence in X \ clU
such that xn! x, and ðQnÞ be a sequence converging to Q in ðPFU ,dFU Þ. Then
the lower semicontinuity of Fjð�,�Þ for each � 2 � and the Fatou Lemma imply
the estimateZ

�

Fj x,�ð Þ dQ �ð Þ � lim inf
n!1

Z
�

Fj xn,�ð Þ dQ �ð Þ

� lim inf
n!1

dFU ðQ, QnÞ þ

Z
�

Fjðxn, �ÞQnðd�Þ

8<
:

9=
;

¼ lim inf
n!1

Z
�

Fjðxn, �ÞQnðd�Þ: u

Proposition 4. Let U be a nonempty open subset of Rm. Then the graph of the
set-valued mapping Q�XUðQÞ from ðPFU ,dFU Þ into Rm is sequentially closed.

Proof. Let ðQnÞ be a sequence converging to Q in ðPFU ,dFU Þ and ðxnÞ be a
sequence converging to x in Rm and such that xn 2 XUðQnÞ for each n 2 N.
Clearly, we have x 2 X \ clU. For j 2 f1, . . . , dg we obtain from Proposition 3
that the estimateZ

�

Fj x, �ð Þ dQ �ð Þ � lim inf
n!1

Z
�

Fj xn, �ð ÞQn d�ð Þ � 0:

and, thus, x 2 XUðQÞ holds. u

To obtain perturbation results for (1.1), a stability property of the
constraint set X(P) when perturbing the probabilistic constraints is needed.
Consistently with the general definition of metric regularity for multifunctions
(see, e.g., Rockafellar and Wets (1998)), we consider the set-valued mapping
y�XyðPÞ from Rd to Rm, where

XyðPÞ ¼ x 2 X :

Z
�

Fjðx, �Þ dPð�Þ � yj, j ¼ 1, . . . ,d

8<
:

9=
;,

and say that its inverse x�X�1x ðPÞ ¼ fy 2 Rd : x 2 XyðPÞg from Rm to Rd is
metrically regular at some pair ðx,0Þ 2 Rm � Rd with x 2 XðPÞ ¼ X0ðPÞ if
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there are constants a � 0 and " > 0 such that it holds for all x 2 X and y 2 Rd

with kx� xk � " and max
j¼1,...,d

jyjj � " that

dðx, XyðPÞÞ � amax
j¼1,...,d

max 0,

Z
�

Fjðx, �Þ dPð�Þ � yj

8<
:

9=
;:

To state our results we will need localized versions of optimal values and
solution sets. We follow the concept proposed in Robinson (1987) and Klatte
(1987), and set for any nonempty open set U � Rm and any Q 2 PFU

#UðQÞ ¼ inf

Z
�

F0ðx, �Þ dQð�Þ : x 2 XUðQÞ

8<
:

9=
;,

X*U ðQÞ ¼ x 2 XUðQÞ :

Z
�

F0 x, �ð Þ dQ �ð Þ ¼ #UðQÞ

8<
:

9=
;:

A nonempty set S � Rm is called a complete local minimizing (CLM ) set of
(2.17) relative to U if U � Rm is open and S ¼ X*U ðQÞ � U. Clearly, CLM sets
are sets of local minimizers, and the set X*ðQÞ of global minimizers is a CLM
set with X*ðQÞ ¼ X*U ðQÞ if X*ðQÞ � U.

Now, we are ready to state the main qualitative stability result.

Theorem 5. Let P 2 PFU and assume that

(i) X*ðPÞ is nonempty and U � Rm is an open bounded neighbourhood of
X*ðPÞ,

(ii) if d � 1, the function x�
R
� F0ðx, �ÞdPð�Þ is Lipschitz continuous on

X \ clU,
(iii) the mapping x�X�1x ðPÞ is metrically regular at each pair ðx, 0Þ with

x 2 X*ðPÞ.

Then the multifunction X*U from ðPFU , dFU Þ to Rm is upper semicontinuous at
P, i.e., for any open set O 	 X*U ðPÞ it holds that X*

UðQÞ � O if dFU ðP,QÞ is
sufficiently small. Furthermore, there are positive constants L and � such that

j#ðPÞ � #UðQÞj � LdFU ðP,QÞ ð2:18Þ

holds and X*U ðQÞ is a CLM set of (2.17) relative to U whenever Q 2 PFU and
dFU ðP,QÞ < �. In case d ¼ 0, the estimate (2.18) is valid with L ¼ 1 and for any
Q 2 PFU .
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Proof. We consider the (localized) parametric optimization problem

min f ðx,QÞ ¼

Z
�

F0 x,�ð Þ dQð�Þ : x 2 XUðQÞ

8<
:

9=
;,

where the probability measure Q is regarded as a parameter varying in the
pseudometric space ðPFU ,dFU Þ. Proposition 4 says that the graph of the
multifunction XU from PFU to Rm is sequentially closed. Hence, XU is upper
semicontinuous on PFU , since clU is compact. Furthermore, we know by
Proposition 3 that the function f from ðX \ clUÞ � PFU to R is sequentially
lower semicontinuous and finite. Let us first consider the case of d ¼ 0. Since
f ð�,QÞ is lower semicontinuous, X*U ðQÞ is nonempty for each Q 2 PFU . Let
x* 2 X*ðPÞ, Q 2 PFU and ~xx 2 X*U ðQÞ. Then the estimate

j#ðPÞ � #UðQÞj � max

Z
�

F0 x*, �ð Þ Q� Pð Þðd�Þ,

Z
�

F0ð ~xx, �ÞðP�QÞðd�Þ

8<
:

9=
;

� dFU ðP,QÞ

holds. This implies that the multifunction X*U from ðPFU ,dFU Þ to Rm is closed
at P and, thus, upper semicontinuous at P.

In case d � 1, condition (ii) implies that the function f is even continuous
on ðX \ clUÞ � PFU . Then we use Berge’s classical stability analysis (see Berge
(1963) for topological parameter spaces and Theorem 4.2.1 in Bank et al.
(1982) for metric parameter spaces) and conclude that X*U is upper semicon-
tinuous at P if XU satisfies the following (lower semicontinuity) property at
some pair ðx,PÞ with x 2 X*ðPÞ:

XUðPÞ \ Bðx, "Þ � XUðQÞ þ a dFU ðP, QÞB whenever dFU ðP, QÞ < ", ð2:19Þ

where a � 0 is the corresponding constant in condition (iii), and " > 0 is suf-
ficiently small. To establish property (2.19), let x 2 X*ðPÞ, and a ¼ aðxÞ � 0,
" ¼ "ðxÞ > 0 be the metric regularity constants from (iii). First we observe
that the estimate

R
� Fjðx, �ÞðQ� PÞðd�Þ � dFU ðP,QÞ holds for any

x 2 X \ clU, j 2 f1, . . . ,dg and Q 2 PFU . Next we choose " ¼ "ðxÞ such that
0 < " < " and xþ ðaþ 1Þ"B � U. Hence, we have xþ a"B � U for any
x 2 xþ "B. Let Q 2 PFU be such that dFU ðP,QÞ < ". Putting yj ¼ �dFU ðP,QÞ,
j ¼ 1, . . . ,d, the above estimate implies that XyðPÞ \ clU � XUðQÞ.
Due to the choice of " we have dðx,XyðPÞ \ clUÞ ¼ dðx,XyðPÞÞ for any
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x 2 XUðPÞ \ ðxþ "BÞ, and, hence, the metric regularity condition (iii) yields
the estimate

dðx, XUðQÞÞ � dðx, XyðPÞ \ cl UÞ ¼ dðx, XyðPÞÞ

� a max
j¼1,...,d

max 0,

Z
�

Fjðx, �Þ dPð�Þ þ dFU ðP,QÞ

8<
:

9=
;

� a dFU ðP,QÞ,

which is equivalent to the property (2.19). Hence, X*U is upper semicontinuous
at P and there exists a constant �̂� > 0 such that X*U ðQÞ � U for any Q 2 PFU
with dFU ðP,QÞ < �̂�. Thus X*U ðQÞ is a CLM set of (2.17) relative to U for
each such Q.

Moreover, for any x 2 XUðQÞ \ ðxþ "BÞ (iii) implies the estimate

dðx,XUðPÞÞ ¼ dðx,X0ðPÞ \ cl UÞ ¼ dðx,X0ðPÞÞ

� a max
j¼1,...,d

max 0,

Z
�

Fjðx, �Þ dPð�Þ

8<
:

9=
;

� a max
j¼1,...,d

max 0,

Z
�

Fjðx, �Þ dPð�Þ �

Z
�

Fjðx, �Þ dQð�Þ

8<
:

9=
;

� a dFU ðP,QÞ ,

which is equivalent to the inclusion

XUðQÞ \ ðxþ " BÞ � XUðPÞ þ a dFU ðP,QÞB:

Since X*(P) is compact, we employ a finite covering argument and
arrive at two analogues of both inclusions, where a neighbourhood
N of X*(P) appears instead of the balls xþ "B in their left-hand sides, and
a uniform constant âa appears instead of a in their right-hand sides. Moreover,
there exists a uniform constant "̂" > 0 such that the (new) inclusions are valid
whenever dFU ðP,QÞ < "̂". Now, we choose � > 0 such that � � minf�̂�,"̂"g and
X*U ðQÞ � N whenever dFU ðP,QÞ < �.
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LetQ 2 PFU be such that dFU ðP,QÞ < � and ~xx 2 X*UðQÞ � XUðQÞ \N . Then
there exists an element x 2 XUðPÞ satisfying k ~xx� xk � âa dFU ðP,QÞ. We obtain

#ðPÞ � f ðx,PÞ � f ð ~xx,QÞ þ j f ðx,PÞ � f ð ~xx,QÞj

� #UðQÞ þ j f ðx,PÞ � f ð ~xx,PÞj þ j f ð ~xx,PÞ � f ð ~xx,QÞj

� #UðQÞ þ Lf kx� ~xxk þ dFU ðP,QÞ

� #UðQÞ þ ðLf âaþ 1ÞdFU ðP,QÞ ,

where Lf � 0 denotes a Lipschitz constant of f ð�,PÞ on X \ clU. For the
converse estimate, let x 2 X*ðPÞ and Q 2 PFU be such that dFU ðP,QÞ < �.
Then there exists ~xx 2 XUðQÞ such that k ~xx� xk � âa dFU ðP,QÞ. We conclude

#UðQÞ � f ð ~xx, QÞ � #ðPÞ þ j f ð ~xx, QÞ � f ðx,PÞj

and arrive analogously at the desired continuity property of #U by putting
L ¼ Lf âaþ 1. u

The above proof partly parallels arguments in Klatte (1987). The most
restrictive requirement in the above result is the metric regularity condition
(iii). Example 40 in Section 3.3 provides some insight into the necessity of
condition (iii) in the context of chance constrained models. Criteria for the
metric regularity of multifunctions are given e.g., in Section 9G of Rockafellar
and Wets (1998) and in Mordukhovich (1994b). Here, we do not intend to
provide a specific sufficient condition for (iii), but recall that the constraint
functions

R
� Fjð�, �ÞdPð�Þ ( j ¼ 1, . . . ,d) are often nondifferentiable or even

discontinuous in stochastic programming. In Section 3.3 we show how metric
regularity is verified in case of chance constrained programs.

Although, Theorem 5 also asserts a quantitative continuity property for
optimal values, its essence consists in a continuity result for optimal values
and solution sets. As a first conclusion we derive consequences for the stability
of (1.1) with respect to the weak convergence of probability measures (cf.
Section 2.1). To state our main stability result for (1.1) with respect to the
topology of weak convergence, we need the classes FR

U of truncated functions
of FU for R > 0 and the uniform integrability property of FU (see Section 2.1).

Theorem 6. Let the assumptions of Theorem 5 for (1.1) be satisfied. Further-
more, let FR

U be a P-uniformity class for large R > 0 and ðPnÞ be a sequence in
PFU that is weakly convergent to P.

Then the sequence ð#UðPnÞÞ converges to #ðPÞ, the sets X*U ðPnÞ are CLM sets
relative to U for sufficiently large n 2 N and

lim
n!1

sup
x2X*U ðPnÞ

dðx, X*ðPÞÞÞ ¼ 0

holds if FU is uniformly integrable with respect to fPn : n 2 Ng.
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Proof. Let ðPnÞ be a sequence in PFU that converges weakly to P and has the
property that FU is uniformly integrable with respect to fPn : n 2 Ng. Then the
assumption implies (see Section 2.1)

lim
n!1

dFU ðPn,PÞ ¼ 0

and, hence, the result is an immediate consequence of Theorem 5. u

Compared to Theorem 5, the stability of (1.1) with respect to weakly
convergent perturbations of P requires additional conditions on FU . The
previous theorem provides the sufficient conditions that its truncated class FR

U
has the P-uniformity property for large R > 0 and that FU is uniformly
integrable with respect to the set of perturbations. The first condition is
satisfied if FR

U is P-almost surely equicontinuous on � (cf. Section 2.1). It
implies, in particular, the P-continuity of Fjðx,�Þ for each j ¼ 0, . . . , d and
x 2 X \ clU. The uniform integrability condition

lim
R!1

sup
n2N

max
j¼0,...,d

sup
x2X\ cl U

Z
jFj ðx,�Þj>R

jFjðx, �ÞjdPnð�Þ ¼ 0 ð2:20Þ

is satisfied if the moment condition

sup
n2N

max
j¼0,...,d

sup
x2X\ cl U

Z
�

jFjðx, �Þj
1þ"dPnð�Þ <1 ð2:21Þ

holds for some " > 0. Assume, for example, that the functions Fj satisfy an
estimate of the form

jFjðx, �Þj � Ck�kk, 8ðx, �Þ 2 ðX \ cl UÞ ��,

for some positive constants C, k and all j ¼ 0, . . . , d (see e.g., Sections 3.1 and
3.2). In this case, the uniform integrability condition (2.20) is satisfied if

lim
R!1

sup
n2N

Z
k�k>R

k�kkdPnð�Þ ¼ 0:

The corresponding sufficient moment condition reads

sup
n2N

Z
�

k�kkþ"dPnð�Þ <1
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for some " > 0. The latter condition is often imposed in stability studies with
respect to weak convergence.

The P-continuity property of each function Fjðx,�Þ and condition (2.20) are
not needed in Theorem 5. However, the following examples show that both
conditions are indispensable for stability with respect to weak convergence.

Example 7. Let m ¼ s ¼ 1, d ¼ 0, � ¼ R, X ¼ R�, F0ðx,�Þ ¼ ��ð�1,x�ð�Þ for
ðx,�Þ 2 R�� and P ¼ �0, where �� denotes the measure that places unit mass
at �. Then #ðPÞ ¼ 1 and X*ðPÞ ¼ f0g. The sequence ð�1

n
Þ converges weakly to P

in Pð�Þ, but it holds that #ðPnÞ ¼ 0 for each n 2 N. This is due to the fact that,
for some neighbourhood U of 0, the set f�ð�1,x�ð�Þ : x 2 X \ clUg is not a
P-uniformity class since Pðbd ð�1,0�Þ ¼ Pðf0gÞ ¼ 1.

Example 8. Let m ¼ s ¼ 1, d ¼ 0, � ¼ Rþ, X ¼ ½�1,1�, F0ðx,�Þ ¼ maxf��
x,0g for ðx,�Þ 2 R�� and P ¼ �0. Then #ðPÞ ¼ 0 and X*ðPÞ ¼ ½0,1�. Consider
the sequence Pn ¼ ð1�

1
n
Þ�0 þ

1
n
�n, n 2 N, which converges weakly to P. It

holds that #ðPnÞ ¼ 1� 1
n
and X*ðPnÞ ¼ f1g for each n 2 N and, thus, ð#ðPnÞÞ

does not converge to #ðPÞ. Here, the reason is that the class fmaxf� � x, 0g :
x 2 ½�1, 1�g is not uniformly integrable with respect to fPn : n 2 Ng.

Indeed, the weak convergence of measures is a very weak condition on
sequences and, hence, requires strong conditions on (1.1) to be stable. Many
approximations of P (e.g., in Section 4.1), however, have much stronger
properties than weak convergence and, hence, work under weaker assump-
tions than Theorem 6. To give an example, we recall that the P-continuity
property of each function Fjðx, �Þ is an indispensable assumption in case of
stability with respect to weak convergence, but this property is not needed
when working with dFU and with specifically adjusted ideal metrics (and the
corresponding convergences of measures) in case of (mixed-integer) two-stage
and chance constrained models (see Sections 3.1, 3.2 and 3.3). Consequently,
we prefer to work with these distances, having in mind their relations to the
topology of weak convergence.

2.3 Quantitative stability

The main result in the previous section claims that the multifunction X*U ð�Þ
is nonempty near P and upper semicontinuous at P. In order to quantify the
upper semicontinuity property, a growth condition on the objective function
in a neighbourhood of the solution set to the original problem (1.1) is needed.
Instead of imposing a specific growth condition (as e.g. quadratic growth), we
consider the growth function  P defined on Rþ by

 Pð�Þ :¼ min

Z
�

F0ðx, �Þ dPð�Þ � #ðPÞ : dðx, X*ðPÞÞ � �, x 2 XUðPÞ

8<
:

9=
; ð2:22Þ
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of problem (1.1) on clU, i.e., near its solution set X*ðPÞ, and the associated
function

�Pð	Þ :¼ 	þ  
�1
P ð2	Þ ð	 2 RþÞ, ð2:23Þ

where we set  �1P ðtÞ :¼ supf� 2 Rþ :  Pð�Þ � tg. Both functions,  P and �P,
depend on the data of (1.1) and, in particular, on P. They are lower
semicontinuous on Rþ ;  P is nondecreasing, �P increasing and both vanish
at 0 (cf. Theorem 7.64 in Rockafellar and Wets (1998)). The second main
stability result establishes a quantitative upper semicontinuity property of
(localized) solution sets and identifies the function �P as modulus of semi-
continuity. In the convex case, it also provides continuity moduli of countable
dense families of selections to solution sets.

Theorem 9. Let the assumptions of Theorem 5 be satisfied and P 2 PFU . Then
there exists a constant L̂L � 1 such that

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL̂LdFU ðP, QÞÞB ð2:24Þ

holds for any Q 2 PFU with dFU ðP,QÞ < �. Here, � is the constant in Theorem 5
and �P is given by (2.23). In case d ¼ 0, the estimate (2.24) is valid with L̂L ¼ 1
and for any Q 2 PFU .

Proof. Let L > 0, � > 0 be the constants in Theorem 5, Q 2 PFU with
dFU ðP,QÞ < � and ~xx 2 X*U ðQÞ. As argued in the proof of Theorem 5, there
exists an element x 2 XUðPÞ such that k ~xx� xk � âa�, where � :¼ dFU ðP,QÞ. Let
LP � 0 denote a Lipschitz constant of the function x�

R
�
F0ðx,�Þ dPð�Þ on

X \ clU. Then the definition of  P and Theorem 5 imply that

�ð1þ LPâaþ LÞ � �ð1þ LPâaÞ þ #UðQÞ � #ðPÞ

¼ �ð1þ LPâaÞ þ

Z
�

F0ð ~xx, �Þ dQð�Þ � #ðPÞ

� �LPâaþ

Z
�

F0ð ~xx, �Þ dPð�Þ � #ðPÞ

�

Z
�

F0ðx, �Þ dPð�Þ � #ðPÞ �  Pðdðx, X*ðPÞÞÞ

� inf
y2 ~xxþâa�B

 Pðdð y, X*ðPÞÞÞ ¼  Pðdð ~xx, X*ðPÞ þ âa�BÞÞ:
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Hence, we obtain

dð ~xx, X*ðPÞÞ � âa�þ dð ~xx, X*ðPÞ þ âa�BÞ

� âa�þ  �1P ð�ð1þ LPâaþ LÞÞ � L̂L�þ  �1P ð2L̂L�Þ ¼ �PðL̂L�Þ,

where L̂L :¼ maxfâa, 1
2
ð1þ LPâaþ LÞg � 1. In case d ¼ 0, we may choose x̂x ¼ ~xx,

âa ¼ 1, L ¼ 1, LP ¼ 0 and an arbitrary �. This completes the proof. u

Parts of the proof are similar to arguments of Theorem 7.64 in Rockafellar
and Wets (1998). Next, we briefly comment on some aspects of the general
stability theorems, namely, specific growth conditions and localization issues.

Remark 10. Problem (1.1) is said to have k-th order growth at the solution set
for some k � 1 if  Pð�Þ � 
�

k for each small � 2 Rþ and some 
 > 0, i.e., if

Z
�

F0ðx, �Þ dPð�Þ � #ðPÞ þ 
dðx, X*ðPÞÞk

holds for each feasible x close to X*ðPÞ. Then �Pð	Þ � 	þ ð2	=
Þ
1
k � C	

1
k for

some constant C > 0 and sufficiently small 	 2 Rþ. In this case, Theorem 9
provides the Hölder continuity of X*U at P with rate 1

k
. Important special cases

are the linear and quadratic growth for k ¼ 1 and k ¼ 2, respectively.

Remark 11. In the Theorems 5 and 9 the localized optimal values #UðQÞ and
solution sets X*U ðQÞ of the (perturbed) model (2.17) may be replaced by their
global versions #ðQÞ and X*ðQÞ if there exists a constant �0 > 0 such that for
each Q 2 PFU with dFU ðP,QÞ < �0 either of the following conditions is
satisfied: (a) The model (2.17) is convex and X*U ðQÞ is a CLM set, (b) the
constraint set of (2.17) is contained in some bounded set V � Rm not
depending on Q, and it holds that V � U.

In case of a fixed constraint set, i.e., d ¼ 0, we derive an extension of
Theorem 9 by using a probability distance that is based on divided differences
of the functions x�

R
�
F0ðx, �ÞdðP�QÞð�Þ around the solution set of (1.1).

For some nonempty, bounded, open subset U of Rm we consider the following
set of probability measures

P̂PFU :¼
n
Q 2 PFU : 9CQ>0 such that

Z
�

F0ðx, �Þ�F0ðx, �Þ

kx� xk
dQð�Þ�CQ,

8x, x 2 X \ cl U, x 6¼ x
o
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and the distance

d̂dFU ðP, QÞ :¼ sup

Z
�

F0ðx, �Þ�F0ðx, �Þ

kx� xk
dðP�QÞð�Þ : x, x2X\cl U, x 6¼x

8<
:

9=
;

which is well defined and finite on P̂PFU . The following result has been inspired
by Section 4.4.1 in Bonnans and Shapiro (2000).

Theorem 12. Let d ¼ 0, P 2 P̂PFU , X
*ðPÞ be nonempty and U � Rm be a boun-

ded and open neighbourhood of X*ðPÞ. Then the estimate

sup
x2X*U ðQÞ

dðx,X*ðPÞÞ � ð r
PÞ
�1
ðd̂dFU ðP,QÞÞ

is valid for any Q 2 P̂PFU , where  
r
Pð0Þ ¼ 0,  r

Pð�Þ :¼
 Pð�Þ
� for each � > 0 and

 Pð�Þ is the growth function given by (2.22).
If, moreover, ð r

PÞ
�1 is continuous at � ¼ 0, there exists a constant � > 0 such

that X*U ðQÞ is a CLM set relative to U whenever d̂dFU ðP,QÞ < �.
If, in particular, the original problem (1.1) has quadratic growth, i.e.,

 Pð�Þ � 
�
2 for some 
 > 0, there exists a constant � > 0 such that the inclusion

; 6¼ X*U ðQÞ � X*ðPÞ þ
1



d̂dFU ðP, QÞB

holds whenever d̂dFU ðP,QÞ < �.

Proof. Let Q 2 P̂PFU , x 2 X*U ðQÞ and x 2 X*ðPÞ be such that kx� xk ¼
dðx,X*ðPÞÞ > 0. We denote fQðyÞ :¼

R
� F0ð y,�ÞdQð�Þ for each y 2 X , and have

fQðxÞ � fQðxÞ and fPðxÞ � fPðxÞ �  Pðdðx,X*ðPÞÞÞ ¼  Pðkx� xkÞ. This leads
to the following estimate

 r
P kx� xkð Þ ¼

1

kx� xk
 P kx� xkð Þ �

1

kx� xk
ð fPðxÞ � fPðxÞÞ

�
1

kx� xk
ð fPðxÞ � fQðxÞ þ fQðxÞ � fPðxÞÞ

¼
1

kx� xk
ðð fP � fQÞðxÞ � ð fP � fQÞðxÞÞ

� d̂dFU ðP, QÞ,

which completes the first part. Since U is open, there exists an " > 0 such
that the "-enlargement fx 2 Rm : dðx, X*ðPÞÞ � "g of X*ðPÞ is contained in U.
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Let � > 0 be chosen such that ð r
PÞ
�1
ð�Þ � ". Then dðx,X*ðPÞÞ � " and, thus,

x 2 U holds for each x 2 X*U ðQÞ, completing the second part.
Finally, it remains to remark that quadratic growth implies  r

Pð�Þ � 
� for
any � > 0 and some 
 > 0. u

Compared to the estimate in Theorem 9 based on function values of the
function F0, the above bound uses divided difference information of F0

relative to x and leads to Lipschitz-type results in case of quadratic growth.
While the growth behaviour of the objective function is important for the

quantitative stability of solution sets even for convex models, the situation is
much more advantageous for "-approximate solution sets. For convex models
(1.1) with a fixed constraint set (i.e., d ¼ 0), we will see that the latter sets
behave Lipschitz continuously with respect to changes of probability
distributions measured in terms of the distance dFU , but for a larger set
U compared with stability results for solution sets. To state the result, let

D�ðC,DÞ :¼ inff	 � 0 : C \ �B � Dþ 	B, D \ �B � C þ 	Bg ð2:25Þ

D1ðC,DÞ :¼ inf 	 � 0 : C � Dþ 	B, D � C þ 	Bf g ð2:26Þ

denote the �-distance (� � 0) and the Pompeiu–Hausdorff distance, respec-
tively, of nonempty closed subsets C, D of Rm.

Theorem 13. Let d ¼ 0, F0 be a random lower semicontinuous convex function,
X be closed convex, P 2 PFU and X*ðPÞ be nonempty and bounded. Then there
exist constants � > 0 and " > 0 such that the estimate

D1ðX*
" ðPÞ,X

*
" ðQÞÞ �

2�

"
dFU ðP, QÞ

holds for U :¼ ð�þ "ÞB and any " 2 ð0, "Þ, Q 2 PFU such that dFU ðP,QÞ < ".

Proof. First we choose �0 > 0 such that X*ðPÞ is contained in the open ball
U�0 around the origin in Rm with radius �0 and that #ðPÞ � ��0 þ 1. Applying
Theorem 5 with U�0 as the bounded open neighbourhood of X*ðPÞ, we obtain
some constant "0 > 0 such that X*ðQÞ is nonempty and contained in U�0 and
#ðQÞ � �0 holds whenever Q 2 PFU�0

and dFU �0
ðP,QÞ < "0. Now, let � >

�0, " :¼ minf"0,�� �0,1g and U :¼ ð�þ "ÞB.
For any Q 2 PFU we set again fQðxÞ :¼

R
� F0ðx, �ÞdQð�Þ for each x 2 Rm.

Furthermore, we denote by d̂dþ� the auxiliary epi-distance of fP and fQ
introduced in Proposition 7.61 in Rockafellar and Wets (1998):

d̂dþ� ð fP, fQÞ :¼ inff	 � 0 : inf
y2xþ	B

fQð yÞ � maxf fPðxÞ,� �g þ 	,

inf
y2xþ	B

fPð yÞ � maxf fQðxÞ,� �g þ 	, 8x 2 �Bg:
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From Theorem 7.69 in Rockafellar and Wets (1998) we conclude that the
estimate

D�ðX*
" ðPÞ, X

*
" ðQÞÞ �

2�

"
d̂dþ�þ"ð fP, fQÞ

is valid for " 2 ð0, "Þ if d̂dþ�þ"ð fP, fQÞ < ". Furthermore, we may estimate the
auxiliary epi-distance d̂dþ�þ"ð fP, fQÞ from above by the uniform distance dFU
ðP,QÞ (cf. also Example 7.62 in Rockafellar and Wets (1998)).

It remains to note that the level sets X*
" ðPÞ and X*

" ðQÞ are also bounded,
since fP and fQ are lower semicontinuous and convex, and their solution sets
are nonempty and bounded, respectively. Hence, we may choose the constant
� large enough such that the equality D�ðX*

" ðPÞ,X*
" ðQÞÞ ¼ D1ðX*

" ðPÞ,X*
" ðQÞÞ

holds. This completes the proof. u

Most of the results in this and the previous section illuminate the role of the
distance dFU as a minimal information (m.i.) pseudometric for stability, i.e., as
a pseudometric processing the minimal information of problem (1.1) and
implying quantitative stability of its optimal values and solution sets.
Furthermore, notice that all results remain valid when enlarging the set FU
and, thus, bounding dFU from above by another distance, and when reducing
the set PFU to a subset on which such a distance is defined and finite.

Such a distance did bounding dFU from above will be called an ideal
probability metric associated with (1.1) if it has �-structure (1.9) generated by
some class of functions F ¼ F id from � to R such that Fid contains the
functions CFjðx, �Þ for each x 2 X \ clU, j ¼ 0, . . . ,d, and some normalizing
constant C > 0, and such that any function in Fid shares typical analytical
properties with some function Fjðx,�Þ.

In our applications of the general analysis in Section 3 we clarify such
typical analytical properties. Here, we only mention that typical functions
Fjðx, �Þ in stochastic programming are nondifferentiable, but piecewise locally
Lipschitz continuous with discontinuities at boundaries of polyhedral sets.
More precisely, function classes F contained in

span fF�B : F 2 F , B 2 Bg, ð2:27Þ

where F � F pð�Þ, B � Bphkð�Þ for some p � 1 and k 2 N, are candidates for
an ideal class Fid. The extremal cases, namely, F pð�Þ and FB, are discussed in
Section 2.1. To get an idea of how to associate an ideal metric with a sto-
chastic program, we consider the p-th order Fortet–Mourier metric �p
introduced in Section 2.1. Then the following result is an immediate conse-
quence of the general ones.

Corollary 14. Let d ¼ 0 and assume that

(i) X*ðPÞ is nonempty and U is an open, bounded neighbourhood of X*ðPÞ,
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(ii) X is convex and F0ð�, �Þ is convex on Rm for each � 2 �,
(iii) there exist constants L > 0, p � 1 such that 1

L
F0ðx, �Þ 2 F pð�Þ for each

x 2 X \ clU.

Then there exists a constant � > 0 such that

j#ðPÞ � #ðQÞj � L�pðP, QÞ and

; 6¼ X*ðQÞ � X*=ðPÞ þ�PðL�pðP, QÞÞB

whenever Q 2 Ppð�Þ and �pðP,QÞ < �. Here, the function �P is given by (2.23).

Proof. The assumptions of Theorem 5 are satisfied. Hence, the result is a
consequence of the Theorems 5 and 9 and the fact that (iii) is equivalent to

jF0ðx, �Þ � F0ðx, ~��Þj � Lmax 1,k�k,k ~��k
n op�1

k� � ~��k

for each �, ~�� 2 � and x 2 X \ clU, and, thus, it implies dFU ðP,QÞ � L�pðP,QÞ
for all P,Q 2 Ppð�Þ. Furthermore, due to the convexity assumption (ii) the
localized optimal values #U and solution sets X*U may be replaced by # and X*,
respectively, if Q is close to P (see Remark 11). u

Example 15. (newsboy continued) In case of minimal expected costs the set
FU is a specific class of piecewise linear functions of the form fðr� cÞxþ
cmaxf0, x� �g : x 2 X \ clUg. Furthermore,

R
� F0ðx, �Þ dPð�Þ is also piecewise

linear and Corollary 14 applies with L :¼ c, p :¼ 1 and a linear function �P.
Hence, the solution set X*ð�Þ behaves upper Lipschitzian at P1ðNÞ with respect
to �1, i.e.,

sup
x2X*ðQÞ

dðx, X*ðPÞÞ�c�1ðP, QÞ¼c

Z
R

���FPðrÞ�FQðrÞ
���dr¼cX

k2N

���Xk
i¼1

ð�i� ~��iÞ
���:

Here, we made use of an explicit representation of the Kantorovich metric
on P(R) (Section 5.4 in Rachev (1991)), and FP and FQ are the probability
distribution functions of the measures P ¼

P
k2N �k�k and Q ¼

P
k2N ~��k�k,

respectively.

2.4 Mean-risk models

The expectation functional appearing in the basic model (1.1) is certainly
not the only statistical parameter of interest of the (real-valued) cost or
constraint functions Fj, j ¼ 0, . . . ,d, with respect to P. Risk functionals or risk
measures are regarded as statistical parameters of probability measures in
P(R), i.e., they are mappings from subsets of P(R) to R. When risk functionals
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are used in the context of the model (1.1), they are evaluated at the probability
distributions P½Fjðx, �Þ�

�1 for x 2 X and j ¼ 0, . . . ,d. Practical risk manage-
ment in decision making under uncertainty often requires to minimize or
bound several risk functionals of the underlying distributions. Typical examples
for risk functionals are (standard semi-) deviations, excess probabilities,
value-at-risk, conditional value-at-risk etc. Some risk measures are defined as
infima of certain (simple) stochastic optimization models (e.g., value-at-risk,
conditional value-at-risk). Other measures are given as the expectation of a
nonlinear function and, hence, their optimization fits into the framework of
model (1.1) (e.g., expected utility functions, excess probabilities).

We refer to Section 4 of Pflug (2003) for an introduction to risk functionals
and various examples, to Artzner et al. (1999), Delbaen (2002), Föllmer and
Schied (2002) for a theory of coherent and convex risk measures, to Ogryczak
and Ruszczyński (1999) for the relations to stochastic dominance and to
Rockafellar and Uryasev (2002) for the role of the conditional value-at-risk.

Now, we assume that risk functionals Fj, j ¼ 0, . . . ,d are given. In addition
to the mean-risk model (1.2) we denote by Q a perturbation of the original
probability measure P and consider the perturbed model

minfF0ðQ½F0ðx, �Þ�
�1Þ : x 2 X ,FjðQ½Fjðx, �Þ�

�1Þ � 0, j ¼ 1, . . . ,dg:

ð2:28Þ

To have all risk functionals Fj well defined, we assume for simplicity that
they are given on the subset Pb(R) of all probability measures in P(R) having
bounded support. Then both models, (1.2) and (2.28), are well defined if we
assume that all functions Fjðx,�Þ are bounded. Furthermore, we will need a
continuity property of risk functionals.

A risk functional F on Pb(R) is called Lipschitz continuous w.r.t. to a class H
of measurable functions from R to R if the estimate

jFðGÞ � Fð ~GGÞj � sup
H2H

���Z
R

HðrÞdðG� ~GGÞðrÞ
��� ð2:29Þ

is valid for all G, ~GG 2 PbðRÞ. The following examples and Proposition 8 in
Pflug (2003) show that many risk functionals satisfy such a Lipschitz property.

Example 16. We consider the conditional value-at-risk of a probability
distribution G 2 PbðRÞ at level p 2 ð0,1Þ, which is defined by

CVaRpðGÞ :¼ inf rþ
1

1� p

Z
R

maxf0,� � rg dGð�Þ : r 2 R

8<
:

9=
;:
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Hence,CVaRpðGÞ is the optimal value of a stochastic program with recourse
(see Section 3.1). Clearly, the estimate

jCVaRpðGÞ � CVaRpð ~GGÞj �
1

1� p
sup
r2R

���Z
R

maxf0,� � rgdðG� ~GGÞð�Þ
���

is valid for all G, ~GG 2 PbðRÞ. Hence, the conditional value-at-risk is Lipschitz
continuous w.r.t. the class H :¼ fmaxf0, � �rg : r 2 Rg.

The value-at-risk of G 2 PbðRÞ at level p 2 ð0,1Þ is given by

VaRpðGÞ :¼ inf fr 2 R : Gð� � rÞ � pg:

Thus, VaRpðGÞ is the optimal value of a chance constrained stochastic
program. In Section 3.3 it is shown that the metric regularity of the mapping
r� fy 2 R : Gð� � rÞ � p� yg at pairs ðr, 0Þ with r 2 X*ðGÞ is indispenable for
Lipschitz continuity properties of the optimal value. If the metric regularity
property is satisfied for the measure G and the level p, we obtain, from
Theorem 39 the estimate

jVaRpðGÞ � VaRpð ~GGÞj � LdKðG, ~GGÞ ¼ sup
r2R

���Z
R

L�ð�1,r�ð�ÞdðG� ~GGÞð�Þ
���

for some constant L > 0 and sufficiently small Kolmogorov distance dKðG, ~GGÞ.
Hence, the corresponding class of functions isH :¼ fL�ð�1,r� : r 2 Rg. We note
that the metric regularity requirement may lead to serious complications when
using the value-at-risk in stochastic programming models because VaRpð�Þ has
to be evaluated at measures depending on x.

Example 17. The upper semi-deviation sdþðGÞ of a measure G 2 PbðRÞ, which
is defined by

sdþðGÞ :¼

Z
R

max 0,� �

Z
R

u dGðuÞ

8<
:

9=
; dGð�Þ,

is Lipschitz continuous w.r.t. the class H :¼ fmaxf0, � �rg þ � : r 2 Rg.

The examples indicate that typical Lipschitz continuity classes H of
risk functionals contain products of some functions in F kðRÞ for some
k 2 N and of characteristic functions �ð�1,r� for some r 2 R. Hence, their
structure is strongly related to that of the ideal function classes (2.27) for
stability.
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To state our main stability result for the model (1.2), let X ðPÞ, #ðPÞ, X*ðPÞ
denote the following more general quantities in this section:

XðPÞ :¼ fx 2 X : FjðP½Fjðx, �Þ�
�1
Þ � 0, j ¼ 1, . . . , dg

#ðPÞ :¼ inffF0ðP½F0ðx, �Þ�
�1
Þ : x 2 X ðPÞg,

X*ðPÞ :¼ fx 2 XðPÞ : F0ðP½F0ðx, �Þ�
�1
Þ ¼ #ðPÞg:

The localized notions #UðPÞ and X*U ðPÞ are defined accordingly.

Theorem 18. For each j ¼ 0, . . . ,d, let the function Fj be uniformly bounded and
the risk functional Fj be Lipschitz continuous on PbðRÞ w.r.t. some class Hj of
measurable functions from R to R. Let P 2 Pð�Þ and assume that

(i) X*ðPÞ 6¼ � and U � Rm is an open bounded neighbourhood of X*ðPÞ,
(ii) if d � 1, the function x� F0ðP½F0ðx, �Þ�

�1Þ is Lipschitz continuous
on X \ cl U,

(iii) the mapping x� fy 2 Rd : x 2 X ,FjðP½Fjðx, �Þ�
�1Þ � yj, j ¼ 1, . . . ,dg

from Rm to Rd is metrically regular at each pair ðx,0Þ with x 2 X*ðPÞ.

Then there exist constants L > 0 and � > 0 such that the estimates

j#ðPÞ � #UðQÞj � LdFH
U
ðP,QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ L�PðdFH
U
ðP,QÞÞB

are valid whenever Q 2 Pð�Þ and dFH
U
ðP,QÞ < �. Here, �P is given by (2.23) and

the distance dFH
U
is defined by

dFH
U
ðP,QÞ :¼ sup

j¼0,...,d
x2X\ cl U
Hj2Hj

���Z
�

HjðFjðx, �ÞÞðP�QÞðd�Þ
���:

Proof. We proceed as in the proofs of Theorems 5 and 9, but now we use the
distance

d̂dFðP,QÞ :¼ sup
j¼0,...,d

x2X\ cl U

jFjðP½Fjðx, �Þ�
�1Þ � FjðQ½Fjðx, �Þ�

�1Þj
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instead of dFU . In this way we obtain constants L > 0, � > 0 and the estimates

j#ðPÞ � #UðQÞj � Ld̂dFðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ L�Pðd̂dFðP, QÞÞB

for each Q 2 Pð�Þ such that d̂dFðP,QÞ < �. It remains to appeal to the estimate

d̂dFðP, QÞ �sup
j¼0,...,d
x2X\cl U

sup
Hj2Hj

���Z
R

HjðrÞdððP�QÞ½Fjðx, �Þ�
�1
ÞðrÞ

���¼ dFH
U
ðP, QÞ,

which is a consequence of the Lipschitz continuity (2.29) of the risk func-
tionals Fj, j ¼ 0, . . . , d. u

The result implies that stability properties of the mean-risk model (1.2)
containing risk functionals Fj with Lipschitz continuity classes Hj, j ¼ 0, . . . ,d,
depend on the class

FH
U :¼ fHjðFjðx,�ÞÞ : x 2 X \ cl U, Hj 2 Hj, j ¼ 0, . . . ,dg

instead of FU in case of model (1.1). Hence, the stability behaviour may
change considerably when replacing the expectation functionals in (1.1) by
other risk functionals. For example, the newsboy model based on minimal
expected costs behaves stable at all P 2 P1ðNÞ (Example 15), but the minimum
risk variant of the model (see Example 1) may become unstable.

Example 19. (newsboy continued) We consider the chance constrained model
(1.3) whose solution set is X*ðPÞ ¼ fðk,0Þg with the maximal k such thatP1

i¼k �i � p in its first component. We assume that equality
P1

i¼k �i ¼ p
and �k > 0 holds. To establish instability, we consider the appro-
ximations Pn :¼

P1
i¼1ðnÞ

�ðnÞi �i of P, where �ðnÞi :¼ �i for all i 62 fk� 1, kg
and �ðnÞk�1 :¼ �k�1 þ

1
n
, �ðnÞk :¼ �k �

1
n
for sufficiently large n 2 N such that

�k �
1
n
> 0. Then the perturbed solution set is X*ðPnÞ ¼ fðk� 1,0Þg for any

sufficiently large n. On the other hand, we obtain for the Kolmogorov distance
dK ðP,PnÞ ¼

1
n
, i.e., weak convergence of ðPnÞ to P. Furthermore, the model

(1.3) is stable with respect to the metric dK at each P ¼
P1

i¼1 �i�i 2 PðNÞ such
that

Pk
i¼1 �i 6¼ 1� p for each k 2 N. The latter fact is a consequence of

Theorem 5 as the metric regularity condition is satisfied (see also Remark 2.5
in Römisch and Schultz (1991b)).

However, if the conditional value-at-risk or the upper semi-deviation are
incorporated into the objective of (mixed-integer) two-stage stochastic pro-
grams, their ideal function classes and, thus, their ideal metrics (see Sections
3.1 and 3.2) do not change. These observations are immediate consequences of
the following more general conclusion of the previous theorem.
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Corollary 20. Let d ¼ 0. We consider the stochastic programming model

minfF0ðP½F0ðx, �Þ�
�1Þ : x 2 Xg, ð2:30Þ

where F0 is uniformly bounded and the risk functional F0 is Lipschitz continuous
on PbðRÞ w.r.t. some class H0.

Let P 2 Pð�Þ, X*ðPÞ 6¼ ; and U be an open bounded neighbourhood of X*ðPÞ.
Assume that fF0ðx,�Þ : x 2 X \ clUg is contained in some class Fc of functions

from � to R and H 
 F 2 L0F c holds for all H 2 H0, F 2 F c and some positive
constant L0.

Then there exist constants L > 0 and � > 0 such that the estimates

j#ðPÞ � #UðQÞj � LdF c
ðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ L�PðdF c
ðP, QÞÞB

are valid whenever Q 2 Pð�Þ and dFc
ðP,QÞ < �.

Proof. Clearly, we have in that case dFH
U
ðP,QÞ � L0dF c

ðP,QÞ. u

Important examples forH0 and Fc are multiples of F1(R) and of F pð�Þ ( for
p � 1) and fFXB : F 2 F 1ð�Þ,B 2 Bg, respectively.

3 Stability of two-stage and chance constrained programs

3.1 Linear two-stage models

We consider the linear two-stage stochastic program with fixed recourse

min hc, xiþ

Z
�

hqð�Þ, yð�Þi dPð�Þ :Wyð�Þ¼hð�Þ�Tð�Þx, yð�Þ�0, x 2 X

� �
, ð3:31Þ

where c2Rm, X�Rm and ��Rs are convex polyhedral, W is an ðr,mÞ-
matrix, P2P(�), and the vectors qð�Þ 2 Rm, h(�)2Rr and the (r,m)-matrix
T(�) depend affine linearly on � 2�. The latter assumption covers many
practical situations. At the same time, it avoids the inclusion of all com-
ponents of the recourse costs, the technology matrix and the right-hand side
into �, because this could lead to serious restrictions when imposing additional
conditions on P. We define the function F0 : R

m ��! R by

F0ðx, �Þ¼
hc, xiþ�ðqð�Þ, hð�Þ�Tð�ÞxÞ, hð�Þ�Tð�Þx2pos W , qð�Þ2D
þ1, otherwise

�
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where posW ¼ fWy : y 2 Rm
þg, D ¼ fu 2 Rm : fz 2 Rr : W 0z � ug 6¼ ;g (with W0

denoting the transpose of the matrix W) and �ðu, tÞ ¼ inffhu, yi : Wy ¼
t, y � 0g (ðu, tÞ 2 Rm � Rr). Then problem (3.31) may be rewritten equivalently
as a minimization problem with respect to the first stage decision x, namely,

min

Z
�

F0ðx, �Þ dPð�Þ : x 2 X

� �
: ð3:32Þ

In order to utilize the general stability results of Section 2, we need a
characterization of the continuity and growth properties of the function F0. As
a first step we recall some well-known properties of the function�, which were
derived in Walkup and Wets (1969a).

Lemma 21. The function � is finite and continuous on the ðmþ rÞ-dimensional
polyhedral cone D�posW and there exist ðr,mÞ-matrices Cj and ðmþ rÞ-
dimensional polyhedral cones Kj, j¼ 1,. . . ,N, such that

[N
j¼1

Kj ¼ D� pos W , int Ki \ int Kj ¼ ;, i 6¼ j,

�ðu, tÞ ¼ hCju, ti, for each ðu, tÞ 2 Kj, j ¼ 1, . . . , N:

Moreover, �(u, � ) is convex on posW for each u2D, and �( � , t) is concave on
D for each t2 posW.

To have problem (3.32) well defined we introduce the following
assumptions:

(A1) For each (x, �)2X�� it holds that h(�)�T(�)x2 posW and q(�)2D.
(A2) P2P2(�), i.e.,

R
� k�k

2 dPð�Þ <1.

Condition (A1) sheds some light on the role of the set �. Due to the affine
linearity of q( � ), h( � ) and T( � ) the polyhedrality assumption on � is not
restrictive. (A1) combines the two usual conditions: relatively complete
recourse and dual feasibility. It implies that X���domF0.

Proposition 22. Let (A1) be satisfied. Then F0 is a random convex function.
Furthermore, there exist constants L>0, L̂L > 0 and K>0 such that the
following holds for all �, ~�� 2 � and x, ~xx 2 X with maxfkxk, k ~xxkg � r:

jF0ðx, �Þ � F0ðx, ~��Þj � Lr maxf1, k�k, k ~��kgk� � ~��k,

jF0ðx, �Þ � F0ð ~xx, �Þj � L̂L maxf1, k�k2gkx� ~xxk,

jF0ðx, �Þj � Kr maxf1, k�k2g:
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Proof. From Lemma 21 and (A1) we conclude that F0 is continuous on
domF0 and, hence, on X��. This implies that F0 is a random lower semi-
continuous function (cf. Example 14.31 in Rockafellar and Wets, 1998). It is a
random convex function since the properties of � in Lemma 21 imply that
F0( � , �) is convex for each �2�. In order to verify the Lipschitz property of
F0, let x2X with kxk� r and consider, for each j¼ 1,. . . ,N, and �2�j the
function

gjð�Þ :¼ F0ðx, �Þ ¼ �ðqð�Þ, hð�Þ � Tð�ÞxÞ ¼ hCjqð�Þ, hð�Þ � Tð�Þxi,

where the sets �j :¼ f� 2 �: ðqð�Þ, hð�Þ � Tð�ÞxÞ 2 Kjg are polyhedral, and Cj

and Kj are the matrices and the polyhedral cones from Lemma 21, respec-
tively. Since q( � ), h( � ) and T( � ) depend affine linearly on �, the function gj
depends quadratically on � and linearly on x. Hence, there exists a constant
Lj>0 such that gj satisfies the following Lipschitz property:

jgjð�Þ � gjð ~��Þj � Ljr maxf1, k�k, k ~��kgk� � ~��k for all �, ~�� 2 �j :

Now, let �, ~�� 2 �, assume that � 2�i and ~�� 2 �k for some i, k2 {1,. . . ,N} and
consider the line segment ½�, ~��� ¼ f�ðÞ ¼ ð1� Þ� þ  ~�� :  2 ½0, 1�g. Since
½�, ~��� � �, there exist indices ij, j¼ 1,. . . , l, such that i1¼ i, il¼ k,
½�, ~��� \�ij 6¼ ; for each j¼ 1,. . . , l and ½�, ~��� � [lj¼1 �ij . Furthermore, there
exist increasing numbers ij 2 ½0, 1� for j¼ 0,. . . , l�1 such that
�ði0Þ ¼ �ð0Þ ¼ �, �ðij Þ 2 �ij \�ijþ1 and �ðÞ 62 �ij if ij <  � 1. Then we
obtain

jF0ðx, �Þ � F0ðx, ~��Þj ¼ jgi1ð�Þ � gil ð
~��Þj

�
Xl�1
j¼0

jgijþ1ð�ðij ÞÞ � gijþ1ð�ðijþ1ÞÞj

�
Xl�1
j¼0

Lijþ1r maxf1, k�k, k ~��kgk�ðij Þ � �ðijþ1Þk

� max
j¼1,...,N

Ljr maxf1, k�k, k ~��kg
Xl�1
j¼0

k�ðij Þ � �ðijþ1Þk

� max
j¼1,...,N

Ljr maxf1, k�k,k ~��kgk� � ~��k,

where we have used for the last three estimates that k�ðÞk � maxfk�k, k ~��kg for
each 2 [0, 1] and j� ~jk� � ~��k ¼ k�ðÞ � �ð ~Þk holds for all , ~ 2 ½0, 1�.
Lipschitz continuity of F0 with respect to x is shown in Theorem 10 of Kall
(1976) and in Theorem 7.7 of Wets (1974). In particular, the second estimate
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of the proposition is a consequence of those results. Furthermore, from
Lemma 21 we conclude the estimate

jF0ðx, �Þj � sup
kxk�r

jhc, xij þ max
j¼1,..., N

jhCjqð�Þ, hð�Þ � Tð�Þxij

� �

� kckrþ max
j¼1,...,N

kCjk

� 	
kqð�Þkðkhð�Þk þ kTð�ÞkrÞ

for any pair (x, �)2X�� with kxk� r. Then the third estimate follows again
from the fact that q( � ), h( � ) and T( � ) depend affine linearly on �. u

The estimate in Proposition 22 implies that, for any r>0, any nonempty
bounded U�Rm and some �>0, it holds that

Z
�

inf
x2X
kxk�r

F0ðx, �Þ dQð�Þ � �Kr 1þ

Z
�

k�k2 dQð�ÞÞ

� 	
> �1,

sup
x2X\U

��� Z
�

F0ðx, �Þ dQð�Þ
��� � K� 1þ

Z
�

k�k2 dQð�Þ

� 	
<1,

if Q2P(�) has a finite second order moment. Hence, for any nonempty
bounded U�Rm the set of probability measures PFU contains the set of
measures on � having finite second order moments, i.e.,

PFU 	 Q 2 Pð�Þ :
Z
�

k�k2 dQð�Þ <1

� �
¼ P2ð�Þ:

The following stability results for optimal values and solution sets of the
two-stage problem (3.32) are now a direct consequence of the results of
Section 2.

Theorem 23. Let (A1) and (A2) be satisfied and let X*(P) be nonempty and U be
an open, bounded neighbourhood of X*(P).

Then there exist constants L>0 and �>0 such that

j#ðPÞ � #ðQÞj � L�2ðP, QÞ

; 6¼ X*ðQÞ � X*ðPÞ þ�PðL�2ðP, QÞÞB

whenever Q2P2(�) and �2(P,Q)<�, where �P is given by (2.23).
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Proof. The result is a consequence of Corollary 14 with p¼ 2. The assump-
tions (ii) and (iii) of Corollary 14 are verified in Proposition 22. u

Theorem 24. Let (A1) and (A2) be satisfied and let X*(P) be nonempty and
bounded. Then there exist constants L > 0 and " > 0 such that the estimate

D1ðX*
" ðPÞ, X

*
" ðQÞÞ �

L

"
�2ðP, QÞ

holds for any " 2 ð0, "Þ and Q2P2(�) such that �2(P,Q)<�. Here, D1 denotes
the Pompeiu–Hausdorff distance (2.26).

Proof. Since the assumptions of Theorem 13 are satisfied, we conclude that
there exist constants �>0 and " > 0 such that

D1ðX*
" ðPÞ, X

*
" ðQÞÞ �

2�

"
dFU ðP, QÞ

holds for U :¼ ð�þ "ÞB and any " 2 ð0, "Þ, Q 2 PFU such that dFU ðP,QÞ < ".
Proposition 22 implies the estimate dFU ðP,QÞ � Lð�þ "Þ�2ðP,QÞ, for some
constant L>0, which completes the proof. u

The theorems establish the quantitative stability of #( � ) and X*( � ) and the
Lipschitz stability of X*

" ð�Þ with respect to �2 in case of two-stage models with
fixed recourse for fairly general situations. In case that either only the recourse
costs or only the technology matrix and right-hand side are random, both
results are valid for (P1(�), �1) instead of (P2(�), �2). We verify this
observation for the corresponding conclusion of Theorem 23.

Corollary 25. Let either only q( � ) or only T( � ) and h( � ) be random and (A1) be
satisfied. Let P2P1(�), X*(P) be nonempty and U be an open, bounded
neighbourhood of X*(P). Then there exist constants L>0, �>0 such that

j#ðPÞ � #ðQÞj � L�1ðP, QÞ

; 6¼ X*ðQÞ � X*ðPÞ þ�PðL�1ðP, QÞÞB

whenever Q2P1(�) and �1(P,Q)<�, where �P is given by (2.23).
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Proof. By inspecting the proof of Proposition 22 one observes that now the
function F0 satisfies the following continuity and growth properties for all
�, ~�� 2 � and x, ~xx 2 X with maxfkxk, k ~xxkg � r:

jF0ðx, �Þ � F0ðx, ~��Þj � Lrk� � ~��k,

jF0ðx, �Þj � Kr maxf1, k�kg:

Hence, the set PFU contains P1(�) and Corollary 14 applies with p¼ 1. u

Next we provide some examples of recourse models showing that, in
general, the estimate for solution sets in Theorem 23 is the best possible one
and that X*( � ) is not lower semicontinuous at P if X*(P) is not a singleton.

All examples exploit the specific structure provided by the simple recourse
condition, i.e., m ¼ 2s, q¼ (qþ , q�) and W¼ (I,�I ), where qþ , q�2R

s and I
is the (s, s)-identity matrix. Then posW¼Rs holds and, hence, (A1) is satisfied
iff q2D, which is equivalent to the condition qþ þ q�� 0, and

�ðq, tÞ ¼ supfht, ui : �q� � u � qþg:

Example 26. Let m¼ s¼ r¼ 1, m ¼ 2, c¼ 0, W¼ (1,�1), X¼ [�1, 1], �¼R,
q(�)¼ (1, 1), T(�)¼ 1, h(�)¼ �, 8 �2�. Let P2P(R) be the uniform distribu-
tion on the interval ½� 1

2
, 1
2
�. Then #(P)¼ 1, X*(P)¼ {0}, and quadratic growth

Z
�

F0ðx, �Þ dPð�Þ ¼

Z 1=2

�1=2

j� � xj d� ¼
1

4
þ x2 ¼ #ðPÞ þ dðx, X*ðPÞÞ2

holds for each x 2 ½� 1
2
, 1
2
�. Let us consider the following perturbations

Pn2P(R) of P for n>4 given by

Pn ¼
1

2
� "n

� 	
ðPln þ PrnÞ þ "nð��"n þ �"nÞ,

where "¼ n�1/2, Pln and Prn are the uniform distributions on ½� 1
2
, � "nÞ and

ð"n,
1
2
�, respectively, and �r is the measure placing unit mass at r. Using the

explicit representation of �1 in case of probability distributions on R (see
Chapter 5.4 of Rachev, 1991), we obtain

�1ðP, PnÞ ¼

Z 1
�1

jPðð�1, ��Þ � Pnðð�1, ��Þj d� ¼
1

n
¼ "2n:
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Furthermore, it holds that #ðPnÞ ¼
1
2
ð"2n þ

1
4
Þ, X*ðPnÞ ¼ ½�"n, "n� and, hence,

j#ðPÞ � #ðPnÞj ¼
1
2
"2n and supx2X*ðPnÞ

dðx,X*ðPÞÞ ¼ "n for eachn2N.Hence, the
estimate in Theorem 23 is best possible.

Next we consider the distribution P̂P ¼ 1
2
ð��1=2 þ �1=2Þ. Then we have

#ðP̂PÞ ¼ 1
2
and X*ðP̂PÞ ¼ ½� 1

2
, 1
2
� and the linear growth condition

Z
�

F0ðx, �Þ dP̂Pð�Þ ¼

Z
�

j� � xj dP̂Pð�Þ ¼
1

2

���xþ 1

2

���þ ���x� 1

2

���� 	
� #ðP̂PÞ þ dðx, X*ðP̂PÞÞ

for each x2X. Consider the perturbations P̂Pn ¼ ð1�
1
n
ÞP̂Pþ 1

n
�0 (n2N) of P̂P.

Then

�1ðP̂P, P̂PnÞ ¼

Z 1
�1

jP̂Pðð�1, ��Þ � P̂Pnðð�1, ��Þj d� ¼
1

2n
,

holds for each n2N, where we have again used the explicit representa-
tion of �1 in case of probability measures on R. Furthermore, it holds that
#ðP̂PnÞ ¼ ð1�

1
n
Þ 1
2

and X*ðP̂PnÞ ¼ f0g for each n2N. Hence, we have
supx2X*ðP̂PÞ dðx,X

*ðP̂PnÞÞ ¼
1
2
.

Next we consider models with a stochastic technology matrix and recourse
costs, respectively, and show that in such cases X*( � ) is also not lower
semicontinuous at P, in general.

Example 27. Let m¼ s¼ r¼ 1, m ¼ 2, c¼ 0, W¼ (1,�1), X¼ [0, 1], �¼Rþ ,
h(�)¼ 0, 8 �2�.

In the first case, we set q(�)¼ (1, 1) and T(�)¼��, 8 �2�.
In the second case, we set q(�)¼ (�, �) and T(�)¼�1, 8 � 2�.
In both cases (A1) is satisfied. We consider P¼ �0 and Pn ¼ �1=n, i.e., the

unit masses at 0 and 1
n
, respectively, for each n2N. Clearly, (Pn) converges

with respect to the metric �1 to P in P1(R). Furthermore, in both cases

Z
�

F0ðx, �Þ dPnð�Þ ¼

Z
�

�x dPnð�Þ ¼
x

n

holds for each x2X. Then X*(P)¼X and X*(Pn)¼ {0} for any n2N, which
implies supx2X*ðPÞ dðx,X

*ðPnÞÞ ¼ 1.

The examples show that continuity properties of X*( � ) at P in terms of the
Pompeiu–Hausdorff distance cannot be achieved in general unless X*(P) is a
singleton. Nevertheless, we finally establish such quantitative stability results
for models where the technology matrix is fixed, i.e., T(�):T, and a specific
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nonuniqueness of X*(P) is admitted. For their derivation we need an
argument that decomposes the original two-stage stochastic program into
another two-stage program with decisions taken from T(X) and a parametric
linear program not depending on P.

Lemma 28. Let (A1) be satisfied and let Q2P2(�) be such that X*(Q) is
nonempty. Then we have

#ðQÞ ¼ inf �ð�Þ þ

Z
�

�ðqð�Þ, hð�Þ � �Þ dQð�Þ : � 2 TðXÞ

� �

¼ �ðTxÞ þ

Z
�

�ðqð�Þ, hð�Þ � TxÞ dQð�Þ, 8x 2 X*ðQÞ,

X*ðQÞ ¼ �ðY*ðQÞÞ,

where

Y*ðQÞ :¼ arg min �ð�Þ þ

Z
�

�ðqð�Þ, hð�Þ � �Þ dQð�Þ : � 2 TðXÞ

� �
,

�ð�Þ :¼ inffhc, xi : x 2 X , Tx ¼ �g,

�ð�Þ :¼ arg minfhc, xi : x 2 X , Tx ¼ �g ð� 2 TðXÞÞ:

Moreover, � is convex polyhedral on T(X ) and � is a polyhedral set-valued
mapping which is Lipschitz continuous on T(X ) with respect to the Pompeiu–
Hausdorff distance.

Proof. Let x 2 X*ðQÞ. We set �Qð�Þ :¼
R
� �ðqð�Þ, hð�Þ � �ÞdQð�Þ and have

#ðQÞ ¼ hc, xi þ�QðTxÞ � inff�ð�Þ þ�Qð�Þ : � 2 TðXÞg:

For the converse inequality, let ">0 and � 2 TðXÞ be such that

�ð�Þ þ�Qð�Þ � inff�ð�Þ þ�Qð�Þ : � 2 TðXÞg þ
"

2
:

Then there exists an x 2 X such that Tx ¼ � and hc, xi � �ð�Þ þ "
2
. Hence,

#ðQÞ � hc, xi þ�QðTxÞ � �ð�Þ þ�Qð�Þ þ
"

2

� inff�ð�Þ þ�Qð�Þ : � 2 TðXÞg þ ":
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Since ">0 is arbitrary, the first statement is verified. In particular, x2 �(Tx)
and Tx2Y*(Q) for any x2X*(Q). Hence, it holds that X*ðQÞ � �ðY*ðQÞÞ.
Conversely, let x2 �(Y*(Q)). Then x2 �(�) for some �2Y*(Q). Thus Tx¼�
and hc, xi¼�(�)¼�(Tx), implying

hc, xi þ�QðTxÞ ¼ �ðTxÞ þ�QðTxÞ ¼ inff�ð�Þ þ�Qð�Þ : � 2 TðXÞg

¼ #ðQÞ and x 2 X*ðQÞ:

Furthermore, � is clearly convex and polyhedral, and the properties of � are
well known (cf. Walkup and Wets, 1969b).

Theorem 29. Let (A1), (A2) be satisfied, X*(P) be nonempty and U be an open
bounded neighbourhood of X*(P). Furthermore, assume that T(X*(P)) is a
singleton. Then there exist constants L>0 and �>0 such that

D1ðX*ðPÞ, X*ðQÞÞ � L�PðL�2ðP, QÞÞ

whenever Q2P2(�) and �2(P,Q)<�, where �P is given by (2.23) and D1
denotes the Pompeiu–Hausdorff distance.

Proof. Let �* be the single element belonging to T(X*(P)). We use the
notation of Lemma 28 and conclude that Y*(P)¼ {�*}. Let V denote a
neighbourhood of �* such that T�1(V)�U and consider the growth function

 *Pð�Þ :¼ minf�ð�Þ þ�Pð�Þ � #ðPÞ : k�� �*k � �, � 2 TðXÞ \ Vg

and the associated function �*
Pð	Þ :¼ 	þ ð *PÞ

�1
ð2	Þ of the stochastic program

inff�ð�Þ þ�Pð�Þ : � 2 TðXÞg. Applying Corollary 14 to the latter program
yields the estimate

sup
�2Y*ðQÞ

dð�, Y*ðPÞÞ ¼ sup
�2Y*ðQÞ

k�� �*k � �*
PðL*�2ðP, QÞÞ

for some L*>0 and small �2(P,Q). Since X*(P)¼ �(�*) and X*(Q)¼ �(Y*(Q))
hold due to Lemma 28 and the set-valued mapping � is Lipschitz continuous
on T(X) with respect to D1 (with some constant L�>0), we obtain

D1ðX*ðPÞ, X*ðQÞÞ ¼ D1ð�ð�*Þ, �ðY*ðQÞÞ � sup
�2Y*ðQÞ

D1ð�ð�*Þ, �ð�ÞÞ

� L� sup
�2Y*ðQÞ

k�* � �k � L��*
PðL*�2ðP, QÞÞ:
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It remains to explore the relation between the two growth functions  P and
 *P, and the associated functions �P and �*

P, respectively. Let � 2Rþ and
�� 2T(X)\V such that k����*k� � and  *Pð�Þ ¼ �ð��Þ þ�Pð��Þ � #ðPÞ. Let
x� 2X, ~xx� 2 X*ðPÞ be such that Tx�¼��, �(��)¼ cx� and dðx�,X*Þ ¼

kx� � ~xx�k. Hence, we obtain x� 2U,  *Pð�Þ ¼ cx� þ�PðTx�Þ � #ðPÞ and

� � k�� � �*k ¼ kTx� � T ~xx�k � kTkdðx�, X*Þ,

where kTk denotes the matrix norm of T. If kTk 6¼ 0, we conclude that
 *Pð�Þ �  Pð

�
kTk
Þ holds for any � 2Rþ and, hence, we have ð *PÞ

�1
ð	Þ

� kTk �1P ð	Þ and �*
Pð	Þ � maxf1, kTkg�Pð	Þ for any 	2Rþ . This implies

D1ðX*ðPÞ, X*ðQÞÞ � maxf1, kTkgL��PðL*�2ðP, QÞÞ,

and, thus, the desired estimate. In case of kTk¼ 0, the solution set X*(P) is
equal to argminfhc, xi : x 2 Xg and, consequently, does not change if P is
perturbed. Hence, the result is correct in the latter case, too. u

Theorem 30. Let (A1), (A2) be satisfied, X*(P) be nonempty, U be an open
bounded neighbourhood of X*(P) and T(X*(P)) be a singleton. Assume that the
function ð r

PÞ
�1 is continuous at �¼ 0, where  r

Pð0Þ ¼ 0,  r
Pð�Þ :¼

1
�  Pð�Þ for

each �>0 and  P( � ) is the growth function given by (2.22).
Then there exists constants L>0 and �>0 such that the estimate

D1ðX*ðPÞ, X*ðQÞÞ � Lð r
PÞ
�1
ðd̂d�U ðP, QÞÞ ð3:33Þ

is valid for each Q2P2(�) with d̂d�U ðP,QÞ < �. Here, we denote

d̂d�U ðP, QÞ:¼sup
���Z

�

�ðqð�Þ, hð�Þ�TxÞ��ðqð�Þ, hð�Þ�TxÞ

kx�xk
dðP�QÞð�Þ

��� :�
x, x 2 X \ cl U, x 6¼ x

o
:

If the two-stage model (3.31) has quadratic growth, the estimate (3.33) asserts
Lipschitz continuity with respect to d̂d�U .

Proof. Using the same notation as in the previous proof we conclude again
that

D1ðX*ðPÞ, X*ðQÞÞ � L� sup
�2Y*ðQÞ

k�* � �k:
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If T is the null matrix, the result is true since X*(Q) does not depend on Q.
Otherwise, we denote by kTk the matrix norm of T, argue as in the proofs of
the Theorem 12 and 29 and arrive at the estimate

 P
1

kTk
k���*k

� 	
� *Pðk���

*kÞ��Pð�Þ��Qð�Þ�ð�Pð�*Þ��Qð�*ÞÞ

for each �2Y*(Q), where �Pð�Þ :¼
R
� �ðqð�Þ, hð�Þ � �ÞdPð�Þ. The latter

estimate implies (3.33). u

Remark 31. In all cases, where the original and perturbed solution sets X*(P)
and X*(Q) are convex and an estimate of the form

D1ðX*ðPÞ, X*ðQÞÞ � �ðdðP, QÞÞ whenever Q 2 Pd , dðP, QÞ < �

is available for some (pseudo) metric d on a set of probability measures Pd and
some function � from Rþ to Rþ , this estimate may be complemented by a
quantitative continuity property of a countable dense family of selections.
Namely, there exists a family fx*kðQÞgk2N of selections of X*(Q) such that

X*ðQÞ ¼ cl
[
k2N

x*kðQÞ

 !

kx*kðPÞ � x*kðQÞk � Lk�ðdðP, QÞÞ whenever Q 2 Pd , dðP, QÞ < �

for some constant Lk>0 and any k2N. To derive this conclusion, let us first
recall the notion of a generalized Steiner point of a convex compact set C�Rm

(see Dentcheva, 2000). It is given by St�ðCÞ :¼
R
B
�ð@�CðxÞÞ�ðdxÞ, where �C( � )

is the support function of C, i.e., �CðxÞ :¼ supy2C hx, yi, @�C(x) is the
convex subdifferential of �C at x and �(@�C(x)) its norm-minimal element.
Furthermore, � is a probability measure on B having a C1-density with respect
to the Lebesgue measure. A generalized Steiner selection St�( � ) is Lipschitz
continuous (with a Lipschitz constant depending on �) on the set of all
nonempty convex compact subsets of Rm equipped with the distance D1.
Furthermore, there exists a countable family {�k}k2N of probability measures
on R, each having a C1-density with respect to the Lebesgue measure, such
that the corresponding family of generalized Steiner selections fSt�kðCÞgk2N is
dense in C. Both results are proved in Dentcheva (2000). By combining these
two arguments for the countable family fx*kðQÞ :¼ St�kðX

*ðQÞÞgk2N of
selections to the convex compact sets X*(Q) the desired result follows.

The previous Theorems 29 and 30 extend the main results of Römisch and
Schultz (1993, 1996) and Shapiro (1994) to the case of a general growth
condition. The crucial assumption of both results is thatT(X*(P)) is a singleton.
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The latter condition is satisfied, for example, if the expected recourse function
�Pð�Þ :¼

R
�
�ðqð�Þ, hð�Þ � �Þ dPð�Þ is strictly convex on a convex neighbour-

hood of T(X*(P)).
The situation simplifies in case of random right-hand sides only, i.e.,

q(�):q and h(�)¼ �. Then the distance d̂d�U can be bounded above by a
discrepancy w.r.t. certain polyhedral cones. Namely,

d̂d�U ðP, QÞ � L̂L supfjðP�QÞðTxþ BiðR
s
þÞÞj : x 2 cl U, i ¼ 1, . . . , lg,

holds, where L̂L > 0 is some constant and Bi, i¼ 1,. . . , l, are certain
nonsingular submatrices of the recourse matrix W (Römisch and Schultz,
1996). In this case, verifiable sufficient conditions for the strict and strong
convexity of the expected recourse function �P are also available (Schultz,
1994). Namely, the function �P is strictly convex on any open convex subset
of the support of P if P has a density on Rs and the set fz 2 Rs : W 0z < qg is
nonempty. It is strongly convex if, in addition to the conditions implying strict
convexity, the density of P is bounded away from zero on the corresponding
convex neighbourhood. Furthermore, the model (3.31) has quadratic growth
if the function �P is strongly convex on some open convex neighbourhood of
T(X*(P)). The latter fact was proved in Dentcheva and Römisch (2000) by
exploiting the Lipschitz continuity of the mapping � in Lemma 28. The
Lipschitz continuity result of Theorem 30 in case of quadratic growth forms
the basis of the following differential stability result for optimal values and
solution sets proved in Dentcheva and Römisch (2000).

Theorem 32. Let (A1), (A2) be satisfied, X*(P) be nonempty and bounded, and
T(X*(P)) be a singleton, i.e., T(X*(P))¼ {�*}. Let Q2P(�).

Then the function # is Gateaux directionally differentiable at P in direction
Q�P and it holds

#0ðP; Q� PÞ :¼ lim
t!0þ

1

t
ð#ðPþ tðQ� PÞÞ � #ðPÞÞ ¼ �Qð�*Þ ��Pð�*Þ:

If, in addition, model (3.31) has quadratic growth and �P is twice continuously
differentiable at {�*}, then the second-order Gateaux directional derivative of #
at P in direction Q�P exists and we have

#00ðP; Q�PÞ :¼ lim
t!0þ

1

t2
ð#ðPþ tðQ� PÞÞ � #ðPÞ � t#0ðP; Q� PÞÞ

¼ inf
1

2
hr2�Pð�*ÞTx, Txi þ ð�Q��PÞ

0
ð�*;TxÞ : x2SðxÞ

� �
,
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where SðxÞ ¼ fx 2 TX ðxÞ : cxþ hr�Pð�*Þ,Txi ¼ 0g and TX ðxÞ is the tangent
cone to X at some x 2 X*ðPÞ. The directional derivative ð�Q ��PÞ

0
ð�*; TxÞ of

�Q��P exists since both functions are convex and �P is differentiable.
The first-order Gateaux directional derivative of the set-valued mapping X*( � )

ðX*Þ
0
ðP, x; Q� PÞ :¼ lim

t!0þ

1

t
ðX*ðPþ tðQ� PÞÞ � xÞ

at the pair ðP, xÞ, x 2 X*ðPÞ, in direction Q�P exists and coincides with
argminf1

2
hr2�Pð�*ÞTx,Txi þ ð�Q ��PÞ

0
ð�*; TxÞ : x 2 SðxÞg.

3.2 Mixed-integer two-stage models

Next we allow for mixed-integer decisions in both stages and consider the
stochastic program

min hc, xi þ

Z
�

�ðhð�Þ � Tð�ÞxÞ dPð�Þ : x 2 X

� �
, ð3:34Þ

where

�ðtÞ :¼ minfhq, yi þ hq, yi : WyþWy ¼ t, y 2 Zm̂m
þ, y 2 Rm

þg ðt 2 RrÞ, ð3:35Þ

c2Rm, X is a closed subset of Rm, � a polyhedron in Rs, q 2 Rm̂m, q 2 Rm,
W and W are ðr, m̂mÞ- and ðr,mÞ-matrices, respectively, h(�)2Rr and the (r,m)-
matrix T(�) are affine linear functions of � 2Rs, and P2P(�).

Basic properties of � like convexity and continuity on dom� in the purely
linear case cannot be maintained for reasonable problem classes. Since � is
discontinuous, in general, it is interesting to characterize its continuity regions.
Similarly, as for the two-stage models without integrality requirements in the
previous section, we need some conditions to have the model (3.34) well-
defined:

(B1) The matrices W and W have only rational elements.
(B2) For each pair (x, �)2X�� it holds that h(�)�T(�)x2 T, where

T :¼ ft 2 Rr : t ¼WyþWy, y 2 Zm̂m
þ, y 2 Rm

þg:

(B3) There exists an element u2Rr such that W0u� q and W
0
u � q.

(B4) P2P1(�), i.e.,
R
� k�k dPð�Þ < þ1.
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The conditions (B2) and (B3) mean relatively complete recourse and dual
feasibility, respectively. We note that condition (B3) is equivalent to �(0)¼ 0,
and that (B2) and (B3) imply �(t) to be finite for all t2 T (see Proposition 1 in
Louveaux and Schultz, 2003). In the context of this section, the following
properties of the value function � on T are important.

Lemma 33. Assume (B1)–(B3). Then there exists a countable partition of T into
Borel subsets Bi, i.e., T ¼ [i2N Bi such that

(1) each of the sets has a representation Bi ¼ fbi þ posWgn [N0

j¼1 fbijþ
posWg, where bi, bij2R

r for i2N and j¼ 1,. . . ,N0. Moreover, there
exists an N12N such that for any t2 T the ball B(t, 1) in Rr is intersected
by at most N1 different subsets Bi;

(2) the restriction �jBi
of � to Bi is Lipschitz continuous with a constant

L�>0 that does not depend on i.

Furthermore, the function� is lower semicontinuous and piecewise polyhedral
on T and there exist constants a, b>0 such that it holds for all t, ~tt 2 T :

j�ðtÞ ��ð~ttÞj � akt� ~ttk þ b:

Part (i) of the lemma was proved in Section 5.6 of Bank et al. (1982) and in
Lemma 2.5 of Schultz (1996), (ii) was derived as Lemma 2.3 in Schultz (1996)
and the remaining properties of � were established in Blair and Jeroslow
(1977). Compared to Lemma 21 for optimal value functions of linear pro-
grams without integrality requirements, the representation of � is now given
on countably many (possibly unbounded) Borel sets. This requires to incor-
porate the tail behaviour of P and leads to the following representation of the
function F0ðx, �Þ :¼ hc, xi þ�ðhð�Þ � Tð�ÞxÞ for each pair (x, �) in X��.

Proposition 34. Assume (B1)–(B3) and let U be an open bounded subset of Rm.
For each R� 1 and x2X\ clU there exist disjoint Borel subsets �R

j,x of �,
j¼ 1,. . . , �, whose closures are polyhedra with a uniformly bounded number of
faces such that the function

F0ðx, �Þ ¼
X�
j¼0

ðhc, xi þ�ðhð�Þ � Tð�ÞxÞ��R
j,x
ð�Þ ððx, �Þ 2 X ��Þ

isLipschitz continuouswith respect to � oneach�R
j,x, j¼ 1,. . . , �,with someuniform

Lipschitz constant. Here, �R
0,x :¼ �n [�j¼1 �R

j,x is contained in {�2Rs: k�k>R}
and � is bounded by a multiple of Rr.

Proof. Since h( � ) and T( � ) are affine linear functions, there exists a constant
C2>0 such that the estimate kh(�)�T(�)xk1�C2max{1, k�k} holds for each
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pair in X\ clU. Let R>0 and T R :¼ T \ RC2B1, where B1 refers to the
closed unit ball in Rr with respect to the norm k � k1. Now, we partition the
ball RC2B1 into disjoint Borel sets whose closures are B1-balls with radius 1,
where possible gaps are filled with maximal balls of radius less than 1. Then
the number of elements in this partition of RC2B1 is bounded above by
(2RC2)

r. From Lemma 33 (i) we know that each element of this partition is
intersected by at most N1 subsets Bi ( for some N12N). Another consequence
of Lemma 33 (i) is that each Bi splits into disjoint Borel subsets whose closures
are polyhedra. Moreover, the number of such subsets can be bounded from
above by a constant not depending on i. Hence, there exist a number �2N
and disjoint Borel subsets {Bj : j¼ 1,. . . , �} such that their closures are
polyhedra, their union contains TR, and � is bounded above by �Rr, where the
constant �>0 is independent of R. Now, let x2X\ clU and consider the
following disjoint Borel subsets of �:

�R
j,x :¼ f� 2 �: hð�Þ � Tð�Þx 2 Bjg ð j ¼ 1, . . . , �Þ,

�R
0,x :¼ �n [

�

j¼1
�R

j,x�f�2�: khð�Þ�Tð�Þxk1>RC2g � f� 2 �: k�k>Rg:

For each j¼ 1,. . . , � the closures of the sets Bj are polyhedra with a number of
faces that is bounded above by some number not depending on j, � and R.
Hence, the same is true for the closures of the sets �R

j,x, i.e., for
f� 2 �: hð�Þ � Tð�Þx 2 clBjg, where, moreover, the corresponding number
k2N does not depend on x2X\ clU. Finally, we conclude from Lemma 33
that there exists a constant L1>0 (which does not depend on x2X\ clU,
j¼ 1,. . . , � and R>0) such that the function F0ðx, �Þj�R

j,x
¼ cxþ�jBj

ðhð�Þ�
Tð�ÞxÞ is Lipschitz continuous with constant L1. u

For further structural properties of model (3.34) we refer to Louveaux and
Schultz (2003). In order to state stability results for model (3.34), we consider
the following probability metrics with �-structure on P1(�) for every k2N:

�1,phkðP, QÞ :¼ sup
��� Z

B

f ð�ÞðP�QÞðd�Þ
��� : f 2 F 1ð�Þ, B 2 Bphkð�Þ

� �

¼ sup
��� Z

�

f ð�Þ�Bð�ÞðP�QÞðd�Þ
��� : f 2F 1ð�Þ, B2Bphkð�Þ

� �
: ð3:36Þ

Here, Bphkð�Þ and F1(�) denote the sets of polyhedra in � and of Lipschitz
continuous functions from � to R introduced in Section 2.1.

Theorem 35. Let the conditions (B1)–(B4) be satisfied, X*(P) be nonempty and
U�Rm be an open bounded neighbourhood of X*(P).
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Then there exist constants L>0, �>0 and k2N such that

j#ðPÞ � #UðQÞj � L�Pð�1,phkðP, QÞÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL�Pð�1,phkðP, QÞÞÞB, ð3:37Þ

and X*U ðQÞ is a CLM set of (3.34) relative to U whenever Q2P1(�) and
�1,phkðP,QÞ < �. Here, the function �P on Rþ is defined by

�Pð0Þ ¼ 0 and �PðtÞ :¼ inf
R�1

Rrtþ

Z
f�2�: k�k>Rg

k�k dPð�Þ

� �
ðt > 0Þ

and continuous at t¼ 0, and the function �P is given by (2.23).
If P has a finite absolute moment of pth order for some p>1, the estimate

�PðtÞ � Ctðp�1Þ=ðp�1þrÞ holds for small t>0 and some constant C>0.

Proof. Since the function � is lower semicontinuous on T (Lemma 33), F0 is
lower semicontinuous on X�� and, hence, a random lower semicontinuous
function (Example 14.31 in Rockafellar and Wets, 1998). Using Lemma 33 we
obtain the estimate

jF0ðx, �Þj � kck kxk þ aðkhð�Þk þ kTð�Þk kxkÞ þ b

for each pair (x, �)2X��. Since h(�) and T(�) depend affine linearly on �,
there exists a constant C1>0 such that jF0ðx, �Þj � C1 maxf1, k�kg holds for
each pair (x, �)2 (X\ clU)��. Hence, PFU ð�Þ 	 P1ð�Þ and Theorems 5 and 9
apply with d¼ 0 and the distance dFU on P1(�).

From Proposition 34 we know that, for each R� 1 and x2X\ clU, there
exist Borel subsets �R

j,x, j¼ 1,. . . , �, of � such that the function f Rj,xð�Þ :¼
F0ðx, �Þj�R

j,x
is Lipschitz continuous on �R

j,x with some Lipschitz constant L1>0
(not depending on x, j and R). We extend each function f Rj,xð�Þ to the whole of
� by preserving the Lipschitz constant L1. Proposition 34 also implies that the
closures of �R

j,x are contained in Bphkð�Þ for some k2N, that the number � is
bounded above by �Rr, where the constant �>0 is independent on R, and that
�R

0,x :¼ �n [�j¼1 �R
j,x is a subset of {�2�: k�k>R}.

For each Q2P1(�) and x2X\ clU we obtain

��� Z
�

F0ðx, �Þ dðP�QÞð�Þ
���¼ ���X�

j¼0

Z
�R

j,x

F0ðx, �Þ dðP�QÞð�Þ
���

�
X�
j¼1

��� Z
�R

j,x

f Rj,xð�Þ dðP�QÞð�Þ
���þ IRx ðP, QÞ

��L1 sup
f2F 1ð�Þ

j¼1,...,�

���Z
�

f ð�Þ��R
j,x
dðP�QÞð�Þ

���þIRx ðP, QÞ,
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where IRx ðP,QÞ :¼ j
R
�R

0,x
F0ðx, �ÞdðP�QÞð�Þj.

For each �R
j,x we now consider a sequence of polyhedra BR

j,x, which are
contained in �R

j,x and belong to Bphkð�Þ, such that their characteristic
functions �BR

j,x
converge pointwise to the characteristic function ��R

j,x
. Then the

sequence consisting of the elements j
R
� f ð�Þ�BR

j,x
ð�ÞdðP�QÞð�Þj converges to

j
R
� f ð�Þ��R

j,x
ð�ÞdðP�QÞð�Þj while each element is bounded by �1,phkðP,QÞ.

Hence, the above estimate may be continued to

��� Z
�

F0ðx, �Þ dðP�QÞð�Þ
��� � �L1R

r�1,phkðP, QÞ þ IRx ðP, QÞ: ð3:38Þ

For the term IRx ðP,QÞ we have

IRx ðP, QÞ � C1

Z
f�2�: k�k>Rg

k�k dðPþQÞð�Þ

� C1

Z
f�2�: k�k1>R=C2g

k�k dðPþQÞð�Þ

where we have used the estimate jF0(x, �)j �C1k�k for each pair ðx, �Þ 2
ðX \ clUÞ � f� 2 �: k�k > Rg and C2>0 is a norming constant such that
k�k�C2k�k1 holds for each �2Rs. Clearly, the set f� 2 �: k�k1 >

R
C2
g can be

covered by 2s intersections of � by open halfspaces whose closures belong to
Bphkð�Þ. Hence, a similar argument as the one above yields the estimate

Z
f�2�: k�k1>R=C2g

k�k dQð�Þ� 2s�1,phkðP, QÞ þ

Z
f�2�: k�k1>R=C2g

k�k dPð�Þ:

Hence, from the previous estimates we obtain that

dFU ðP, QÞ � �ðL1R
r þ 2sC1Þ�1,phkðP, QÞ þ 2C1

Z
f�2�: k�k1>R=C2g

k�kdPð�Þ

� CRr�1,phkðP, QÞ þ

Z
f�2�: k�k>�Rg

k�k dPð�Þ

for some constants C>0 and �2 (0, 1), the latter depending on the norming
constants of k � k and k � k1, respectively. Finally, we obtain

dFU ðP, QÞ � ĈC�Pð�1,phkðP, QÞÞ, ð3:39Þ
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where

�Pð0Þ :¼ 0 and �PðtÞ :¼ inf
R�1

Rrtþ

Z
f�2�: k�k>Rg

k�k dPð�Þ

� �
ðt > 0Þ ð3:40Þ

with some constant ĈC > 0. Now, the result is a consequence of the Theorem 5
and Theorem 9. If

R
�
k�kp dPð�Þ <1, it holds that

R
f�2�: k�k>Rg k�k dPð�Þ �

R1�p
R
� k�k

p dPð�Þ by Markov’s inequality. The desired estimate follows by
inserting R ¼ t�1=ðpþr�1Þ for small t>0 into the function whose infimum w.r.t.
R� 1 is �P(t). u

In case that the underlying distribution P and its perturbations Q have
supports in some bounded subset of Rs, the stability result improves slightly.

Corollary 36. Let the conditions (B1)–(B3) be satisfied and � be bounded.
Assume that P2P(�), X*(P) is nonempty and U�Rm is an open bounded
neighbourhood of X*(P).

Then there exist constants L>0, �>0 and k2N such that

j#ðPÞ � #UðQÞj � L�1,phkðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL�1,phkðP, QÞÞB,

and X*U ðQÞ is a CLM set of (3.34) relative to U whenever Q2P(�) and
�1,phkðP,QÞ < �.

Proof. Since � is bounded, we have P1(�)¼P(�). Moreover, the function
�P(t) can be estimated by Rrt for some sufficiently large R>0. Hence,
Theorem 35 implies the assertion. u

Remark 37. Since � 2 Bphkð�Þ for some k2N, we obtain from (3.36) by
choosing B :¼� and f:1, respectively,

maxf�1ðP, QÞ, �phkðP, QÞg � �1,phkðP, QÞ ð3:41Þ

for large k and all P,Q2P1(�). Here, �phk denotes the polyhedral discrepancy
(see Section 2.1). Hence, convergence with respect to �1,phk implies weak
convergence, convergence of first order absolute moments and convergence
with respect to the polyhedral discrepancy �phk . The converse is also true. The
latter observation is a consequence of the estimate

�1,phkðP, QÞ � Cs�phkðP, QÞ
1=ðsþ1Þ

ðP, Q 2 Pð�ÞÞ ð3:42Þ

Ch. 8. Stability of Stochastic Programming Problems 527



for some constant Cs>0. It is valid for bounded ��Rs and can be derived by
using the technique in the proof of Proposition 3.1 in Schultz (1996). In view
of (3.41) and (3.42) the metric �1,phk is stronger than �phk in general, but in case
of bounded � both metrize the same topology on P(�).

For more specific models (3.34), improvements of the above results are
possible. The potential of such improvements consists in exploiting specific
recourse structures, i.e., in additional information on the shape of the sets Bi in
Lemma 33 and on the behaviour of the (value) function � on these sets. These
considerations may lead to stability results with respect to probability metrics
that are (much) weaker than �1,phk . To illustrate such an improvement, let us
consider the case of pure integer recourse where � is given by

�ðtÞ ¼ minfhq, yi : Wy � t, y 2 Zm̂mg, ð3:43Þ

the technology matrix is fixed and the right-hand side is fully stochastic, i.e.,
T(�):T and h(�):�. This situation fits into the general model (3.34) by setting
q ¼ 0, m ¼ r andW ¼ �Ir, with Ir denoting the (r, r)-identity matrix. For such
models Schultz (1996) observed that stability holds with respect to the
Kolmogorov metric dK on P(�).

Corollary 38. Let � be given by (3.43), T(�):T, h(�):� and � be bounded.
Furthermore, let the conditions (B1)–(B3) be satisfied with T¼Rs. Assume that
P2P(�), X*(P) is nonempty and U�Rm is an open bounded neighbourhood of
X*(P). Then there exist constants L>0 and �>0 such that

j#ðPÞ � #UðQÞj � LdKðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðLdKðP, QÞÞB,

and X*U ðQÞ is a CLM set of (3.34) relative to U whenever Q2P(�) and
dK(P,Q)<�. Here, the function �P is given by (2.23).

Proof. The assumptions imply that � is even constant on Bi for each i2N and
the continuity regions of � are rectangular (see Schultz, 1996). Without loss of
generality the set � may be chosen to be rectangular. Then the sets �R

j,x in
Proposition 34 are also bounded rectangular sets and F0(x, � ) is constant on
each �R

j,x. Hence, the estimate (3.38) takes the form

��� Z
�

F0ðx, �Þ dðP�QÞð�Þ
��� � �L1R

s�boxðP, QÞ,
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where �boxðP,QÞ :¼ supfjPðBÞ �QðBÞj : B is a box in Rsg. Finally, we use the
known estimate

�boxðP, QÞ � CdKðP, QÞ

for some constant C>0 and derive the result from Theorem 35. u

3.3 Linear chance constrained programs

In this section, we study consequences of the general stability analysis of
Section 2 for linear chance constrained stochastic programs of the form

minfhc, xi : x 2 X , Pðf� 2 �: Tð�Þx � hð�ÞgÞ � pg, ð3:44Þ

where c2Rm, X and � are polyhedra in Rm and Rs, respectively, p2 (0, 1),
P2P(�) and the right-hand side h(�)2Rr and the (r,m)-matrix T(�) depend
affine linearly on �2�.

We set d¼ 1, F0ðx, �Þ ¼ hc, xi, F1ðx, �Þ ¼ p� �HðxÞð�Þ where HðxÞ ¼ f� 2
�: Tð�Þx � hð�Þg and �H(x) its characteristic function, and observe that the
program (3.44) is a special case of the general stochastic program (1.1). We
note that the set H(x) is polyhedral for each x2X. In fact, these sets are given
as the finite intersection of r closed half-spaces. Furthermore, the
multifunction H from Rm to Rs has a closed graph and, hence, the mapping
ðx, �Þ��HðxÞð�Þ from Rm

�� to R is upper semicontinuous. This implies that
F1 is lower semicontinuous on Rm

�� and, hence, a random lower
semicontinuous function (Example 14.31 in Rockafellar and Wets, 1998).
Moreover, we have p� 1 � F1ðx, �Þ � p for any pair (x, �). By specifying the
general class of probability measures and the minimal information probability
metric in Section 2.2 we obtain

PFU ð�Þ ¼ Q 2 Pð�Þ : sup
x2X\cl U

max
j¼0, 1

��� Z
�

Fjðx, �Þ dQð�Þ
���<1� �

¼ Pð�Þ

dFU ðP, QÞ ¼ sup
x2X\cl U

max
j¼0, 1

��� Z
�

Fjðx, �ÞðP�QÞðd�Þ
���

¼ sup
x2X\cl U

���PðHðxÞÞ �QðHðxÞÞ
���

for each P,Q2P(�) and any nonempty, open and bounded subset U of Rm.
Due to the polyhedrality of the sets H(x) for any x2Rm, the polyhedral
discrepancies �phk on P(�) for every k2N (see Section 2.1) or related discre-
pancies appear as natural candidates for suitable probability metrics in case of
model (3.44). The following result is an immediate consequence of the general
methodology in Section 2.
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Theorem 39. Let P2P(�) and assume that

(i) X*(P) 6¼ ; and U�Rm is an open bounded neighbourhood of X*(P),
(ii) the mapping x� fy 2 R : Pðf� 2 �: Tð�Þx � hð�ÞgÞ � p� yg is metrically

regular at each pair ðx, 0Þ with x 2 X*ðPÞ.

Then there exist constants L>0, �>0 and k2N such that

j#ðPÞ � #UðQÞj � L�phkðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL�phkðP, QÞÞB,

and X*U ðQÞ is a CLM set of (3.44) relative to U whenever Q2P(�) and
�phkðP,QÞ < �. Here, the function �P is given by (2.23).

Proof. All sets H(x) are polyhedra in Rs given by r linear inequalities. Hence,
the number of faces of H(x) is bounded by some k2N not depending on
x2Rm. Since all assumptions of Theorem 5 are satisfied for the special
situation considered here, the result follows from the Theorems 5 and 9 by
taking into account the estimate dFU ðP,QÞ � �phkðP,QÞ. u

We show that Theorem 39 applies to many chance constrained models
known from the literature. First we discuss the metric regularity property (ii)
of the original probabilistic constraint in (3.44). The following example shows
that condition (ii) is indispensable for Theorem 39 to hold.

Example 40. Let P2P(R) have a distribution function FP which is
continuously differentiable and satisfies FPðxÞ ¼ x2sþ1 þ p for all x in a
neighbourhood of x¼ 0 and some p2 (0, 1) and s2N. Let us consider the
model

minfx : x 2 R, Pð� � xÞ ¼ FPðxÞ � pg:

Then the condition rFPðxÞ 6¼ 0 is necessary and sufficient for the metric
regularity at x with FPðxÞ ¼ p (Example 9.44 in Rockafellar and Wets, 1998).
Clearly, this condition is violated at the minimizer x ¼ 0. To show that the
result gets lost, we consider the measures Pn ¼ ð1�

1
n
ÞPþ 1

n
�1=n, n2N.

The sequence (Pn) converges weakly to P and, thus, it converges with respect
to the Kolmogorov metric dK as P is continuous. Then j#ðPÞ � #ðPnÞj ¼

ð
p

n�1
Þ
1=ð2sþ1Þ

¼: xn, but dKðP,PnÞ � jFPðxnÞ � FPn
ðxnÞj ¼

p
n�1

.

When looking for general conditions implying (ii), one has to resort to
results for nonconvex and nondifferentiable situations. The function

gðxÞ :¼ Pðf� 2 �: Tð�Þx � hð�ÞgÞ
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from Rm into R is known to be upper semicontinuous (Proposition 3.1 in
Römisch and Schultz, 1991c). However, g happens to be nondifferentiable or
even discontinuous not only in cases where the probability distribution P is
discrete, but even if T(�) is nonstochastic and P is continuous.

Example 41. Let P be the standard normal distribution with distribution

function �. First let Tð�Þ ¼ 1
1


 �
and hð�Þ ¼ �

0


 �
for each � 2R. Then

gðxÞ ¼ Pðf� 2 R : x � �, x � 0gÞ ¼
0, x < 0

�ðxÞ, x � 0
:

�

Secondly, let Tð�Þ ¼ 1
�1


 �
and hð�Þ ¼ �

�


 �
for each � 2R. Then we have

gðxÞ ¼ Pðf� 2 R : x � �, � x � �gÞ ¼ �ðminf�x, xgÞ:

We also refer to Example 9 in Henrion and Römisch (1999) for a probability
distribution P having a (bounded) continuous density on �¼R2, but a
probability distribution function (i.e., g in case of T(�)¼ I and h(�)¼ �) that is
not locally Lipschitz continuous.

Hence, one has to go back to tools from nonsmooth analysis in general. For
example, if the function g is locally Lipschitz continuous on Rm, condition (ii)
is satisfied if the constraint qualification

@ð�gÞðxÞ \ ð�NX ðxÞÞ ¼ ; ð3:45Þ

holds at each x 2 X*ðPÞ with gðxÞ ¼ p (Corollary 4.2 in Mordukhovich,
1994b). Here, the symbol @ stands for the Mordukhovich subdifferential (cf.
Mordukhovich, 1994a) and NX ðxÞ :¼ fx* 2 Rm : hx*,x� xi � 0, 8x 2 Xg is
the normal cone to the polyhedral set X at x 2 X .

For more specific structures of probabilistic constraints, even in case of
a stochastic matrix T(�), the situation may become much more comfortable if
P is a multivariate normal distribution. To demonstrate this, we consider
the case �¼Rmþ 1, Tð�Þx ¼

Pm
i¼1 �ixi, i.e., T(�) consists of one single row,

and h(�)¼ �mþ 1. Then H(x) takes the form

HðxÞ ¼ � 2 Rmþ1 :
Xm
i¼1

�ixi � �mþ1

( )
ð3:46Þ

for each x2Rm, i.e., the sets H(x) are closed half-spaces in Rmþ 1.
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Corollary 42. Let P be a normal distribution on Rmþ 1 with mean �2Rmþ 1 and
nonsingular covariance matrix �2R(mþ 1)� (mþ 1), H be given by (3.46) and
p 2 ð1

2
, 1Þ. Let X*(P) be nonempty and U�Rm be an open bounded neigh-

bourhood of X*(P). Assume that there exists an x̂x 2 X such that PðHðx̂xÞÞ > p.
Then there are constants L>0 and �>0 such that

j#ðPÞ � #UðQÞj � L�hðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL�hðP, QÞÞB

holds and X*U ðQÞ is a CLM set for (3.44) relative to U for each Q2P(�) with
�h(P,Q)<�. Here, the function �P is given by (2.23) and �h is the half-space
discrepancy (see Section 2.1).

Proof. For any x2Rm, we set x0 :¼ ðx1, . . . , xm, � 1Þ and �ðxÞ :¼ h�x0, x0i1=2.
Let � denote the standard normal distribution function and � the standard
normal density. Then h�, x0i is normal with mean h�, x0i and standard devia-
tion �(x0)>0 (due to the nonsingularity of �), and

gðxÞ ¼ Pðf� 2 Rmþ1 : h�, x0i � 0gÞ ¼ �
h�, x0i

�ðx0Þ

� 	

holds for any x2Rm. Further, the function

ĝgðxÞ :¼ h�, x0i ���1ð pÞ�ðx0Þ ¼ ½��1ðgðxÞÞ ���1ð pÞ��ðx0Þ

is concave on Rm due to ��1( p)>0 and continuously differentiable on Rm

with gradient

rĝgðxÞ ¼
�ðx0Þ

�ðgðxÞÞ
rgðxÞ þ ½��1ðgðxÞÞ ���1ð pÞ�r�ðx0Þ

Im
0

� 	
:

Let x 2 X be such that gðxÞ ¼ p and x̂x 2 X be the element having the property
PðHðx̂xÞÞ > p or, equivalently, ĝgðx̂xÞ > 0. Then the concavity of ĝg implies
hrĝgðxÞ, x̂x� xi > 0 and, thus, rĝgðxÞ 62 NX ðxÞ. Due to the equation rĝgðxÞ ¼
�ðx0Þ
�ðgðxÞÞ rgðxÞ, we conclude rgðxÞ 62 NX ðxÞ. Hence, the constraint qualification

(3.45) and, thus, condition (ii) of Theorem 39 are satisfied. u

For the remainder of this section we assume that the technology matrix
T( � ) is fixed, i.e., T(�):T. We will show that the constraint qualification of
Corollary 42, i.e., PðHðx̂xÞÞ > p for some x̂x 2 X , implies condition (ii) of
Theorem 39 for any r-concave probability distribution.
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To recall the notion of r-concavity, we introduce first the generalized mean
function mr on Rþ �Rþ � [0, 1] for r2 [�1,1] by

mrða, b; Þ :¼

ðar þ ð1�ÞbrÞ1=r, r 2 ð0,1Þ or r 2 ð�1, 0Þ, ab>0,

0, ab ¼ 0, r 2 ð�1, 0Þ,

ab1�, r ¼ 0,

maxfa, bg, r ¼ 1,

minfa, bg, r ¼ �1:

8>>>>>><
>>>>>>:

ð3:47Þ

A measure P2P(Rs) is called r-concave for some r2 [�1,1] (cf. Prekopa,
1995) if the inequality

PðB1 þ ð1� ÞB2Þ � mrðPðB1Þ, PðB2Þ; Þ

holds for all 2 [0, 1] and all convex Borel subsets B1, B2 of Rs such that
B1 þ ð1� ÞB2 is Borel. For r¼ 0 and r¼�1, P is also called logarithmic
concave and quasi-concave, respectively. Since mr(a, b; ) is increasing in r if all
the other variables are fixed, the sets of all r-concave probability measures are
increasing if r is decreasing. It is known that P 2 PðRsÞ is r-concave for some
r2 [�1, 1/s] if P has a density fP such that

fPðzþ ð1� Þ ~zzÞ � mrðsÞð fPðzÞ, fPð ~zzÞ; Þ, ð3:48Þ

where rðsÞ ¼ rð1� rsÞ�1, holds for all 2 [0, 1] and z, ~zz 2 Rs. Let us mention
that many multivariate probability distributions are r-concave for some
r2 (�1,1], e.g., the uniform distribution (on some bounded convex set), the
(nondegenerate) multivariate normal distribution, the Dirichlet distribution,
the multivariate Student and Pareto distributions (see Prekopa, 1995).

The key observation of r-concave measures in the context of probabilistic
constraints is the following one.

Lemma 43. Let H be a multifunction from Rm to Rs with closed convex graph
and P be r-concave for some r2 [�1,1]. Then the function g :¼ PðHð�ÞÞ from
Rm to R has the property

gðxþ ð1� Þ ~xxÞ � mrðgðxÞ, gð ~xxÞ; Þ

for each x, ~xx 2 Rm and 2 [0, 1].
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Proof. In particular, H(x) is a closed convex subset of Rs for any x2Rm. Let
x, ~xx 2 Rm and 2 [0, 1]. Then the set HðxÞ þ ð1� ÞHð ~xxÞ is also closed and
convex and it holds that HðxÞ þ ð1� ÞHð ~xxÞ � Hðxþ ð1� Þ ~xxÞ. Using the
r-concavity of P this implies

gðxþ ð1� Þ ~xxÞ � mrðPðHðxÞÞ, PðHð ~xxÞÞ; Þ ¼ mrðgðxÞ, gð ~xxÞ; Þ:

u

Corollary 44. Let T(�):T and P be r-concave for some r2 (�1,1]. Let X*(P)
be nonempty and U�Rm be an open bounded neighbourhood of X*(P). Assume
that there exists an element x̂x 2 X such that PðHðx̂xÞÞ > p holds.

Then there are constants L>0, �>0 and k2N such that

j#ðPÞ � #UðQÞj � L�phkðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL�phkðP, QÞÞB,

and X*U ðQÞ is a CLM set for (3.44) relative to U whenever Q2P(�) and
�phkðP,QÞ < �. Here, the function �P is given by (2.23).

Proof. We assume without loss of generality that r<0. Again we have to
verify the metric regularity condition (ii) of Theorem 39. To this end, we use
the function ĝgð�Þ :¼ pr � grð�Þ instead of gð�Þ :¼ PðHð�ÞÞ. Since P is r-concave,
the function ĝgð�Þ is concave on Rm. We consider the set-valued mapping
�ðxÞ :¼ fv 2 R : x 2 X , ĝgðxÞ � vg from Rm to R. Its graph is closed and convex.
Let x 2 X with gðxÞ ¼ p, i.e., ĝgðxÞ ¼ pr. As there exists an x̂x 2 X such that
gðx̂xÞ > p, i.e., ĝgðx̂xÞ > 0, the element v¼ 0 belongs to the interior of the range of
�. Hence, the Robinson–Ursescu Theorem (Theorem 9.48 in Rockafellar and
Wets, 1998) implies the existence of constants a>0 and ">0 such that

dðx, ��1ðvÞÞ � adðv, �ðxÞÞ � a maxf0, v� ĝgðxÞg

holds whenever x2X, kx� xk � " and jvj � ". For x2X with kx� xk � " and
sufficiently small jyj we obtain

dðx, XyðPÞÞ ¼ dðx, ��1ð pr � ð p� yÞrÞÞ � a maxf0, grðxÞ � ð p� yÞrg

Finally, it remains to use that the function v � vr is locally Lipschitz
continuous on (0, þ1). u

The above result improves in case of h(�):� and, hence, g(x)¼FP(Tx),
where FP is the distribution function of P. Then the polyhedral discrepancy
�phk can be replaced by the Kolmogorov distance dK.
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The next result provides a sufficient condition for (ii) in situations where P
is not quasiconcave, but has a density on Rs. Here, metric regularity is implied
by a growth condition of gð�Þ ¼ FPðT �Þ (see Henrion and Römisch, 1999).

Corollary 45. Let Tð�Þ:T, hð�Þ:�, P 2 PðRsÞ have a density fP, X*ðPÞ be
nonempty and U � Rm be an open bounded neighbourhood of X*ðPÞ. Assume the
following two conditions for each x 2 X*ðPÞ:

(i) ðTxþ bdRs
�Þ \ f� 2 Rs : 9" > 0 such that fPð	Þ � ",8	 2 � þ "Bg 6¼ ;,

(ii) there exists an x̂x 2 X such that Tx̂x > Tx holds componentwise.

Then there are constants L > 0 and � > 0 such that

j#ðPÞ � #UðQÞj � L dK ðP, QÞ

; 6¼ X*U ðQÞ � X*ðPÞ þ�PðL dKðP, QÞÞB,

and X*U ðQÞ is a CLM set of (3.44) relative to U whenever Q 2 Pð�Þ and
dKðP,QÞ < �. Here, the function �P is given by (2.23).

The essential condition (i) says that, for each � 2 TðX*ðPÞÞ, the boundary
of the cell �þ Rs

� meets the strict positivity region of the density of P
somewhere. This implies a suitable growth behaviour of the distribution
function FP at elements of TðX*ðPÞÞ, and hence metric regularity.

Finally, we study the growth function  P of (3.44) and derive conditions
implying quadratic growth near solution sets in case of hð�Þ:� and a
logarithmic concave measure P. The first step of our analysis consists in a
reduction argument that decomposes problem (3.44) into two auxiliary
problems. The first one is a stochastic program with modified objective and
probabilistic constraints (with decisions taken in Rs) whereas the second one
represents a parametric linear program. The argument is similar to Lemma 28
for two-stage models and was proved in Henrion and Römisch (1999).

Lemma 46. Let Q 2 PðRsÞ and U � Rm be a nonempty open set such that its
closure is a polytope. Then we have

#UðQÞ ¼ inff�UðyÞ : y 2 TðXUÞ, FQð yÞ � pg and X*U ðQÞ ¼ �UðYUðQÞÞ,

where

XU ¼ X \ cl U,
YUðQÞ ¼ arg min f�Uð yÞ : y 2 TðXUÞ, FQð yÞ � pg,

�Uð yÞ ¼ inff c,xh i : Tx ¼ y, x 2 XUg,

�Uð yÞ ¼ arg min c, xh i : Tx ¼ y, x 2 XU
� �

ð y 2 TðXUÞÞ:
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Here, �U is convex polyhedral on TðXUÞ and �U is Lipschitz continuous on
TðXUÞ with respect to the Pompeiu–Hausdorff distance on Rs.

Theorem 47. Let Tð�Þ:T , hð�Þ:�, P 2 PðRsÞ be logarithmic concave and
X*ðPÞ be nonempty and bounded. Assume that

(i) X*ðPÞ \ argmin f c,xh i : x 2 Xg ¼ ;;
(ii) there exists an x 2 X such that FPðTxÞ > p;
(iii) logFP is strongly concave on some convex neighbourhood V of

T ðX*ðPÞÞ.

Then there exist L > 0 and � > 0 and a neighbourhood U of X*ðPÞ such that

D1ðX*ðPÞ,X*U ðQÞÞ � LdKðP, QÞ
1=2

holds whenever Q 2 PðRsÞ and dKðP,QÞ < �. Here, D1 denotes the Pompeiu–
Hausdorff distance on subsets of Rm and dK the Kolmogorov metric on PðRsÞ.

Proof. Let U0 � Rm be an open convex set such that X*ðPÞ � U0 and
TðU0Þ � V. For each x 2 X*ðPÞ select "ðxÞ > 0 such that the polyhedron
xþ "ðxÞB1 (with B1 denoting the closed unit ball w.r.t. the norm k � k1 on
Rm) is contained in U0. Since X*ðPÞ is compact, finitly many of these balls
cover X*ðPÞ. The closed convex hull U of their union is a polyhedron with
X*ðPÞ � U � U � U0, where U ¼ int U. With the notations of Lemma 46 we
consider the problem

minf�UðyÞ : y 2 TðXUÞ, ĝgðyÞ :¼ log p� log FPðyÞ � 0g:

According to Lemma 46 the solution set YUðPÞ of this problem fulfils
X*ðPÞ ¼ X*U ðPÞ ¼ �UðYUðPÞÞ. Let y* 2 YUðPÞ and y ¼ Tx with x 2 X from
(ii). Then the logarithmic concavity of P implies for any  2 ð0,1�:

ĝgðyþ ð1� Þy*Þ ¼ log p� log FPðyþ ð1� Þy*Þ

� log p� log FPðyÞ � ð1� ÞlogFPðy*Þ

� ðlog p� log FPðyÞÞ < 0:

Thus, we may choose ̂ 2 ð0,1� such that ŷy ¼ ̂yþ ð1� ̂Þy* belongs to
TðXUÞ and has the property ĝgðŷyÞ < 0. This constraint qualification implies the
existence of a Kuhn–Tucker coefficient * � 0 such that

�Uðy*Þ ¼ min f�UðyÞ þ *ĝgðyÞ : y 2 TðXUÞg and *ĝgðy*Þ ¼ 0:
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In case * ¼ 0, this would imply y* 2 argmin f�UðyÞ : y 2 TðXUÞg and,
hence, the existence of some x* 2 X*ðPÞ with c, x*h i ¼ �UðTx*Þ ¼ minf c, xh i :
Tx ¼ y*,x 2 XUg. Hence, condition (i) would be violated due to x* 2 intU.
Thus * > 0 and �V þ *ĝg is strongly convex on TðXUÞ. Hence, y* is the
unique minimizer of �V þ *ĝg and the growth property

�ky� y*k
2 � �Uð yÞ þ *ĝgð yÞ � �Uð y

*Þ ð3:49Þ

holds for some � > 0 and all y 2 TðXUÞ.
As the assumptions of Corollary 44 are satisfied, the set-valued mapping

X*U ð�Þ is upper semicontinuous at P and X*U ðQÞ 6¼ ; is a complete local
minimizing set if dKðP,QÞ is sufficiently small. Hence, there exists a � > 0 such
that ; 6¼ X*U ðQÞ � U for all Q 2 PðRsÞ with dKðP:QÞ < �. With the notations
from Lemma 46 and using the fact that YUðPÞ ¼ fy*g and X*ðPÞ ¼ X*U ðPÞ ¼
�Uðy*Þ we obtain

D1ðX*ðPÞ, X*U ðQÞÞ ¼ D1ð�Uðy*Þ, �UðYUðQÞÞÞ � L̂L sup
y2YU ðQÞ

ky� y*k,

where L̂L > 0 is the Lipschitz constant of �U (cf. Lemma 46). Using (3.49) and
YUðQÞ � TðXUÞ, the above chain of inequalities extends to

D1ðX*ðPÞ, X*U ðQÞÞ �
L̂L

�1=2
sup

y2YU ðQÞ
½�Uð yÞ þ *ĝgð yÞ � �Uð y*Þ�

1=2

¼
L̂L

�1=2
½#UðQÞ � #ðPÞ þ *ðlog p� logFPð yÞÞ�

1=2

�
L̂L

�1=2
½#UðQÞ � #ðPÞ þ *ðlogFQð yÞ�logFPð yÞÞ�

1=2

�
L̂L

�1=2
Lþ

*
p

� 	
dKðP, QÞ

� 1=2
,

where L > 0 is the constant from Theorem 39 and 1
p the Lipschitz constant of

logð�Þ on ½ p, 1�. This completes the proof. u

A slightly more general version of the result for r-concave measures was
proved in Henrion and Römisch (1999). The assumptions (i)–(iii) imposed in
Theorem 47 concern the original problem. The conditions (i) and (ii) mean
that the probability level p is not chosen too low and too high, respectively.
Condition (i) expresses the fact that the presence of the probabilistic
constraint FPðTxÞ � p moves the solution set X*ðPÞ away from the one
obtained without imposing that constraint. Recent results in Henrion and
Römisch (2002) show that assumption (i) is not necessary for Theorem 47 to
hold. Assumption (iii) is decisive for the desired growth condition of the
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objective function around X*ðPÞ. In contrast to the global concavity of logFP,
(iii) requires the strong concavity of logFP as a local property around
TðX*ðPÞÞ. Since general sufficient criteria for (iii) are not available so far, we
provide a few examples.

Example 48. (strong logarithmic concavity of measures) Let P be the uniform
distribution on some bounded rectangle in Rs having the form D ¼ �s

i¼1½ai,bi�.
Then logFPð�Þ ¼

Ps
i¼1 logð�i � aiÞ, � 2 D. Clearly, logð� � aiÞ is strongly con-

cave on any closed subinterval of ðai,biÞ. Hence, logFPð�Þ is strongly concave
on any closed convex subset of intD.

Let P be the multivariate normal distribution on Rs having a nonsingular
diagonal covariance matrix. A direct computation for the standard normal dis-
tribution function� onR shows that log� is strongly concave on any bounded
interval. Since logFP is equal to the sum of logarithms of the marginal
distribution functions, it is strongly concave on any bounded convex set in Rs.

4 Approximations of stochastic programs

Many approximations of stochastic programs result from replacing the
underlying probability distribution by some other measure, which typically
leads to simpler models. Important examples are nonparametric statistical
estimates (e.g., empirical ones) and scenario tree constructions using pro-
bability distribution information. Next we give an idea how the results of the
previous sections may be used to design and to analyse approximations of
stochastic programs. We begin with some glimpses into the analysis of
empirical approximations and the relations to empirical process theory. A
more far-reaching analysis is given in Pflug (2003) and Shapiro (2003).

4.1 A glimpse of empirical approximations

Let P 2 Pð�Þ and �1,�2, . . . ,�n, . . . be independent identically distributed �-
valued random variables on a probability space ð�,A,PÞ having the common
distribution P, i.e., P ¼ P��11 . We consider the empirical measures

Pnð!Þ :¼
1

n

Xn
i¼1

��ið!Þ ð! 2 �; n 2 NÞ,

where �� denotes the unit mass at � 2 �, and the empirical approximations of
the stochastic program (1.1), i.e., the models that result from replacing P by
Pnð�Þ. These take the form

min
Xn
i¼1

F0ðx, �ið�ÞÞ : x 2 X ,
Xn
i¼1

Fjðx, �ið�ÞÞ � 0 , j ¼ 1, . . . ,d

( )
, ð4:50Þ
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where the factor 1
n
in the objective and constraints has been removed. Since the

objective and constraint functions Fj, j ¼ 0, . . . ,d, are assumed to be random
lower semicontinuous functions from Rm �� to R, the constraint set is
closed-valued and measurable from � to Rm and, hence, the optimal value
#ðPnð�ÞÞ of (4.50) is measurable from � to R and the solution set X*ðPnð�ÞÞ is a
closed-valued measurable multifunction from � to Rm (see Chapter 14 and, in
particular, Theorem 14.37 in Rockafellar and Wets (1998)). The same
conclusion is valid for the localized concepts #U and X*

U for any nonempty
open subset U of Rm.

Another measurability question arises when studying uniform convergence
properties of the empirical process

n
n

1
2ðPnð�Þ � PÞF ¼ n�

1
2

Xn
i¼1

ðFð�ið�ÞÞ � PFÞ
o
F2F

,

indexed by some class F of functions that are integrable with respect to P.
Here, we set QF :¼

R
� Fð�ÞdQð�Þ for any Q 2 Pð�Þ and F 2 F . Since the

suprema dF ðPnð�Þ,PÞ ¼ supF2F jPnð�ÞF � PF j may be non-measurable func-
tions from � to R, we introduce a condition on F that simplifies matters and is
satisfied in most stochastic programming models. A class F of measurable
functions from � to R is called P-permissible for some P 2 Pð�Þ if there exists
a countable subset F0 of F such that for each function F 2 F there exists a
sequence ðFnÞ in F0 converging pointwise to F and such that the sequence
ðPFnÞ also converges to PF . Then

dF ðPnð!Þ, PÞ ¼ sup
F2F
jðPnð!Þ � PÞF j ¼ dF 0

ðPnð!Þ, PÞ

holds for each n 2 N and ! 2 �, i.e., the analysis is reduced to a countable
class and, in particular, dF ðPnð�Þ,PÞ is a measurable function from � to R.

A P-permissible class F is called a P-Glivenko–Cantelli class if the sequence
ðdF ðPnð�Þ,PÞÞ of random variables converges to 0 P-almost surely. If F is P-
permissible, the empirical process fn

1
2ðPnð�Þ � PÞFgF2F is called uniformly

bounded in probability with tail CF ð�Þ if the function CF ð�Þ is defined on ð0,1Þ
and decreasing to 0, and the estimate

Pðf! : n
1
2dF ðPnð!Þ, PÞ � "gÞ � CF ð"Þ ð4:51Þ

holds for each " > 0 and n 2 N. Whether a given class F is a P-Glivenko–
Cantelli class or the empirical process is uniformly bounded in probability
depends on the size of the class F measured in terms of certain covering
numbers or the corresponding metric entropy numbers defined as their logari-
thms (e.g., Dudley (1984), Pollard (1990), van der Vaart and Wellner (1996)).
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To introduce these concepts, let F be a subset of the normed space Lrð�,PÞ
for some r � 1 equipped with the usual norm kFkP,r ¼ ðPjF j

rÞ
1
r. The covering

number Nð",F ,Lr ð�,PÞÞ is the minimal number of open balls fG 2 Lrð�,PÞ :
kG� FkP,r < "g needed to cover F. A measurable function FF from � to R is
called an envelope of the class F if jFð�Þj � FF ð�Þ holds for every � 2 � and
F 2 F . The following result provides criteria for the desired properties in
terms of uniform covering numbers.

Theorem 49. Let F be P-permissible with envelope FF. If PFF <1 and

sup
Q

Nð"kFFkQ,1, F , L1ðQÞÞ <1, ð4:52Þ

then F is a P-Glivenko–Cantelli class. If F is uniformly bounded and there exist
constants r � 1 and R � 1 such that

sup
Q

Nð"kFFkQ,2, F , L2ðQÞÞ �
R

"

� 	r

ð4:53Þ

holds for all " > 0, then the empirical process indexed by F is uniformly bounded
in probability with exponential tail CF ð"Þ ¼ ðKðRÞ"r

�1
2Þ
rexpð�2"2Þ with some

constant KðRÞ depending only on R.
The suprema in (4.52) and (4.53) are taken over all finitely discrete

probability measures Q with kFFkQ,1 ¼ QFF > 0 and kFFk
2
Q,2 ¼ QF2

F > 0,
respectively.

For the proof we refer to Talagrand (1994), van der Vaart and Wellner
(1996) and van der Vaart (1998). For studying entropic sizes of stochastic
programs Pflug (1999, 2003) uses results of this type but with bracketing
numbers instead of uniform covering numbers. He also studies situations
where F is not uniformly bounded and shows that he blow-up function n

1
2 for

n!1 has to be replaced by some function converging to 1 more slowly.
Here, we use the concept of uniform covering numbers since they turn out to
be useful for discontinuous functions.

The stability results of Section 2 directly translate into convergence results
and rates, respectively, for empirical optimal values and solution sets.

Theorem 50. Assume that the conditions (i)–(iii) of Theorem 5 are satisfied and
that FU is P-permissible.

If FU is a P-Glivenko–Cantelli class, the sequences

ðj#ðPÞ � #UðPnð�ÞÞjÞ and sup
x2X*U ðPnð�ÞÞ

dðx, X*ðPÞÞ

 !

540 W. Römisch



converge P-almost surely to 0. Furthermore, the set X*U ðPnð!ÞÞ is a CLM set of
(4.50) relative to U for sufficiently large n 2 N and for P-almost all ! 2 �.

If the empirical process indexed by FU is uniformly bounded in probability
with tail CFU ð�Þ, the following estimates hold for each " > 0 and each n 2 N:

Pðj#ðPÞ � #UðPnð�ÞÞj > "n�
1
2Þ � CFU min �,

"

L

n o
 �
, ð4:54Þ

P sup
x2X*U ðPnð�ÞÞ

dðx, X*ðPÞÞ > "n�
1
2

 !
� CFU ðminf�, L̂L�1��1P ð"ÞgÞ: ð4:55Þ

Proof. Let L > 0, L̂L > 0, � > 0 be the constants in Theorems 5 and 9. First, let
FU be a P-Glivenko–Cantelli class and A 2 A be such that PðAÞ ¼ 0 and
ðdFU ðPnð!Þ,PÞÞ converges to 0 for every ! 2 �nA. Let ! 2 �nA. Then
X*U ðPnð!ÞÞ is nonempty, since the objective function

R
� F0ð�,�ÞdPð�Þ is lower

semicontinuous on X and the constraint set XUðPnð!ÞÞ is compact due to
Proposition 3. Let n0ð!Þ 2 N be such that dFU ðPnð!Þ,PÞ < � holds for each
n � n0ð!Þ. Due to the Theorems 5 and 9 the estimates

j#ðPÞ � #UðPnð!ÞÞj � dFU ðPnð!Þ,PÞ

sup
x2X*U ðPnð!ÞÞ

dðx,X*ðPÞÞ � �PðL̂LdFU ðPnð!Þ,PÞÞ

hold for n � n0ð!Þ. In particular, the sequences ðj#ðPÞ � #UðPnð!ÞÞjÞ and
ðsupx2X*U ðPnð!ÞÞdðx,X

*ðPÞÞÞ converge to 0. Hence, X*U ðPnð!ÞÞ � U and, thus,
X*U ðPnð!ÞÞ is a CLM set relative to U for sufficiently large n 2 N.

Now, let " > 0 be arbitrary. The Theorems 5 and 9 also imply

Pðj#ðPÞ � #UðPnð�ÞÞj > "Þ � P dFU ðPnð�Þ, PÞ � min �,
"

L

n o
 �
, ð4:56Þ

Pð sup
x2X*U ðPnð�ÞÞ

dðx, X*ðPÞÞ > "Þ � PðdFU ðPnð�Þ, PÞ � minf�,L̂L�1��1P ð"ÞgÞ: ð4:57Þ

If the empirical process indexed by FU is uniformly bounded in probability
with tail CFU ð�Þ, the estimates (4.56) and (4.57) may be continued by using
(4.51) and, thus, lead to (4.54) and (4.55). u

The estimates (4.54) and (4.55) may be used to derive the speed of
convergence in probability of optimal values and solution sets, respectively.
Clearly, the speed depends on the asymptotic behaviour of the tail CFU ð"Þ as
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"!1 and of the function �P. For the situation of exponential tails, this is
elaborated in Rachev and Römisch (2002).

Next we show how our analysis applies to two-stage stochastic programs
with and without integrality requirements and to chance constrained models.
It turns out that, under reasonable assumptions on all models, the empirical
process indexed by FU is uniformly bounded in probability with exponential
tails.

Example 51. (linear chance constrained models) A class B of Borel sets of Rs is
called a Vapnik-Červonenkis (VC ) class of index r ¼ rðBÞ if r is finite and equal
to the smallest n 2 N for which no set of cardinality nþ 1 is shattered by B.
B is said to shatter a subset f�1, . . . ,�lg of cardinality l in Rs if each of its
2l subsets is of the form B \ f�1, . . . ,�lg for some B 2 B. For VC classes B it
holds that

Nð",f�B : B 2 Bg,L1ð�,QÞÞ � K"�r

for any " > 0 and Q 2 Pð�Þ, and some constant K > 0 depending only on the
index r (Theorem 2.6.4 in van der Vaart and Wellner (1996)).

For any polyhedral set � � Rs and k 2 N the class Bphkð�Þ is a VC class,
since the class of all closed half spaces is VC and finite intersections of VC
classes are again VC. The corresponding class of characteristic functions is
permissible for P, since the set of all polyhedra in Bphkð�Þ having vertices at
rational points in Rs plays the role of the countable subset in the definition of
permissibility. Hence, Theorem 49 applies and the empirical process indexed
by FU ¼ f�HðxÞ : x 2 X \ clUg, where U is a bounded open set containing
X*ðPÞ, is uniformly bounded in probability with exponential tail
CFU ð"Þ ¼ K̂K"rexpð�2"2Þ for some index r 2 N and some constant K̂K > 0. For
example, from Theorem 50 we obtain for each " > 0 and n 2 N the estimate

P sup
x2X*U ðPnð�ÞÞ

dðx,X*ðPÞÞ > "n�
1
2

 !
� K̂K"rexpð�2minf�,L̂L�1��1P ð"Þg

2Þ:

Example 52. (two-stage models without integrality) Let F0 be defined as in
Section 3.1 and let (A1) and (A2) be satisfied. Then, for each nonempty open
and bounded subset U of Rm, the class FU ¼ fF0ðx, �Þ : x 2 X \ clUg is a
subset of L1ð�,PÞ. FU is also permissible for P, since any class
fF0ðx, �Þ : x 2 Xcg with Xc being a countable and dense subset of X \ clU
may be used as the countable subset of FU in the definition of permissibility.
Proposition 22 implies that the function FFU ð�Þ :¼ Kmaxf1, k�k2g (� 2 �) is an
envelope of FU for sufficiently large K > 0. Furthermore, due to the Lipschitz
continuity property of F0ð�, �Þ with Lipschitz constant L̂Lmaxf1,k�k2g (see
Proposition 22), the uniform covering numbers of FU are bounded by the
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covering numbers of X \ clU (see Theorem 2.7.11 in van der Vaart and
Wellner (1996)). In particular, for each finitely discrete measure Q 2 Pð�Þ and
with F̂Fð�Þ :¼ L̂Lmaxf1,k�k2g ð� 2 �Þ it holds that

Nð"kF̂FkQ,r, FU , Lrð�,QÞÞ � Nð",X \ cl U, RmÞ � K"�m, ð4:58Þ

for each " > 0, r � 1 and some constant K > 0 depending only on m and the
diameter of X \ clU. Using (4.58) for r ¼ 1, Theorem 49 implies that FU is a
P-Glivenko-Cantelli class. If � is bounded, FU is uniformly bounded and,
using (4.58) for r ¼ 2, Theorem 49 implies that the empirical process indexed
by FU is uniformly bounded in probability with exponential tail.

Example 53. (mixed-integer two-stage models) Let F0 be defined as in Section
3.2 and let (B1)–(B3) be satisfied and � be bounded. Then, for each nonempty
open and bounded subset U of Rm, the class

FU ¼
n
F0ðx,�Þ ¼

X�
j¼1

ð c,xh i þ�ðhð�Þ � Tð�ÞxÞ��R
j,x
ð�Þ : x 2 X \ cl U

o

is a subset of L1ð�,PÞ. This representation follows from Proposition 34 if
R > 0 is chosen sufficiently large such that f� 2 �: khð�Þ � Tð�Þxk1 > Rg ¼ ;
for each x 2 X \ clU. For each X \ clU the sets �R

j,x (j ¼ 1, . . . ,�) form a
disjoint partition of � into Borel sets whose closures are in Bphkð�Þ for some
k 2 N. Furthermore, the function �ðhð�Þ � Tð�ÞxÞ is Lipschitz continuous on
each of these sets with a uniform constant L1 > 0. Let Fj

0ðx,�Þ denote a
Lipschitz extension of the function c,xh i þ�ðhð�Þ � Tð�ÞxÞ from �R

j,x to R by
preserving the Lipschitz constant L1 (j ¼ 1, . . . ,�). Furthermore, let F j

U :¼
fFj

0ðx,�Þ : x 2 X \ clUg and Gj
U :¼ f��R

j,x
: x 2 X \ clUg (j ¼ 1, . . . ,�).

Now, we use a permanence property of the uniform covering numbers (cf.
Section 2.10.3 in van der Vaart and Wellner (1996)). Let Q 2 Pð�Þ be discrete
with finite support. Then the estimate

Nð"C0, FU , L2ð�, QÞÞ�
Y�
j¼1

Nð"Cj, F j
U , L2ð�, QjÞÞNð"ĈCj, G j

U , L2ð�, Q̂QjÞÞ ð4:59Þ

is valid, where C0, Cj > 1, ĈCj, j ¼ 1, . . . ,�, are certain constants and Qj, Q̂Qj,
j ¼ 1, . . . ,�, certain discrete measures having finite support. The constants
depend on the bounds of the uniformly bounded classes F j

U and Gj
U ,

j ¼ 1, . . . ,�. Since the latter classes satisfy the condition (4.53) (see Example 51
and Example 52), the estimate (4.59) implies that FU satisfies (4.53), too.
Hence, we obtain the same estimates for mixed-integer two-stage models as in
Example 52 for two-stage models without integrality requirements and in
Example 51 for linear chance constrained models.
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Example 54. (newsboy continued) According to Example 15, the class FU is of
the form FU ¼ fF0ðx,�Þ ¼ ðr� cÞxþ cmaxf0, x� �g : x 2 X \ clUg with envel-
ope FFU ð�Þ ¼ r supX2XnclU jxj þ cj�j and a uniform Lipschitz constant c. Hence,
FU is a subset of L1ð�,PÞ if

R
� j�jdPð�Þ ¼

P
k2N �kk <1. As in Example 52

we obtain

Nð"c,FU ,L2ð�,QÞÞ � Nð",X \ cl U,RmÞ � C"�m

for each finitely discrete measure Q 2 Pð�Þ and, hence, Theorem 50 provides
the rate of convergence of the solution sets X*U ðPnð�ÞÞ of (1.4) with linear �P.

4.2 Scenario generation and reduction

Most of the numerical solution approaches for stochastic programs resort
to discrete approximations of the underlying probability measure P. Several
approaches have been developed for the generation or construction of discrete
approximations and are in use for solving applied stochastic programming
models (see the overview by Dupačová et al. (2000) and the references
therein). The quantitative stability results of Section 2.3 suggest another
approach, namely, to construct approximations for the original measure P
such that they are close to P with respect to the corresponding probability
(pseudo) metric. Let F be a set of measurable functions from � to R such that
the stochastic programming model (1.1) is stable in the sense of the Theorems
5 and 9 with respect to the (pseudo) metric

dF ðP,QÞ ¼ sup
F2F
j

Z
�

Fð�ÞdðP�QÞð�Þj

or some other distance bounding dF ðP,QÞ from above. This means that the
optimal values and the solution sets of (1.1) behave continuously at P when
perturbing P with respect to dF .

Then it is a natural requirement to construct approximate probability
distributions such that they are best approximations to P in the sense of dF .
For instance, the principle of optimal scenario generation with a prescribed
number of scenarios may be formulated as follows:

Given P 2 Pð�Þ and M 2 N, determine a discrete probability measure
Q* 2 Pð�Þ having M scenarios such that

dF ðP, Q*Þ ¼ min dF

�
P,
XM
j¼1

qj��j

	
:
XM
j¼1

qj ¼ 1, qj � 0, �j 2 �, j ¼ 1, . . . ,M

( )
:

544 W. Römisch



Further constraints could be incorporated into the minimization problem,
e.g., constraints implying that the scenarios exhibit a tree structure.
Unfortunately, it seems to be hopeless to solve this problem for general
measures P, function classes F, supports�, and large numbersM of scenarios.
However, it is of course a challenging problem to develop approaches for
solving the best approximation problem for more specific situations, like e.g.
for the unconstrained case � ¼ Rs, discrete measures P (involving very many
scenarios) and function classes that are relevant in Section 3. An approach for
solving the best approximation problem in case of � ¼ Rs and F ¼ F 1ðR

sÞ is
developed in Pflug (2001).

Another important problem consists in reducing a given discrete
probability measure P ¼

PN
i¼1 pi��i with a (very) large number N of scenarios

to a measure containing n of the original scenarios with n << N. Similarly as
in case of optimal scenario generation, the problem of optimal scenario
reduction may be formulated in the form

min dF

XN

i¼1

pi��i ,
X
j2J

qj��j

�
: J � f1, . . . ,Ng,jJj ¼ n,

X
j2J

qj ¼ 1,qj � 0

( )
, ð4:60Þ

i.e., as a nonlinear mixed-integer program. Since its objective function is
difficult to compute for general classes F, solution methods for (4.60) are a
challenging task. However, in the special case that F ¼ F pð�Þ, for some
p � 1, the objective function of (4.60) turns out to be the dual optimal value of
the standard network flow problem (see Rachev and Rüschendorf (1998))

min
XN
i¼1
j2J

cpð�i,�jÞk�i � �jk	ij : 	ij � 0,
XN
i¼1

	ij �
X
j2J

	ij ¼ qj � pi,8i, j

8<
:

9=
;

where cpð�i,�jÞ ¼ max 1,k�ik�jk
� �p�1

, i, j ¼ 1, . . . ,N, and, hence, it is a
polyhedral function of q. Furthermore, in case of F ¼ F 1ð�Þ problem
(4.60) simplifies considerably.

Proposition 55. Given J � f1, . . . ,Ng we have

min dF 1ð�Þ

XN
i¼1

pi��i ,
X
j2J

qj��j

 !
:
X
j2J

qj ¼ 1,qj � 0

( )
¼
X
i 62J

pimin
j2J
k�i � �jk:
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Moreover, the minimum is attained at qj ¼ pj þ
P

i2Jj
pi, for each j 2 J,

where Jj :¼ fi 62 J : j ¼ jðiÞg and jðiÞ 2 argmin
j2J
k�i � �jk for each i 62 J.

The proposition provides an explicit formula for the redistribution of the
given probabilities pi, i ¼ 1, . . . ,N, to the scenarios with indices in J. For its
proof we refer to Theorem 2 in Dupačová et al. (2003). Due to Proposition 55
the optimal scenario reduction problem (4.60) in case of F ¼ F 1ð�Þ takes the
form: Given P 2 Pð�Þ and n 2 N, determine a solution of

min
X
i 62J

pi min
j2J
k�i � �jk : J � f1, . . . ,Ng,jJj ¼ n

( )
ð4:61Þ

and compute the optimal weights q according to the redistribution rule in
Proposition 55. Notice that problem (4.61) means that the set f1, . . . ,Ng has to
be covered by a subset J of f1, . . . ,Ng and by f1, . . . ,NgnJ such that jJj ¼ n
and the cover has minimal cost

P
i 62J piminj2Jk�i � �jk. Hence, problem (4.61)

is of set-covering type and, thus, NP-hard. However, the specific structure of
the objective function allows the design of fast heuristic algorithms for its
approximate solution (see Dupačová et al. (2003), Heitsch and Römisch
(2003)). Depending on the size of the number n of remaining scenarios, the
two basic ideas are backward reduction and forward selection, respectively. In
the backward reduction heuristic an index set J ¼ fl1, . . . ,lng is determined
such that

li 2 arg min
l2J ½i�1�r

X
k2J

½i�1�
r nflg

pk min
j 62J ½i�1�r nflg

k�k � �jk ði ¼ 1, . . . ,nÞ,

where J ½0�r ¼ f1, . . . ,Ng, J
½i�
r ¼ J ½i�1�r nflig, i ¼ 1, . . . ,n. In the forward selection

heuristic the index set J ¼ fl1, . . . ,lng is chosen by an opposite strategy such
that

li 2 arg min
l 62J
½i�1�
s

X
k62J

½i�1�
s [flg

pk min
j2J
½i�1�
s [flg

k�k � �jk ði ¼ 1, . . . ,nÞ

holds, where J ½0�s ¼ ;, J
½i�
s ¼ J ½i�1�s [ flig, i ¼ 1, . . . ,n. We refer to Heitsch and

Römisch (2003) for a discussion of the complexity of both heuristics, for
implementation issues and encouraging numerical results.
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5 Bibliographical notes

The beginnings of approximation and estimation results in stochastic
programming date back to the 1970s and the papers by Kall (1974) (see also
the monograph Kall (1976)), Marti (1975, 1979) and Olsen (1976) on
approximations, and the work of Kaňková (1977) and Wets (1979) on
empirical estimation in stochastic programming. Surveys on stability were
published by Dupačová (1990) and Schultz (2000). The notion of stability of
stochastic programs appeared first in Bereanu (1975), in the context of the
distribution problem, and in Kaňková (1978), where stability of minima of
more general stochastic programming models was studied with respect to
weak convergence of measures for the first time.

Later Dupačová (1984, 1987) and Wang (1985) studied the stability of
stochastic programs with respect to changes of finite-dimensional parameters
in the underlying probability distribution. Kall and Stoyan (1982), Salinetti
(1983) and Römisch (1981, 1985) dealt with discrete approximations to
stochastic programs. Further early work has been done in the surveys by Wets
(1983, 1989) and in Friedrich and Tammer (1981) (on stability), Birge and
Wets (1986) (on discrete approximation schemes), Römisch (1986b), Kall
(1987), Robinson and Wets (1987), Römisch and Wakolbinger (1987), Vogel
(1988), Kall, Ruszczyński and Frauendorfer (1988) (on discrete approxima-
tions), Dupačová and Wets (1988), Shapiro (1989) and Wang (1989). The
landmark papers by Kall (1987) and by Robinson and Wets (1987) address
qualitative stability results for optimal values and solution sets with respect to
weak convergence of measures. This line of research was continued in the
important work by Artstein and Wets (1994) and in Vogel (1992), Schultz
(1992, 1995), Lucchetti and Wets (1993), Wang (1995) and Wets (1998),
Zervos (1999) and Riis and Schultz (2002). Attempts to quantify such stability
results using distances of probability measures were started in Römisch
(1986b), Römisch and Wakolbinger (1987) and continued in Römisch and
Schultz (1991a,b,c, 1993, 1996) and Artstein (1994), Kanková (1994b),
Kanková (1998), Shapiro (1994), Fiedler and Römisch (1995), Schultz (1996),
Henrion and Römisch (1999, 2000), Dentcheva (2000) and Rachev and
Römisch (2002).

Most of the stability studies allow for general perturbations of the
underlying probability measure and develop a general framework for both
discrete and statistical approximations of stochastic programs. Nevertheless,
these two kinds of approximations developed independently by exploiting
their specific structures (e.g., bounding techniques on the one hand and
asymptotic statistical arguments on the other hand). For (discrete)
approximations we mention the work in Birge and Wets (1986), Kall et al.
(1988), Lepp (1990), Birge and Qi (1995a,b), Frauendorfer (1992, 1996) and
Kall (1998).

In parallel, statistical inference in stochastic programming models was
studied intensively. After the early work by Kanková and Wets, many authors
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contributed to this line of research on asymptotic properties of statistical
estimators, e.g., their consistency, rates of convergence and limit theorems.
We mention, in particular, the work of Dupačová and Wets (1988),
Vogel (1988), Shapiro (1989, 1990, 1991, 1996, 2000), King (1989) and
Kanková (1990, 1994), King and Wets (1991), Wets (1991), Ermoliev and
Norkin (1991), Norkin (1992), King and Rockafellar (1993), Rubinstein
and Shapiro (1993), Bouza (1994), Geyer (1994), Artstein and Wets (1995),
Kaniovski et al. (1995), Lachout (1995), Pflug (1995, 1999), Robinson (1996),
Gröwe (1997), Pflug et al. (1998a,b), Mak et al. (1999) and Shapiro and
Homem-de-Mello (2000).

Another line of research on approximations of stochastic programs is based
on the convergence (almost surely, in probability and in distribution) of
measurable set-valued mappings and on the epi-convergence of integrands.
Here, we mention the fundamental paper by Salinetti and Wets (1986) and the
work of Salinetti (1981, 1983), Römisch (1986a), Vogel (1988, 1992, 1994,
1995) and Wets (1991), Hess (1996) and the recent papers by Korf and Wets
(2000, 2001) and by Vogel and Lachout (2000).

Much is known on the stability of values and solutions of classical two-
stage stochastic programs (Section 3.1). The situation is already different for
the stability of solutions to chance constrained models and even more to
mixed-integer two-stage models. The stability of multi-stage stochastic
programs is widely open, especially in the mixed-integer case. Another open
matter are the stability effects of incorporating risk functionals into stochastic
programming models (cf. Section 2.4).The paper by Rachev and Römisch
(2002) provides an important source for the material presented in this chapter,
in particular, for the Sections 2.2, 2.3, and 4.1 and parts of the Sections 3.1
and 3.2. Some of the results are directly taken from that paper, namely,
Theorems 5, 9, 23 and 39. Some other results represent modified or extended
versions of those in Rachev and Römisch (2002) (e.g. Theorem 35 and
Theorem 50). Theorems 13 and 24 are due to work in preparation by Römisch
and Wets. Corollary 45 and Theorem 47 are taken from Henrion and Römisch
(1999) and the Corollaries 42 and 44 from Römisch and Schultz (1991c). The
Example 41 is due to Henrion and the notion of a Lipschitz continuous risk
functional goes back to Pflug (2002).
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Kanková, V. (1977). Optimum solution of a stochastic optimization problem with unknown

parameters, in: Transactions of the 7th Prague Conference on Information Theory, Statistical

Decision Functions and Random Processes, Academia, Prague, pp. 239–244.
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Chapter 9

Stochastic Programming in Transportation and
Logistics

Warren B. Powell and Huseyin Topaloglu
Department of Operations Research and Financial Engineering, Princeton University,

Princeton, NJ 08544, USA

Abstract

Freight transportation is characterized by highly dynamic information
processes: customers call in orders over time to move freight; the movement
of freight over long distances is subject to random delays; equipment failures
require last minute changes; and decisions are not always executed in the field
according to plan. The high-dimensionality of the decisions involved has made
transportation a natural application for the techniques of mathematical
programming, but the challenge of modeling dynamic information processes
has limited their success. In this chapter, we explore the use of concepts from
stochastic programming in the context of resource allocation problems that arise
in freight transportation. Since transportation problems are often quite large, we
focus on the degree to which some techniques exploit the natural structure of
these problems. Experimental work in the context of these applications is quite
limited, so we highlight the techniques that appear to be the most promising.

1 Introduction

Operational models of problems in transportation and logistics offer a ripe
set of applications for stochastic programming since they are typically
characterized by highly dynamic information processes. In freight transporta-
tion, it is the norm to call a carrier the day before, or sometimes the same day,
to request that a shipment be moved. In truckload trucking, last minute phone
calls are combined with requests that can be made a few days in advance,
putting carriers in the position of committing to move loads without knowing
the last minute demands that will be made of them (sometimes by their most
important customers). In railroads, requests to move freight might be made a
week in the future, but it can take a week to move a freight car to a customer.
The effect is the same.
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The goal of this chapter is to provide some examples of problems, drawn
from the arena of freight transportation, that appear to provide a natural
application of stochastic programming. Optimization models in transporta-
tion and logistics, as they are applied in practice, are almost always
formulated based on deterministic models. Our intent is to show where
deterministic models can exhibit fundamental weaknesses, not from the
perspective of academic theory, but in terms of practical limitations as
perceived by people in industry. At the same time, we want to use the richness
of real problems to raise issues that may not have been addressed by the
stochastic programming community. We want to highlight what works, what
does not, and where there are rich areas for new research.

We do not make any effort to provide a comprehensive treatment of
stochastic optimization problems in transportation and logistics. First, we
consider only problems in freight transportation (for the uninitiated,
‘‘transportation and logistics’’ refers to the operational problems surrounding
the movement of goods). These problems are inherently discrete, giving rise to
stochastic, integer programming problems, but we focus on problems where
linear programming formulations represent a good starting point. We
completely avoid the general area of stochastic vehicle routing or the types of
batch processes that often arise in the movement of smaller shipments, and
focus instead on problems that can be broadly described as dynamic resource
allocation problems.

Our presentation begins in Section 2 with an overview of different classes of
applications. This section provides a summary of the different types of
uncertainty that arise, and addresses the fundamental question of why
stochastic programming is a promising technology for freight transportation.
Section 3 provides a general modeling framework that represents a bridge
between linear programming formulations and a representation that more
explicitly captures the dimensions of transportation applications. In Section 4
we present a case study based on the distribution of freight cars for a railroad.
This case study provides us with a problem context where dynamic
information processes play an important role. We use this case study in the
remainder of the chapter to keep our discussions grounded in the context of a
real application.

We approach the stochastic modeling of our freight car problem in two
steps. First, we discuss in Section 5 the basic two-stage resource allocation
problem. This problem is particularly relevant to the car distribution problem.
The characteristics of the car distribution problem nicely illustrate different
types of recourse strategies that can arise in practice. Specialized strategies
give way to approximations which exploit the underlying network structure.
For the most general case (network recourse) we briefly review a broad range
of stochastic programming strategies, focusing on their ability to handle the
structure of transportation problems.

Section 6 addresses multistage problems. Our approach toward multistage
problems is that they can and should be solved as sequences of two-stage
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problems. As a result, we solve multistage problems by building on the theory
of two-stage problems.

Transportation problems offer far more richness than can be covered in a
single chapter. Section 8 provides a hint of the topics that we do not attempt
to cover. We close with Section 9 that discusses some of the challenges of
actually implementing stochastic models in an operational setting.

2 Applications and issues

It is important to have in mind a set of real problems that arise in
transportation and logistics. We begin our discussion of applications by listing
some sample problems that arise in practice, and then use these problems: (a)
to discuss sources of uncertainty; (b) to raise special modeling problems that
arise in transportation applications; and finally (c) to highlight, from a
practical perspective, the limitations of deterministic models and how
stochastic programming can improve the quality of our models from a
practical perspective.

2.1 Some sample problems

Transportation, fundamentally, is the business of moving things so that
they are more useful. If there is a resource at a location i, it may be more
useful at another location j. Within this simple framework, there is a
tremendous variety of problems that pose special modeling and algorithmic
issues. Below is a short list of problems that helps to highlight some of the
modeling issues that we will have to grapple with.

1) Product distribution—Perhaps one of the oldest and most practical
problems is the determination of how much product to ship from a plant
to intermediate warehouses before finally shipping to the retailer (or
customer). The decision of how much to ship and where must be made
before we know the customer demand. There are a number of important
variations of this problem, including:

a) Separability of the distribution process—It is often the case that each
customer will be served by a unique warehouse, but substitution
among warehouses may be allowed.

b) Multiple product types with substitution—A company may make
multiple product types (for example, different types of salty food
snacks) for a market that is willing to purchase different products
when one is sold out. For the basic single period distribution
problem, substitution between products at different locations is the
same as substitution across different types of products, as long as the
substitution cost is known (when the cost is a transportation cost,
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this is known, whereas when it represents the cost of substituting for
different product types, it is usually unknown).

c) Demand backlogging—In multiperiod problems, if demand is not
satisfied in one time period, we may assume the demand is lost or
backlogged to the next time period. We might add that the same issue
arises in the product being managed; highly perishable products
vanish if not used at a point in time, whereas nonperishable products
stay around.

2) Container management—Often referred to as fleet management in the
literature, ‘‘containers’’ represent boxes of various forms that hold
freight. These might be trailers, boxcars, or the intermodal containers
that are used to move goods across the oceans (and then by truck
and rail to inland customers). Containers represent a reusable resource
where the act of satisfying a customer demand (moving freight from
i to j) also has the effect of changing the state of the system (the
container is moved from i and j). The customer demand vanishes from
the system, but the container does not. Important problem variations
include:

a) Single commodity problems—These arise when all the containers are
the same, or when there are different container types with no
substitution between different types of demands. When there is no
substitution, the problem decomposes into a series of single
commodity problems for each product type.

b) Multicommodity problems—There may be different container types,
and the customers may be willing to substitute between them. For
example, they may accept a bigger container, or be willing to move
their dry goods in a refrigerated container (although no refrigeration
is necessary).

c) Time windows and demand backlogging—The most common model
represents customer demands at a point in time, where they are lost if
they are not served at that point in time. In practice, it is usually the
case that customer orders can be delayed.

d) Transshipment and relay points—The simplest models represent a
demand as the need to move from i to j, and where the movement is
represented as a single decision. More complex operations have to
model transportation legs (ocean or rail movements) with relays or
transshipment points (ports, rail yards) where the containers move
from one mode to the next. A major element of complexity is when
capacity constraints are imposed on the transportation legs.

3) Managing complex equipment—The major railroads in North America
need to manage fleets of several thousand locomotives. The air mobility
command has to move freight and people on a global scale using
different types of aircraft. Recently formed companies service a high end
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market with personal jet service using jets in which the customers own
a fraction. These problems have been modeled in the past using the
same framework as container management problems with multiple
container types. These complex pieces of equipment require something
more. For example, there are four major classes of locomotive, reflecting
whether they are high or low ‘‘adhesion’’ (a technology that determines
the slippage of the wheels on a rail), and whether they are four axle or
six axle units (six axle locomotives are more powerful). On closer
inspection, we find that the horsepower rating of a locomotive can be
divided into 10 or 12 reasonable divisions. It matters if the locomotive
has its home shop in Chicago, Atlanta or southern California. Since
locomotives may move from the tracks of one railroad to another,
it matters who owns the locomotive. And it matters if the locomotive
is due into the shop in 1,2, . . . , 10 days, or more than 10 days.
In short, complex equipment is complex, and does not lend itself
easily to a multicommodity formulation. As we show later, this
characteristic determines whether the size of the attribute space of a
resource is small enough to enumerate the entire space, or too large to
enumerate.

4) People and crews—Trucks, trains and planes move because people
operate them. Not surprisingly, the modeling of the people is not only
important, but requires a set of attributes that makes complex equip-
ment look simple. A truck driver, for example, might be characterized
by his current location, his home base, his skill level, whether he has
experience driving into Mexico or Canada, how many hours he has
driven in the last 8 days, how many consecutive hours he has been ‘‘on
duty’’ today, and how many hours he has been actively driving during
his current duty period. Production software systems have to cover these
and many other issues.

These problems are all examples of resource allocation problems where, with
few exceptions, a single ‘‘resource’’ serves a single ‘‘demand.’’ ‘‘Bundling’’
arises when, for example, you need several locomotives to pull a single train,
or two drivers (a sleeper team) to operate a single truck. ‘‘Layering’’ arises
when you need an aircraft, a pilot, fuel and special loading equipment to move
a load from one airbase to another. In some cases, the resource/task
dichotomy breaks down. For example, we may be managing locomotives,
crews and boxcars. The boxcar needs to go from A to B. We need the crew to
move the train, but the crew needs to get back to its home domicile at C. And
the locomotive needs to get to shop at D. We would refer to the locomotives,
crew and boxcars as three resource layers, since the locomotives, crew and
boxcars are all needed to move the train. In fact, for more complex problems,
we refer to the objects being managed as resource layers (or sometimes,
resource classes), where one layer is almost always one that would be referred
to as a customer, or job, or task.
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2.2 Sources of uncertainty

Uncertainty arises whenever we need to make a decision based on
information that is not fully known. We are aware of three scenarios under
which this can arise:

1) The information is not yet known, but will become known at some point
in the future. This is the standard model of uncertainty.

2) Information is known to someone (or something), but is not known to
the decision-maker. We would generally say that this information is
knowable but for various reasons (most commonly, it is simply too
expensive) has not been properly communicated to where the
information is needed for a decision.

3) The information will never be known (optimization under incomplete
information). For any of a variety of economic or technical reasons, an
unknown variable is never measured, even though it would help improve
decisions. Since the information is never known, we are not able to
develop a probability distribution for it.

Cases (2) and (3) above both represent instances where decisions have to be
made without information, but we assume that case (3) represents information
that never becomes known explicitly, whereas (2) represents the case where
someone knows the information, raising the possibility that the information
could be shared (at a cost) or at a minimum, where a probability distribution
might be constructed after the fact and shared with others.

Classical uncertainty arises because information arrives over time. It is
possible to divide the different types of dynamic information processes into
three basic classes: the ‘‘resources’’ being managed (including customer
demands), the physical processes that govern the evolution of the system over
time, and the decisions that are actually implemented to drive the system. This
division reflects our modeling framework, presented in Section 3. Since the
focus of this volume is on modeling uncertainty, it is useful to give each of
these at least a brief discussion.

Resources
Under the heading of ‘‘resources’’ we include all the information classes

that we are actively managing. More formally, these are ‘‘endogenously
controllable information classes which constrain the system,’’ a definition that
includes not just the trucks, trains and planes that we normally think of as
resources, but also the customer orders that these resources are normally
serving. Dynamic information processes for resources may include:

a) Information about new (exogenous) arrivals to the system—This
normally includes the arrival of customer orders, but may also include
the arrivals of the product, equipment or people required to satisfy the
customer order. For example, a trucking company is constantly hiring
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new drivers (there is a lot of turnover) so the arrival of new drivers to the
fleet is a dynamic information process. Similarly, a railroad has to
manage boxcars, and the process of boxcars becoming empty turns out
to be a highly stochastic process (far more uncertain than the customer
orders).

b) Information about resources leaving the system—Drivers may quit,
locomotives may be retired from service, product can perish. The
challenge of modeling departures is that they depend on the state of the
system, whereas exogenous arrivals are normally modeled as being
independent of the state of the system.

c) Information about the state of a resource—An aircraft may break down
or a driver may call in sick.

An important dimension of the modeling of resources is the concept of
knowability and actionability. It is not uncommon for a customer to call in and
book an order in advance. Thus, the order becomes known right now (time t)
but actionable when it actually arrives to the system at some point in the
future (at time t0 � t). Most stochastic models implicitly assume that a
customer demand is not known until it actually arrives. By contrast, most
deterministic models assume that we know all orders in advance (or more
precisely, that we do not want to make a decision taking into account any
order that is not already known). In practice, both extremes arise, as well as
the case of prebooking where customers call at least some of their orders in
advance.

Processes
Under this category, we include information about parameters that govern

the evolution of the system over time. The most important classes include:

a) The time required to complete a decision—In most areas of trans-
portation, travel times are random, and sometimes highly so (although
applications vary in the degree to which random travel times actually
matter). In air traffic control problems, planes may land at 20minute
intervals. Flights of several hours can easily vary in duration by 10 or
20minutes, so they have to maintain a short backlog of flights to ensure
that there is always an aircraft available to land when the runway has
the capacity to handle another arrival. In railroads, it is not unusual for
the travel time between two points to take anywhere from 5 to 8 days.

b) The cost of a decision—This is often the least uncertain parameter, but
there are a number of reasons why we might not know the cost of a
decision until after the fact. Costs which are typically not fully known in
advance include tolls, transportation accidents, and processing costs
that are not always easy to allocate to a particular activity. Even
more uncertain is the revenue that might be received from satisfying
a customer which might arise as a result of complex accounting
procedures.
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c) Parameters that determine the attributes of a resource after a decision—
Examples might include the fuel consumption of an aircraft or
locomotive (which determines the fuel level), or the maintenance status
of the equipment at the end of a trip.

Controls
In real problems, there is a difference between the decisions that we are

planning to make, and the decisions that are actually made. The flow of actual
decisions is an important exogenous information process. There are several
reasons why an actual physical system does not evolve as planned:

1) The decisions made by a model are not as detailed as what is actually
needed in operations. The user has to take a plan developed by the
model and convert it into something implementable.

2) The user has information not available to the model.
3) The user simply prefers to use a different problem solving approach

(possibly suboptimal, but this assumes the solution provided by the
model is in some way optimal).

When there is a difference between what a model recommends and the
decisions that are actually made, we encounter an instance of the user non-
compliance problem. This is a source of uncertainty that is often overlooked.

2.3 Special modeling issues in transportation

Transportation problems introduce an array of issues that provide special
modeling and algorithmic challenges. These include:

a) Time staging of information—In freight transportation, information
arrives over time. This is the heart of any stochastic model.

b) The lagging of information—Often, a customer will call at time t to
place an order to be served at time t0>t. The same lagging of
information may apply to the vehicles used to serve customers. Since we
have information about the future, it is tempting to assume that we can
make plans about the future, even before new information becomes
known.

c) Complex resource attributes—It is often assumed that the number of
different types of resources is ‘‘not too large.’’ The number of resource
types determines the number of constraints. In practice, the attributes of
resources can be surprisingly complex, creating problems where the
number of constraints can number in the millions. This is a challenge
even for deterministic models, but poses special difficulties in the context
of stochastic problems.

d) Integrality—Many transportation problems exhibit network structure
that makes it much easier to obtain integer or near-integer solutions.
This structure can be easily destroyed when uncertainty is introduced.

562 W.B. Powell and H. Topaloglu



e) Travel times—The common behavior in transportation problems that it
takes time to move from one location to the next is generally a minor
issue in deterministic models. In stochastic models, it can introduce
major complications. If the travel times are deterministic, the result can
be a dramatic growth in the size of the state space. However, it is often
the case that travel times not only are stochastic, they are not even
measurable when the trip is initiated.

f) Multi-agent control—Large transportation systems might be controlled
by different agents who control specific dimensions of the system. The
decisions of other agents can appear as random variables to a particular
agent.

g) Implementation—What we plan may not be the same as what actually
happens. An overlooked source of uncertainty is the difference between
planned and executed decisions.

2.4 Why do we need stochastic programming?

There are two types of modeling technologies that are widely used in
practice: simulation models, which are used almost entirely for planning
purposes where there is a need to understand the behavior of a system that
evolves over time, and deterministic optimization models and algorithms,
when there is a need for the computer to recommend what action should be
taken. Stochastic programming brings the modeling of uncertainty explicitly
into the process of making a decision (using an optimization algorithm). But,
there is a large community of both academic researchers and consultants who
feel that they are being quite productive with the algorithms that they are
developing based on deterministic models.

There is a broad perception, in both the academic research community
and in engineering practice, that deterministic optimization algorithms are
‘‘good enough.’’ In part this can be attributed to both the mathematical
maturity that has been required to understand stochastic models, and the lack
of practical, problem-solving tools. But equally important, we need to
understand the ways in which stochastic models can provide solutions that are
not just better, but noticeably better in a way that would attract the attention
of industry. An understanding of these issues will also indicate where
stochastic models are not necessarily appropriate. A partial list of motivations
for stochastic models should include:

1) The newsvendor effect—Providing the right amount of resource to meet
demand given the uncertainty in demand and the relative costs of
providing too much or too little. A deterministic model will never
allocate more than the point forecast, even when there are excess
resources. Stochastic models can overallocate or underallocate depend-
ing on the overall availability of resources to meet forecasted demands.
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2) Robust allocation—We might need the container in city A or city C, but
we are not sure, so we send the truck halfway in between to city B where
it can wait and respond to the demand at the last minute. A
deterministic model will never send capacity to a location that does not
need it.

3) The value of advance information—Stochastic models can explicitly
model the staging of information over time. A carrier might want to
know the value of having customers book orders farther in advance. A
proper analysis of this question needs to consider the value of reducing
the uncertainty in a forecast.

4) Forecasts of discrete items—Sometimes it is necessary to forecast low
volume demands; for example, orders might be 1 with probability 0.20
and 0 with probability 0.80. A point forecast would produce a demand
of 0.20, but a routing and scheduling model is unable to assign 0.20
trucks to the order (the algorithm routes a single truck). Integer
rounding amounts to little more than Monte Carlo sampling (simple
rounding produces biases—it is necessary to round based on a random
sample whose expectation is the same).

5) The algorithmic challenge of solving problems over extended planning
horizons—Classical optimization algorithms struggle with optimization
problems defined over long horizons, typically as a result of degeneracy.
Formulations based on a stochastic ‘‘view’’ of the world produces
time-staged problems that are much easier to solve. Sequences of two-
stage problems are much easier to solve than a single, large integer
program.

6) Overoptimizing problems with imperfect data—A deterministic view of
the world can produce problems that are larger and more complex than
necessary. An appreciation of uncertainty, not only of the future but
also of the ‘‘here and now’’ data (which in practice is a major form of
uncertainty) produces models that are smaller and more compact.

3 Modeling framework

The first chapter of this handbook provides a basic mathematical
framework for multistage stochastic programming problems. The problem
with these abstract formulations is spanning the gap between generic mathe-
matical formulations and real problems. In this section, we offer a notational
framework that helps to bridge the gap between real-world dynamic resource
allocation problems, and the basic framework of math programming in
general, and stochastic programming in particular.

We divide our modeling framework between three fundamental dimen-
sions: the resources being managed, the processes that govern the dynamics of
the system, and the structure and organization of controls which manage the
system. Our presentation is not the most general, but allows us to focus on the
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dimensions that are important for modeling the organization and flow of
information.

3.1 Resources

To help formalize the discussion, we offer the following definition:

Definition 1. A resource is an endogenously controllable information class
that constrains the system.

From a math programming perspective, a resource is anything that shows
up as a right hand side of a constraint (no surprise that these are often referred
to as ‘‘resource constraints’’). For transportation, resources include trucks,
trains, planes, boxcars, containers, drivers/crews, and special equipment that
may be needed to complete a trip. Sometimes, but not always, the ‘‘demands’’
being served also meet this definition. For example, the load of freight that we
are moving from one location to the next is both endogenously controllable
(we often have to determine when to move the load, and sometimes how it is
routed) and it constrains the system.

We describe resources using the following:

CR ¼ The set of resource classes (e.g., tractors, trailers, drivers, freight).
Rc ¼ The set of (discrete) resources in class c2 CR.
ar ¼ The attributes of resource r2Rc, c2 CR.
Ac ¼ The space of attributes for resource class c2 CR, with element ac2Ac.

We often use A to represent the attribute space of a generic resource.

The attribute vector is a very flexible device for describing the charac-
teristics of a resource. In truckload trucking, it might be the case that all
trucks are the same, in which case the attribute vector consists only of the
location of the truck. In rail car distribution, the attribute vector can be the
type of car as well as the location. If the resource is a human operator,
the vector can grow to include attributes such as the home domicile, days
away from home, hours of service, and skill sets.

The definition of the attribute space requires an understanding of how a
resource evolves over time, and in particular the flow of information. For
example, an air cargo carrier working for the military airlift command might
have to move a load of cargo from the eastern United States to southeast Asia.
This trip might require midair refueling, as well as stops at several
intermediate airbases. Is it necessary to represent the aircraft at each of these
intermediate points, or is it enough to assign the aircraft to move a load, and
then model its status at the destination? The answer depends on the evolution
of information and decisions. For example, if we can completely model all the
steps of a trip using the information available when the aircraft first takes off
from the origin, then there is no need to model the intermediate points. But we
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might wish to model the possibility of a failure in the midair refueling, or the
failure of the aircraft itself at any of the intermediate airbases. Both of these
represent examples of new information arriving to the system, which requires
modeling the status of the aircraft just before the new information arrives. The
new information may produce new decisions (we may wish to reroute the
aircraft) or a change in the dynamics (the aircraft may be unexpectedly
delayed at an airbase).

The need to model our aircraft at intermediate points raises a new and
even more complex issue. An aircraft that is fully loaded with freight takes
on the characteristics of a layered (or composite) resource. That is, we
have not only the characteristics of the aircraft, but also the characteristics of
the freight on the aircraft. This sort of layering arises frequently in
transportation operations. Another example arises in the management of
locomotives. A locomotive may be sitting idle at a rail yard, or it may be
attached to an inbound train (which is making an intermediate stop). If the
locomotive is attached to an inbound train, then we have not only the
attributes of the locomotive, but also of the train itself (such as its final
destination).

We handle this behavior by defining layered attribute vectors. For example,
let:

aA ¼ The attributes of an aircraft.
aR ¼ The attributes of a load of freight being moved (known as

requirements).
aC ¼ The attributes of the crew piloting the aircraft.

When an aircraft is loaded and making a set of stops, then the attributes of
the composite resource at the intermediate stops would be represented using:

a(A) ¼ The attributes of the aircraft layer.
¼ aA j aR j aC, where aA, aR and aC are the attributes of the primitive

aircraft, requirement and crew resources.

A layer is a concatenation of attributes. An aircraft which is currently
sitting idle (a primitive resource) would have the attribute a(A)¼ aA j a� j a�.

In more complex problems, we may encounter three, four or even five
layers. For these problems, we have to define in advance how resources may
be combined.

Regardless of our problem class, we let:

Rt,a ¼ The number of resources with attribute a2A at time t.
Rt ¼ ðRt,aÞa2A.

One issue that often arises in transportation is the concept of knowability
and actionability. We may know of a resource r with attribute ar at time t
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which is not actionable until some time t0>t. This can arise when a customer
calls in an order in advance, or when a plane takes off from airport i at time t
but will not arrive at airport j until time t0. Actionability can arise as an
‘‘estimated time of arrival,’’ an order pickup time, or the time when a task
(such as maintenance) will be finished. Actionability can be viewed as being
simply an attribute of a resource, and therefore part of the vector a. But often,
the actionable time is sufficiently important that it needs to be represented
explicitly. In this case, we write:

Rt,at0 ¼ Number of resources that we know about with attribute a at time t
that will not be actionable until time t0 � t.

Rtt0 ¼ ðRt,at0 Þa2A:
Rt ¼ ðRtt0 Þt0�t:

Thus, we can continue to use the vector Rt as our general state vector,
recognizing that it may be divided into elements Rtt0 .

This discussion illustrates a division in the operations research community
on the meaning of a time index. Deterministic models of time-staged processes
always use time to refer to when an action will happen (‘‘actionability’’).
Stochastic models almost always use time to refer to the information content
of a variable (‘‘knowability’’ or, in formal terms, ‘‘measurability’’). In general
problems, it is necessary to use both, but this can sometimes be clumsy. We
use the double time index (t, t0) when we want to explicitly refer to the
information content of a variable (‘‘t’’), and when an activity actually takes
place (‘‘t0’’). Whenever we use a single time index, such as Rt, we will always
intend the time index to refer to the information content.

3.2 Processes

A dynamic process evolves because of two types of information processes:
exogeneous information processes, that arrive as a series of events which
update the state of the system, and endogenous information processes,
otherwise known as decisions. Following the conventions described in the first
chapter of this volume, we let:

�t ¼ The information arriving in time period t. � can represent new
information about customer demands, new equipment entering the
system, equipment breakdowns, and travel delays.

� ¼ ð�tÞt2T
¼ The information process over the model horizon represented by the

set of time periods T.

In general, new information arriving from external sources is captured in a
knowledge base which summarizes all the information known at time t.
Following standard convention, we let Ft be the �-algebra generated by the
vector (�0, . . . , �t).
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The standard representation of information in real problems does not
always follow standard assumptions. To illustrate, let:

Kt ¼ Our (data) knowledge base at time t.
UK
¼ The knowledge updating function which updates Kt�1 using new

information �t.

We would representing our updating process as:

Kt UK ðKt�1, �tÞ

Realizing that Ft�1�Ft, one would expect that �(Kt) (the �-algebra
generated by the random variable Kt) would satisfy �(Kt�1)� �(Kt). This
assumes that computer databases do not ‘‘forget’’ information. But this is not
always the case. It is not our intent to raise this as a serious issue, but just as a
reminder to the reader that standard mathematical assumptions do not always
apply to the real world.

For our problems, we can typically divide new information into two classes:
the arrivals of new resources (including new customer demands, as well as new
equipment or new drivers), and information about model parameters (such as
costs and times). This distinction is important in our problem representation,
so we define:

�̂�t ¼ Updates to model parameters arriving in time period t.
R̂Rtt0 ¼ The vector of new resources arriving in time period t that become

actionable at time t0 � t.
R̂Rt ¼ ðR̂Rtt0 Þt0�t:

Thus, we would write �t ¼ ð�̂�t, R̂RtÞ with sample realization !t ¼ �tð!Þ ¼
ð�̂�tð!Þ, R̂Rtð!ÞÞ.

We represent decisions using:

CD ¼ The set of decision classes (move empty, move loaded, refuel,
maintain the equipment, have a driver go on rest, etc.)

Dc ¼ The set of discrete decisions in decision class c2 CD.
D ¼ [c2CD Dc

We use D to refer to the complete set of decisions. In most transportation
applications, it is useful to capture the fact that the set of decisions also
depends on the attribute of the resource being acted on. For this purpose we
define:

Da ¼ The set of decisions that can be used to act on a resource with
attribute a2A.
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For the purposes of our presentation, we consider only direct decisions that
act on the attributes of a resource (this would exclude, for example, decisions
about pricing or what speed to fly an aircraft). For transportation problems, if
d2D is an instance of a decision, then the impact of the decision is captured
through the modify function, which is a mapping:

MðKt, a, dÞ ! ða
0, c, �Þ ð2:1Þ

where d is a decision acting on a (possibly layered) resource with attribute a at
time t producing a resource with attribute a0, generating a contribution c and
requiring time � to complete the action. a0, c and � are all functions, which we
can represent using the triplet ðaMðt, a, d Þ, cMðt, a, d Þ, �Mðt, a, d ÞÞ (for nota-
tional compactness, we index these functions by time t instead of modeling the
explicit dependence on Kt). We call aMðt, a, d Þ the terminal attribute function.
Normally, we represent the costs and times using the vectors ctad ¼ cMðt, a, dÞ
and �tad ¼ �

Mðt, a, d Þ. We note as an aside that while we will usually model
ðaMðt, a, d Þ, cMðt, a, d Þ, �Mðt, a, d ÞÞ as Ft—measurable, this is certainly not
always the case. For example, Section 4 describes an application in rail car
distribution. In this application, empty freight cars are moved to customers to
move loads of freight. The destination of a load is typically not known until
the car is released loaded back to the railroad. The travel time of the
movement is not known until the car actually reaches the destination.

The set D is the set of types of decisions we make. The decision vector itself
is represented using:

xtad ¼ The number of times that we act on a resource with attribute a using
decision d at time t.

xt ¼ ðxtadÞa2A, d2D:
¼ The vector of decisions at time t.

Letting ct similarly represent the vector of contributions at time t provides
for a compact representation that matches standard modeling notation. Most
transportation costs are linear in the decision variables, and as a result, the
total contribution at time t can be written as:

CtðxtÞ ¼
X
a2A

X
d2D

ctadxtad

¼ ctxt:

It is important to realize that our notation for stochastic problems is
different in a subtle but important way than the notation conventionally used
in deterministic transporation models. For example, it is normal to let xijt be
the flow from location i to location j departing at time t. The index j effectively
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presumes a deterministic outcome of the decision (the notation xijt(!) does not
fix the problem; we would have to write xi, jð!Þ, t which is quite ugly). We might
not question the outcome of a decision to send a truck or plane from i to j
(frequent fliers will remember at least one occasion when the plane did not
arrive at the proper destination as a result of weather problems). But in more
complex problems where we are capturing a larger vector of attributes, the
terminal attribute function aMðt, a, d Þ cannot in general be assumed to be a
deterministic function of (t, a, d ). The representation of a decision using xtad is
important for stochastic problems since the variable is indexed only by
information available when the decision is made.

For algebraic purposes, it is useful to define:

�t0,a0 ðt, a, dÞ ¼ Change in the system at time t0 given a decision

executed at time t:

¼
1 if Mtðt, a, dÞ ¼ ða

0, � , t0 � tÞ

0 otherwise

�

We note that if d represents a decision to couple two resources, then a is the
attributes of the resource, d contains the information about the resource being
coupled with, and a0 is the concatenation of two attribute vectors.

Using this notation, we can now write the dynamics of our resource
variable (incorporating the time-lagging of information):

Rtþ1,a0t0 ¼ Rt,a0t0 þR̂Rtþ1,a0t0 ð!Þ þ
X
d2D

X
a2A

�t0,a0 ðt, a, dÞxtad a0 2 A, t0 > t:

ð2:2Þ

3.3 Controls

It is common in transportation problems to focus on decisions that move
resources from one location to the next. While this is the most obvious
dimension, it is important to capture other types of decisions.

Our notation for representing decisions offers considerable flexibility. It is a
common misconception in the modeling of transportation systems that
decisions always represent movements from one location to another.
Examples of different classes of decisions other than spatial movements
include: cleaning dirty vehicles, repairing or maintaining equipment, sending a
driver off-duty, using outside contractors to perform a task, transferring rail
cars from one shipper pool to another (this is a form of classification, and does
not mean moving from one location to another), buying/selling/leasing
equipment, and hiring/firing drivers.
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In deterministic problems, decisions are made by solving a particular
instance of an optimization problem. In stochastic problems, we have to
capture the time staging of decisions and information. We represent the
process of making decisions at time t using:

It ¼ The set of information available for making a decision.
X�

t ðItÞ ¼ The decision function of policy �2� which returns a vector xt
given the information set It.

In Section 3.6, we describe different classes of information, and the types of
decision functions these produce.

For our problems, the decision function will be some sort of mathematical
program, since the decisions typically are vectors, possibly of fairly high
dimensionality. Later we provide specific examples of decision functions, but
for now, we simply assume that they produce feasible solutions. The most
important constraint that must be satisfied is flow conservation:

X
d2D

xtad ¼ Rta 8a 2 A:

In addition, the flows must be nonnegative and, in many applications
(virtually all involving operational problems in transportation) integer.

3.4 Modeling state variables

It is useful at this point to make a brief comment about ‘‘state variables,’’
since these take on differentmeanings in different communities. In ourmodeling
framework, the attribute vector a captures the ‘‘state’’ of a particular resource.
Rt ¼ ðRtaÞa2A is the ‘‘state’’ of the vector of resources. It (which we have not
completely defined) is the ‘‘information state’’ of the system. In some
subcommunities (notably, people who solve crew scheduling problems using
column generation techniques), the management of multiple resources is
decomposed into subproblems involving the optimization of a single resource.
In this context, someone might talk about a large ‘‘state space’’ but refer to the
attribute space of a single resource.

It is very common in the operations research literature (most commonly in
the context of dynamic programming and Markov decision processes) to talk
about the ‘‘state’’ of the system, where the state variable captures the amount
of product being stored or the customer demands that have been backlogged.
In this setting, the ‘‘state’’ of the system refers to the resource state variable,
Rt. Even recently, discrete dynamic programming models have been proposed
using Rt as the state variable. Not surprisingly, the number of possible
realizations of Rt (assuming it is discrete) will be huge even for toy problems.
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Of course, the real state variable must be what we know or, literally, the
state of our knowledge, which we denote by Kt. Other authors refer to this as
the information state. We let It be the information state, but claim that there
are potentially four classes of information:

a) Knowledge—This is the data in the vector Kt, capturing the exogenous
data that has been provided to the system.

b) Forecasts of exogenous processes—This is information from a
forecasting model, representing projections of what might happen in
the future. If we are making a decision at time t, this would be a
projection of ð�̂�tþ1, �̂�tþ2, . . . , �̂�T Þ. We may use a point forecast of future
events, or forecast a set of future scenarios which would be represented
using the set �̂�t (the set of future events forecasted at time t). If j�̂�tj ¼ 1,
then we are using a traditional point forecast.

c) Forecasts of the impact of decisions now on the future. In this chapter,
this dimension will be captured through the recourse function and hence
we denote the set of possible recourse functions, estimated at time t (but
capturing the impact on the future) by Qt.

d) Plans—These are projections of decisions to be made in the future,
which can be expressed in a variety of ways (it is useful to think of these
as forecasts of future decisions). A convenient way is to represent them
as a vector of decisions x

p
t ¼ ðx

p
tt0 Þt0�t, where x

p
tt0 is the plan for time t0

using the information available at time t. We note that plans are almost
always expressed at some level of aggregation. Normally, we use plans
as a guide and penalize deviations from a plan.

The last three classes of information are all forms of forecasts. We assume
that these are generated from data that is a function of Kt. However, while a
forecast is generated from knowledge, they do not represent knowledge itself.
All companies seek to improve decision-making by improving the knowledge
base Kt, but they also consider the value of including forecasts (many
transportation companies do not perform short term operational forecasts,
and most research into problems such as dynamic vehicle routing does not use
forecasts) or future plans. Companies make explicit decisions to add these
classes of information to their decision making process (and adjust the process
accordingly).

Using this definition of information, the information state can come in a
variety of forms, such as It¼ (Kt), It ¼ ðKt, �̂�tÞ, It ¼ ðKt, x

p
t Þ and It¼ (Kt,Qt).

Later we show that different classes of information give rise to the major
classes of algorithms known in the operations research community. For
the moment, it is necessary only to understand the different ways of
representing the ‘‘state’’ of the system. Our notation contrasts with the
standard notation St for a state variable. The problem is that St is not
very explicit about what is comprising the state variable. We suggest using St

when we want to refer to a generic ‘‘state,’’ and use a, Rt, Kt or It when we
want to express explicit dependence on, respectively, the attribute of a single
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resource, the resource state vector, the entire knowledge base, or a broader
information set.

Using these notions of state variables, it is useful to revisit how we write our
cost and decision functions. The representation of costs and decisions using
the notation ctad and xtad suggests that both the costs and decisions are a
function only of the attribute vector of the resource, although this does not
have to be the case. We may write the decision function as X�(Rt) if all other
types of information are static. The reader may write X�(Kt) to express the
explicit dependence on the larger knowledge base, but this generality should
be reserved for problems where there are parameters which are evolving over
time, and whose values affect the forward evolution of the system.

3.5 The optimization problem

Our problem is to find a decision function X � that solves the following
expression:

F* ¼ sup
�2�

EF� ð2:3Þ

¼ sup
�2�

E
X
t2T

CtðX
�
t ðItÞÞ

( )
: ð2:4Þ

The system has to respect the following equations governing the physical
and information dynamics:

Physical dynamics:

Rtþ1,a0t0 ð!Þ¼Rt,a0t0 ð!ÞþR̂Rtþ1,a0t0 ð!Þþ
X
d2D

X
a2A
�t0,a0 ðt, a, dÞxtad a0 2A, t0> t:

ð2:5Þ

Informational dynamics:

Ktþ1 ¼ UK ðKt, �tþ1Þ: ð2:6Þ

The decision function X�
t is assumed to produce a feasible decision. For this

reason, flow conservation constraints and upper bounds are not included in
this formulation.

The optimization problem is one of choosing a function. The structure of
the decision function depends on the information available. Within an
information class, a decision function is typically characterized by a family of
parameters and we have to choose the best value for these parameters.
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3.6 A brief taxonomy of problems

Using our modeling framework, we can provide a brief taxonomy of major
problem classes that arise in transportation. We divide our taxonomy along
the three major dimensions of resources, processes and controls.

Resources
By just using the attribute vector a notation, we can describe six major

problem classes in terms of the resources being managed:

1) Basic inventory problems—a¼ {} (no attributes). This is the classical
single product inventory problem.

2) Multiproduct inventory problems—a¼ {k} where k2K is a product type.
3) Single commodity flow problems—a¼ {i} where i2 I is a state variable

(such as a city or geographical location).
4) Multicommodity flow problems—a¼ {i, k} where i2 I is a state variable

(such as a location) and k2K is a commodity class.
5) Heterogeneous resource allocation problem—a¼ {a1, a2, . . . , aN}. In

these more complex problems, it is possible to divide the attribute vector
into static attributes, as which do not change over time, and dynamic
attributes, ad, which do change. Writing a¼ {as, ad}, we can think of ad

as a resource state variable, and as as a resource type variable.
6) The multilayered resource allocation problem—a ¼ fa1 j a2 j � � � j aLg

where ac is the attributes of resource class c. Here, a is a concatenation
of attribute vectors.

Although the sixth class opens the door to multilayered problems, it is
useful to divide resource allocations between single layer problems, two-layer
problems (which most often involve an active resource layer representing
people or equipment, and a passive layer representing customer requests), and
multilayer problems.

We focus on single layer problems in this chapter, which include the first
five types of attribute vectors. Of these, the first four are typically
characterized by small attribute spaces, where it is possible to enumerate all
the elements in A, while heterogeneous resource allocation problems are
typically characterized by an attribute space that is too large to enumerate. As
we point out later, this creates special problems in the context of stochastic
resource allocation problems.

System dynamics
Under the heading of system dynamics, we divide problems along three

major dimensions:

1) The time staging of information—The two major problem classes are:

a) Two-stage problems.
b) Multistage problems.
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2) Travel times (or more general, decision completion times). We define
two major classes:

a) Single-period times—�tad¼ 1 for all a2A, d2D.
b) Multiperiod times—1 � �tad � �

max. We assume that �tad� 1 but we
can relax this requirement and model problems where �tad¼ 0.

3) Measurability of the modify function. We again define two major
classes:

a) The function M(t, a, d) is Ft—measurable. This means that
ðaMðt, a, dÞ, cMðt, a, dÞ, �Mðt, a, dÞÞ is deterministic given a, d and
other parameters that are known at time period t.

b) The function M(t, a, d) is not Ft-measurable. This is common,
although we are not aware of any research addressing this issue.

Controls
We first divide problems into two broad classes based on control structure:

1) Single agent control structure—The entire company is modeled as being
controlled by a single agent.

2) Multiagent control structure—We model the division of control between
multiple agents.

Starting with the single agent control structure, we can organize problems
based on the information available to make a decision. Earlier, we described
four classes of information. We can now describe four classes of algorithms
built around these information sets:

a) It¼ (Kt)—This is our classic myopic algorithm, widely used in simu-
lations. This is also the standard formulation used (both in practice and
in the research community) for dynamic vehicle routing problems, and
other on-line scheduling problems.

b) It ¼ ðKt, �̂�tÞ—If j�̂�tj ¼ 1, this is our classical rolling horizon procedure
using a point forecast of the future. This represents standard engineer-
ing practice for fleet management problems and other dynamic
resource allocation problems. If j�̂�tj > 1, then we would obtain a
scenario-based stochastic programming model. The use of these
formulations for multistage problems in transportation and logistics is
very limited.

c) It ¼ ðKt, x
p
t Þ—Here we are making decisions reflecting what we know

now, but using plans to help guide decisions. This information set
typically gives rise to proximal point algorithms, where the proximal
point term penalizes deviations from plan.

d) It¼ (Kt,Qt)—This information set gives rise to dynamic programming
formulations, Benders decomposition and other methods for approx-
imating the future. Typically, the recourse function Qt is itself a function
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of a distributional forecast �̂�t, so it is appropriate to write Qtð�̂�tÞ to
express this dependence.

This breakdown of different types of decision functions, each based on
different types of information, nicely distinguishes engineering practice
(It¼ (Kt) or It ¼ ðKt, �̂�tÞ with j�̂�j ¼ 1) from the stochastic programming
literature (It ¼ ðKt, �̂�tÞ with j�̂�j > 1 or It ¼ ðKt,QtÞ). The use of proximal
point algorithms has been studied in the stochastic programming literature,
but the use of plans (generated from prior data) to help guide future decisions
is often overlooked in the modeling and algorithmic community. If stochastic
programming is to gain a foothold in engineering practice (within the trans-
portation and logistics community), it will be necessary to find the problem
classes where the more advanced decision sets add value.

Complex problems in transportation, such as railroads, large trucking
companies and the air traffic control system, are characterized by multiple
decision-making agents. We would represent this structure by defining:

Dq ¼ The subset of decisions over which agent q has control.
Itq ¼ The information available to agent q at time t.

Then X�
tqðItqÞ is the decision function for agent q given information Itq at

time t.
Multiagent systems capture the organization of information. By contrast,

classical stochastic programming models focus on the flow of information. In
transportation, modeling information is important, but we typically have to
capture both the organization and flow. We also find that in a multiagent
system, we may have to forecast the behavior of another agent (who may work
within the same company). This can be an important source of uncertainty in
large operations.

4 A case study: freight car distribution

When moving freight by rail (for the purposes of this discussion, we exclude
the movement of intermodal freight such as trailers and containers on
flatcars), a shipper requests one or more cars, of a particular type, at his dock
for a particular day. The request may be for one or two cars, or as many as
100 or more. The railroad identifies specific cars that can be assigned to the
request, and issues a ‘‘car movement order’’ to get the car to the shipper. The
car may be in a nearby yard, requiring only the movement of a ‘‘local’’ train to
get the car to the shipper. Just as easily, the car may have to move from a
much farther location through a sequence of several trains before arriving at
the final destination.

Freight cars come in many types, often looking the same to the untrained
eye but appearing very different to the shipper. For example, there are 30 types
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of open top gondola cars (‘‘gons’’ in the industry). When a railroad cannot
provide the exact type of car from the closest depot on the correct day, it may
resort to three types of substitution:

1) Geographic substitution—The railroad may look at different sources of
cars and choose a car that is farther away.

2) Temporal substitution—The railroad may provide a car that arrives on
a different day.

3) Car type substitution—The railroad may try to satisfy the order using a
slightly different car type.

Once the decision has been made to assign a car to a customer request, the
railroad begins the process of moving a car to the destination. If the car is far
away, this may require movements on several trains, passing through one or
more intermediate classification yards which handle the sorting process. Travel
times are long, and highly variable. It can take up to two or three weeks to
move an empty car to a customer, wait for it to load, move it loaded, and then
wait for it to unload (known as a car cycle). Travel times typically range
between one and five days or more. Travel times between a pair of locations
that averages six days can see actual transit times between four and eight days.

From the perspective of car distribution, there are three important classes
of dynamic information: the flow of customer requests for capacity, the
process of cars becoming empty (either because a shipper has emptied and
released the car or because another railroad has returned the car empty), and
the travel times for cars moving from one location to another. Customer
orders are typically made the week before the car is actually needed, but some
orders are made more than a week in advance, and some orders are made at
the last minute (especially from large, high priority customers). There is very
little advance information about empty cars, and of course, transit times are
only known after the movement is completed. Thus, we see information
processes where the difference when a resource is knowable and actionable is
large (customer orders), small (empty cars), and where the modify function is
not Ft-measurable.

It is useful to get a sense of the variability of the data. Fig. 1 is an actual
graph of the demand for cars at a regional level, showing actual, predicted,
and both 10th and 90th percentiles. This graph ignores the presence of booked
orders, and in practice, most orders are known a week into the future. For this
reason, customer orders are not the largest source of uncertainty in an
operational model. A much more significant source of error arises from the
forecast of empty cars. Fig. 2 shows a similar graph for a particular type of
freight car at a specific location. We again see a large degree of variability. In
this case, there is little advance information.

One of the most difficult sources of uncertainty arises in transit times. In
railroads, it is not unusual to see transit times that range between 5 and 10
days. This source of noise is particularly problematic. It means that if we ship
10 cars from i to meet a demand at j, we are not sure when they will arrive.
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It has been suggested that we can improve our forecast of empty cars
becoming available by using what we know about cars that are currently
moving loaded (we know where they are going, so if we could estimate the
transit time, we could estimate when they are becoming available). The
uncertainty of transit times complicates this analysis.

Fig. 1. Actual vs. predicted forecasts of future demands for empty cars, showing the 10th

and 90th percentiles.

Fig. 2. Actual vs. predicted forecasts of supplies of empty cars, showing the 10th and 90th

percentiles.
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We are now ready to consider more carefully the decision classes that
govern the problem. As a result of the long travel times and high degree of
uncertainty, it is not possible to simply wait until orders become known before
a car is assigned to satisfy the order. The situation is further complicated by
the fact that they cannot always let a car sit until there is an order to assign it
to. A car may become available at a location that does not have the capacity
to store the car. As a result, the railroad faces four possible classes of decisions
when a car becomes empty:

1) Send it directly to a customer who has booked an order. Normally, we
assume that this decision is to assign a car to a specific order, but it
could be modified to send the car to a customer (where it would be
assigned to a specific order after it arrives).

2) Send it to a regional depot which only serves customers in the region.
3) Send it to a classification yard where cars can be sorted and moved out

on different trains. A classification yard at a railroad is a major facility
and represents a point where it is easiest to make a decision about a car.
From a classification yard, a car may be sent to another classification
yard, a regional depot or directly to a customer.

4) Do nothing. This means storing the car at its current location. This is
generally not possible if it just became available at a customer, but is
possible if it is at a storage depot.

Not every car can be immediately assigned to an order, partly because some
orders simply have not been booked yet, and partly because there are times of
the year when there are more cars than we need. At the same time, one would
expect that we do not always assign a car to a particular order, because not all
the available cars are known right now. However, there is a strong bias to find
an available car that we know about right now (even if it is a longer distance
from the order) than to use a car that might become available later.

5 The two-stage resource allocation problem

We start with the two-stage problem because it is fundamental to
multistage problems, and because some important algorithmic issues can be
illustrated with minimum complexity. It should not be surprising that we are
going to solve multistage problems basically by applying our two-stage logic
over and over again. For this reason, it is particularly important that we be
able to understand the two-stage problem very well.

We begin our presentation in Section 5.1 with a brief discussion of our
notational style. Two-stage problems are relatively simple, and it is common
to use notational shortcuts to take advantage of this simplicity. The result,
however, is a formulation that is difficult to generalize to harder problems.
Section 5.2 summarizes some of the basic notation used specifically for the car
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distribution problem. We introduce our first model in Section 5.3 which
presents models that are in practice today. We then provide three levels of
generalization on this basic model. The first (Section 5.4) introduces
uncertainty without any form of substitution, producing the classical
‘‘stochastic programming with simple recourse’’ formulation. The second
models the effect of regional depots (Section 5.5), which produces a separable
two-stage problem which can be solved using specialized techniques. The last
model considers classification yards which requires modeling general
substitution (Section 5.6), and brings into play general two-stage stochastic
programming, although we take special advantage of the underlying network
structure. Finally, Section 5.7 discusses some of the issues that arise for
problems with large attribute spaces.

5.1 Notational style

One of the more subtle modeling challenges is the indexing of time. In a two
stage problem, this is quite simple. Often, we will let x denote an initial
decision, followed by new information (say, �), after which there is a second
decision (perhaps denoted by y) that is allowed to use the information in the
random variable �.

This is very simple notation, but does not generalize to multistage
problems. Unfortunately, there is not a completely standard notation for
indexing activities over time. The problem arises because there are two
processes: the information process, and the physical process. Within the infor-
mation process, there is exogenous information, and the process of making
decisions (which can be viewed as endogenously controllable information). In
many problems, and especially true of transportation, there is often a lag
between the information process (when we know about an activity) and the
physical process (when it happens). (We ignore a third process, which is the
flow of financial rewards, such as billing a customer for an activity at the end
of a month.)

In the operations research literature, it is common to use notation such as
xt to represent the vector of flows occurring (or initiating) in time t. This is
virtually always the case in a deterministic model (which ignores completely
the time staging of information). In stochastic models, it is more common
(although not entirely consistent) to index a variable based on the information
content. In our presentation, we uniformly adopt the notation that any
variable indexed by time t is able to use the exogenous information up through
and including time t (that is, �0, �1, . . . , �t). If xt is a decision made in time t,
then it is also allowed to see the information up through time t. It is often
useful to think of �t as information arriving ‘‘during time period t’’ whereas
the decision xt is a function determined at the end of time period t.

We treat t¼ 0 as the starting point in time. The discrete time t¼ 1 refers to
the time interval between 0 and 1. As a result, the first set of new information
would be �1. If we let S0 be our initial state variable, we can make an initial
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decision using only this information, which would be designated x0. A
decision made using �1 would be designated x1.

There may be a lag between when the information arrives about an activity
and when the activity happens. It is tempting, for example, to let Dt be the
demands that arrive in period t, but we would let Dt be the orders that become
known in time period t. If a customer calls in an order during time interval t
which has to be served during time interval t0, then we would denote this
variable by Dtt0 . Similarly, we might make a decision in time period t to serve
an order in time period t0; such an activity would be indexed by xtt0 .

A more subtle notational issue arises in the representation of state
variables. Here we depart from standard notation in stochastic programming
which typically avoids an explicit definition of a state variable (the ‘‘state’’ of
the system going into time t is the vector of decisions made in the previous
period xt�1). In resource allocation problems, vectors such as xt can have a
very large number of dimensions. These decisions produce future inventories
of resources which can be represented using much lower dimensional state
variables. In practice, these are much easier to work with.

It is common in multistage problems to let St be the state of the system at
the beginning of time period t, after which a decision is made, followed by new
information. Following our convention, St would represent the state after the
new information becomes known in period t, but it is ambiguous whether this
represents the state of the system before or after a decision has been made. It is
most common in the writing of optimality equations to define the state of the
system to be all the information needed to make the decision xt. However, for
computational reasons, it is often useful to work in terms of the state of the
system immediately after a decision has been made. If we let Sþt be the
complete state variable, giving all the information needed to make a decision,
and let St be the state of the system immediately after a decision is made, the
history of states, information and decisions up through time t would be
written:

ht ¼ fS
þ
0 , x0, S0, �1, S

þ
1 , x1, S1, �2, S

þ
2 , x2, S2, . . . , �t, S

þ
t , xt, St, . . .g:

ð5:1Þ

We sometimes refer to St as the incomplete state variable, because it does
not include the information �tþ 1 needed to determine the decision xtþ 1. For
reasons that are made clear later (see Section 6.2), we find it more useful to
work in terms of the incomplete state variable St (and hence use the more
cumbersome notation Sþt for the complete state variable).

In this section, we are going to focus on two-stage problems, which consist
of two sets of decision vectors (the initial decision, and the one after new
information becomes known). We do not want to use two different variables
(say, x and y) since this does not generalize to multistage problems. It is
tempting to want to use x1 and x2 for the first and second stage, but we find
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that the sequencing in equation (5.1) better communicates the flow of deci-
sions and information. As a result, x0 is our first stage decision while x1 is our
second stage decision.

5.2 Modeling the car distribution problem

Given the complexity of the problem, the simplicity of the models in
engineering practice is amazing. As of this writing, we are aware of two basic
classes of models in use in North America: myopic models, which match
available cars to orders that have already been booked into the system, and
models with deterministic forecasts, which add to the set of known orders
additional orders that have been forecasted. We note that the railroad that
uses a purely myopic model is also characterized by long distances, and
probably has customers which, in response to the long travel times, book
farther in advance (by contrast, there is no evidence that even a railroad with
long transit times has any more advance information on the availability of
empty cars). These models, then, are basically transportation problems, with
available cars on the left side of the network and known (and possibly
forecasted) orders on the right side.

The freight division of the Swedish National Railroad uses a deterministic
time–space network to model the flows of loaded and empty cars and
explicitly models the capacities of trains. However, it appears that the train
capacity constraints are not very tight, simplifying the problem of forecasting
the flows of loaded movements. Also, since the model is a standard,
deterministic optimization formulation, a careful model of the dynamics of
information has not been presented, nor has this data been analyzed.

The car distribution problem involves moving cars between the locations
that handle cars, store cars and serve customers. We represent these using:

I c
¼ Set of locations representing customers.

I rd
¼ Set of locations representing regional depots.

I cl
¼ Set of locations representing classification yards.

It is common to represent the ‘‘state’’ of a car by its location, but we use our
more general attribute vector notation since it allows us to handle issues that
arise in practice (and which create special algorithmic challenges for the
stochastic programming community):

Ac
¼ The set of attributes of the cars.

Ao
¼ The set of attributes of an order, including the number of days into

the future on which the order should be served (in our vocabulary, its
actionable time).

Rc
t,at0 ¼ The number of cars with attribute a that we know about at time t that

will be available at time t0. The attribute vector includes the location
of the car (at time t0) as well as its characteristics.
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Ro
t,at0 ¼ The vector of car orders with attribute a2Ao that we know about at

time t which are needed to be served at time t0.

Following the notational convention in equation (5.1), we let Rþ,c0 and Rþ,o0
be the initial vectors of cars and orders at time 0 before any decisions have
been made, whereas Rc

0 and Ro
0 are the resource vectors after the initial

decision x0 has been implemented.
It is common to index variables by the location. We use a more general

attribute vector a, where one of the elements of an attribute vector a would be
the location of a car or order. Rather than indexing the location explicitly, we
simply make it one of the attributes.

The decision classes are given by:

Dc
¼ The decision class to send cars to specific customers, where Dc consists

of the set of customers (each element of Dc corresponds to a location
in Ic).

Do
¼ The decision to assign a car to a type of order. Each element of D0

corresponds to an element of Ao. If d2Do is the decision to assign a
type of car (as apposed to a particular car), we let ad2Ao be the
attributes of the car type associated with decision d.

Drd
¼ The decision to send a car to a regional depot (the set Drd is the set of

regional depots—we think of an element of I rd as a regional depot,
while an element of Drd as a decision to go to a regional depot).

Dcl
¼ The decision to send a car to a classification yard (each element of Dcl

is a classification yard).
d � ¼ The decision to hold the car (‘‘do nothing’’).

The different decision classes are illustrated in Fig. 3, where a car can be
shipped directly to a customer, a regional depot, or a classification yard.

Our complete set of decisions, then, is D ¼ Dc [Do [Drd [Dcl [ d�. We
assume that we only act on cars (cars are the only active resource class,
whereas orders are referred to as a passive resource class). We could turn
orders into an active resource class if we allowed them to move without a car
(this would arise in practice through outsourcing of transportation). Of these,
decisions in Do are constrained by the number of orders that are actually
available. As before, we let xtad be the number of times that we apply decision
d to a car with attribute a given what we know at time t.

The contribution function is:

ctad ¼ The contribution from assigning a car with attribute a to an order for
cars of type d2Do, given what we know at time t. If d2Do, then we
assume that the contribution is a ‘‘reward’’ for satisfying a customer
order, minus the costs of getting the car to the order. For all other
decision classes, the contributions are the (negative) costs from
carrying out the decision.
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Since all orders have to be satisfied, it is customary to formulate these
models in terms of minimizing costs: the cost of moving a car from its current
location to the customer, and the ‘‘cost’’ of assigning a particular type of car
to satisfy the order. Since rail costs are extremely complex (what is the
marginal cost of moving an additional empty car on a train?), all costs are
basically surrogates. The transportation cost could be a time or distance
measurement. If we satisfy the customer order with the correct car type, then
the car type cost might be zero, with higher costs (basically, penalties) for
substituting different car types to satisfy an order. Just the same, we retain our
maximization framework because this is more natural as we progress to more
general models (where we maximize ‘‘profits’’ rather than minimize costs).

5.3 Engineering practice—Myopic and deterministic models

The most basic model used in engineering practice is a myopic model,
which means that we only act on the vectors Rc

0t0 and Ro
0t0 (we believe that in

practice, it is likely that companies even restrict the vector of cars to those that
are actionable now, which means Rc

00). We only consider decisions based on
what we know now (x0ad), and costs that can be computed based on what we
know now (c0ad). This produces the following optimization problem:

min
x

X
a2A

X
d2D

c0adx0ad ð5:2Þ

subject to:

X
d2D

x0ad ¼ Rc
0a a 2 A ð5:3Þ

Fig. 3. Car distribution through classification yards.
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X
a2A

x0ad � Ro
0ad

d 2 Do ð5:4Þ

x0ad 2 Zþ: ð5:5Þ

Equation (5.4) restricts the total assignment of all car types to a demand type
ad, d2Do, by the total known demand for that car type across all actionable
times. The model allows a car to be assigned to a demand, even though the car
may arrive after the time that the order should have been served. Penalties for
late service are assumed to be captured in c0ad.

It is easy to pick this model apart. First, the model will never send a car to a
regional depot or classification yard (unless there happens to be a customer
order at precisely that location). Second, the model will only send a car to an
order that is known. Thus, we would not take a car that otherwise has nothing
to do and begin moving to a location which is going to need the car with a
high probability. Even worse, the model may move a car to an order which
has been booked, when it could have been moved to a much closer location
where there probably will be an order (but one has not been booked as yet). If
there are more cars than orders, then the model provides almost no guidance
as to where cars should be moved in anticipation of future orders.

Amidst these weaknesses are some notable strengths. First, the model is
simple to formulate and solve using commercial solvers. Second, the model
handles all three types of substitution extremely easily (especially important is
substitution across time, something that models often struggle with). But,
perhaps the most important feature is that the solution is easy to understand.
The most overlooked limitation of more sophisticated models is that their
solutions are hard to understand. If the data were perfect, then we would
argue that the user should simply trust the model, but the limitations of the
data preclude such a casual response.

The first generalization used in practice is to include forecasts of future
orders, which we would represent using the vector Ro

tt0 for t2 T
ph, where T ph is

the set of time periods in our planning horizon. The details of the process of
forecasting future orders are, of course, not documented. The process of
forecasting would generally have to be made at some level of aggregation
(daily/weekly, customer level or regional, and the car class). Particularly tricky
is handling the time staging of orders. If a forecast is generated for a particular
time t0 in the future (using, for example, standard time series forecasting
techniques applied to a historical dataset showing customer orders by time
period), then we would be forecasting the total orders for time t0, and then
adding in the orders to be satisfied at time t0 that are known now. We assume
that we have a forecast Ro

tt0 representing the orders that would be placed at
time t to be satisfied at time t0.

We let Ro
tt0 be a point forecast of future demands for t� 1, t0 � t, with Ro

0t0 ,
as before, the orders we know about now. We could also make a forecast of
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cars that will become available in the future, but this is still not normally done.
As a result, our model using a deterministic forecast is given by:

min
x

X
a2A

X
d2D

c0adx0ad ð5:6Þ

subject to:

X
d2D

x0ad ¼ Ro
0a a 2 A ð5:7Þ

X
a2A

x0ad �
X
t2T ph

Ro
tad

d 2 Do ð5:8Þ

x0ad 2 Zþ ð5:9Þ

Equation (5.8) includes demands that are known now ðRo
0aÞ and all orders

that are forecasted to become known within the planning horizon. Note that
we are using forecasted orders, but not forecasted cars. One model in indus-
trial practice separately forecasts future cars becoming available, but these
forecasts are independent of decisions being made now. To model this process,
we would replace equation (5.7) with:

X
d2D

x0ad ¼
X
t2T ph

Ro
ta a 2 A

It would be possible to use a deterministic, time staged model over a
planning horizon, but this would actually be fairly hard to solve, since it
would be a moderately large integer multicommodity flow problem with time
windows on the loads (it is the time windows that really complicates the
formulation).

Models that incorporate forecasted demands have the immediate advantage
of providing recommendations for cars which would otherwise not be
assigned in a myopic model. The model will send cars to locations which
normally book new orders, allowing the railroad to start the process of
moving the car, rather than waiting until the last minute. Since we are only
using a point forecast, the model will not be able to send cars to a location
where they might be needed. This can be a problem when we are in a period
where there is excess supply. This model can recommend letting cars sit at a
location where there is absolutely no chance of them being used, rather than
moving them to a location where they might be used.

Our model does not include forecasts of empty cars. The common rationale
for leaving these forecasts out is that they are so uncertain (it is not unusual for
practitioners to ignore information which cannot be reasonably approximated
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by a point forecast). It also ignores many other operational issues such as train
capacities (which we have already identified to be highly uncertain), yard
capacities (which determines how many cars can be stored at a location) or the
value of cars at the end of the horizon (which we could overcome with a
multistage model).

There are a number of limitations of these simple models, but we would
argue that a serious practical limitation is that the model will never
recommend sending a car to a regional depot or classification yard. In one
application with which we are familiar, the model will recommend sending a
car to a particular customer (perhaps to serve a forecasted order). In the
process of routing the car to the customer, the car will have to go through a
regional depot. The railroad will then route the car to the classification yard,
reoptimizing the assignment of the car to new orders as they become available.
This is a highly heuristic way of accounting for uncertainty.

5.4 No substitution—a simple recourse model

Our first effort to incorporate uncertainty is a simple recourse model where
we replace the decision class to assign cars to a specific order and instead allow
us to send cars to a particular customer (or equivalently, to a customer
location). The difference is that if a customer only places one order, then in the
first model we can only send him one car. In our simple recourse model, we
may send more cars to the customer location at time t than has been ordered
at time t0 in the hopes that new orders will come in later. For this case, we
define:

Ro
t,ct0 ¼ The number of orders for customer c that we first learn about at time t

that are actionable (must be served) at time t0.
Ro

t,c ¼ All the orders for customer c known at time t.
¼ ðRo

t,ct0 Þt0�t.

Of course, Ro
0 are the orders we know about now, while ðRo

t Þt>0 are the
forecasted orders for the future. Unlike our first models, we are now going to
explicitly model the uncertainty in the forecast of future orders. Looking at
equation (5.8), we see that we only need the total forecast of future demands.
For this reason, it is simpler to define:

R
o

1,c ¼
X

t2T ph
nf0g

X
t02T ph

Ro
t,ct0 :

R
o

1c is a random variable representing all ‘‘future’’ demands, which would be
derived from a forecasting model. Note that we have aggregated not
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only across all orders that would become known in the future (t), but across
the dates when the orders would need to be satisfied (t0). Let:

Rc
0,id
¼ The number of cars (indicated by the superscript c) sent to customer

id, d2Dc, where the decision is made at time 0 but the cars can be used
at time 1 (the second stage).

¼
P

a2A x0ad :

The decisions x0ad must be made before the orders ðRo
tiÞt>0 become known.

In our simple recourse model, we assume that a car sent to customer c cannot
then, at a later time, be sent to another customer. It is either used to satisfy an
order (within our planning horizon) or it sits idle. Let:

coi ¼ The (positive) contribution from satisfying an order for customer
i2 Ic.

chi ¼ The contribution (typically negative) from sending a car to customer i
and then having it sit.

Now let:

xo1i ¼ The number of cars assigned to serve an order (after they arrive at
customer i).

xh1i ¼ The number of cars that are held at customer i.

xo1 and xh1 are random variables defined by:

xo1c Rc
0,c, R

o

1cð!Þ
� �

¼ min Rc
0,c, R

o

1cð!Þ
n o

xh1c Rc
0,c, R

o

1cð!Þ
� �

¼ max 0, Rc
0,c � R

o

1cð!Þ
n o

:

We should note that our choices for xo1cðR
c
0,c,R

o

1cð!ÞÞ and xh1cðR
c
0,c,R

o

1cð!ÞÞ
seem a bit obvious, but they are in fact the result of a trivial optimization
problem.

Rc
0,c1 is a function of the first stage decisions x0. Given x0, the expected

second stage reward is given by:

C0,1 Rc
0ðx0Þ

� �
¼ Expected costs using the information available in time

period 0 that would be incurred in time period 1:

¼ E
X
c2I c

cocx
o
1cðR

c
0cðx0Þ, R

o

1cÞ þ chcx
h
1cðR

c
0c, R

o

1cÞ
� �( )

¼
X
c2I c

C0,c1ðR
c
0cðx0ÞÞ

� �
:
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The functions C0,c1ðR
c
0cÞ are concave. If the random demands are discrete,

then it is also possible to show that C0,c1ðR
c
0cÞ is piecewise linear, concave, with

the breakpoints at integer values of Rc
0c. Since these functions are computed as

expectations of scalar random variables, computing them is quite easy once
the distribution of demands is known. Of course, forecasting future demands
is in practice fairly tricky, primarily because of the process of customers
booking orders in advance.

We can now formulate our problem as follows:

min
x0

c0x0 þ C0,1ðR
c
0ðx0ÞÞ

� �
ð5:10Þ

subject to:

X
d2D

x0ad ¼ Rþ,c0a a 2 A ð5:11Þ

X
a2A

x0ad � Rþ,c0ad
d 2 Do ð5:12Þ

x0ad 2 Zþ: ð5:13Þ

This is a convex nonlinear programming problem with network constraints.
If the demands are discrete, producing piecewise-linear concave reward
functions for each shipper, then we can use a standard trick for converting
these problems into pure networks, as shown in Fig. 4.

Fig. 4. The simple recourse problem as a pure network.
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5.5 Shipping to regional depots—a separable recourse model

The major weakness of the simple recourse model is that it does not capture
the ability of the railroad to send cars to a regional depot, and then wait until
the last minute to send cars from the depot to the customer. In fact, it is
generally not possible to send a car to a customer unless the customer has
specifically asked for the car. A more realistic model is to assume that the car
has been sent to a local yard (which we refer to as a regional depot) where it is
stored waiting for customers.

In this section we present a more general model which captures the ability
of a railroad to send cars to a regional depot, after which it can be distributed
to customers. We must, however, introduce one key simplification (which
we relax later), which is that while we can model general substitution
rules between car types and order types in the first stage, we are not going to
allow any substitution between car types in the second stage. One way to
mitigate this approximation is to aggregate car types into more aggregate
categories, and then assume that there is no substitution between major car
categories.

We show in this section how we can solve this more general model,
producing a solution that requires solving a network with the same structure
as that produced for the case of simple recourse (Fig. 4). We begin by
assuming that the demands from different shippers are statistically indepen-
dent, and then present a more general result which uses a technique that we
will use for harder problems.

The case of independent demands—an exact result
We begin by setting up some notation that we need for both models. For

this work, it is easier to index decisions and contributions by the spatial
location. This notation is clearer, although not as general.

For each regional depot there is a set of customers in this region. We
represent this using:

I c
r ¼ The subset of customers in region r2 I rd. We assume that

customers in I c
r can only be served using box cars at depot r.

x1ri ¼ The number of cars sent from r2 I rd to i 2 I c
r to satisfy customer

orders that become known in the second stage (here the
destination i plays the role of the decision d in our earlier
notation).

c1ri ¼ The contribution from sending cars from r2 I rd to i 2 I c
r to

satisfy customer orders that become known in the second stage.
Ro

1c ¼ Random variable giving the number of orders for customer c in
the second stage.

Rc
0rðx0Þ ¼ Total number of cars sent to region r as a result of decisions made

in the first period.
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Both x1 and Ro
1 are random variables. For a given realization of the second

stage orders, we would find ourselves solving:

Q Rc
0r, R

o
1rð!Þ

� �
¼ max

x1

X
r2I rd

X
i2I c

r

c1rix1rið!Þ ð5:14Þ

subject to:X
i2I c

r

x1rið!Þ þ x1rd�ð!Þ ¼ Rc
0r 8r 2 I rd ð5:15Þ

x1rið!Þ � Ro
1ið!Þ 8i 2 I c

r , r 2 I rd ð5:16Þ

x1rið!Þ � 0 8i 2 I c
r , r 2 I rd ð5:17Þ

where, as a reminder, d � is the ‘‘do nothing’’ decision. Problem (5.14)–(5.17)
decomposes by regional depot, where the problem for each regional depot is
easily solved as a sort. For a given region r 2 I c

r , assume that

cor1 � cor2 � . . . � corjI c
r j
� chr

where jI c
r j is the number of customers in region r. We have ordered the

customers so that customer 1 is the most attractive, 2 is the second most
attractive, and we have assumed that satisfying any customer is better than
doing nothing (this assumption is easy to relax). Clearly, we would like to
assign as much capacity as possible to the most valuable customers. We want
to find the expectation of E½QrðR

c
0r,R

o
1rÞ� ¼ QrðR

c
0rÞ. We are in particular

interested in the slopes QRðR
c
0r þ 1Þ �QrðR

c
0rÞ, since these form the coefficients

on the arcs which give the marginal value of each additional unit of flow. We
solve this using the following simple observation. Let s ¼ Rc

0r, and let Eðs, iÞ be
the event that results in the sth unit of flow being assigned to the ith—most
valuable customer. Define:

R
o

1ðJÞ ¼
XJ
j¼1

Ro
1, j

¼ Cumulative number of orders made by the top J customers:

The probability of the event E(s, J ), then, is given by:

Prob½Eðs, JÞ� ¼ Prob½ðR
o

1ðJ � 1Þ < sÞ \ ðR
o

1ðJÞ � sÞ�

¼ Prob½R
o

1ðJ � 1Þ < s� þ Prob½R
o

1ðJÞ � s�

� Prob½ðR
o

1ðJ � 1Þ < sÞ [ ðR
o

1ðJÞ � sÞ� ð5:18Þ
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The events ðRo
1ðJ � 1Þ < sÞ and ðR

o

1ðJÞ � sÞ are collectively exhaustive, so
the last probability in equation (5.18) is equal to one. This allows us to reduce
(5.18) to:

Prob ½Eðs, JÞ� ¼ Prob ½R
o

1ðJ � 1Þ < s� � ð1� Prob ½R
o

1ðJÞ � s�Þ

¼ Prob½R
o

1ðJ � 1Þ < s� � Prob½R
o

1ðJÞ < s�:

Thus, the probability that the sth unit of flow is assigned to the Jth option is
simply the difference between two cumulative distributions. These are easy to
compute if the demands across customers are independent. Now let vr(s) be
the expected value of the sth unit of flow in depot r, given by:

vrðsÞ ¼
X
i2I r

coi Prob½Eðs, iÞ� þ chr 1�
X
i2I r

Prob½Eðs, iÞ�
 !

:

The values vr(s) give the expected marginal value of each additional unit of
flow sent into a regional depot.

Using the marginal values vr(s), our first stage problem is again a pure
network very similar to the one used for simple recourse, but now with the
property that the decision to send flow to a regional depot is considered
explicitly. Our model will now send cars either directly to customers (to serve
orders that have already been booked) or to regional depots for later
assignment to orders that become known in the future.

Earlier, we considered the problem where we would send cars directly to the
customer before knowing the customer demand. We would then incur an
overage or underage penalty after learning the outcome. This strategy is
referred to as simple recourse. In this section, we send a car to a regional
depot; then, after we learn the demand, we decide which customers to allocate
cars to. Since we are assigning cars from a single node over several links, this
strategy has been referred to as nodal recourse.

Our analysis has been simplified in part by the assumption that the
demands are independent (making it possible to find the partial cumulative
distributions) and to an even greater degree by the assumption that each
customer can be served by a single regional depot. We first generalize our
analysis to relax the assumption of independent demands, where we use a
technique that will also allow us to relax the assumption that each customer is
served by a single regional depot.

The general case—Monte Carlo methods
We have seen that in both the simple recourse case and the regional depot

(nodal recourse) case, the problem reduces to finding piecewise linear, concave
functions characterizing the value of cars at a location. Now we are going to
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introduce another technique for estimating these concave functions based on
Monte Carlo sampling, which does not require making any independence
assumptions between the demands of different customers.

Our second stage problem consists of finding:

QðRc
0Þ ¼ EQðRc

0, R
o
1Þ: ð5:19Þ

Our strategy is to solve this iteratively. At each iteration, we would choose
an outcome !. For this outcome, the conditional second stage function is
given by:

QðRc
0, R

o
1ð!ÞÞ ¼ max

x1ð!Þ

X
r2I rd

X
i2I c

r

c1rix1rið!Þ ð5:20Þ

subject to:

X
i2I c

r

x1rið!Þ þ x1rd�ð!Þ ¼ Rc
0r 8r 2 I rd ð5:21Þ

x1rið!Þ � Ro
1ið!Þ 8i 2 I c

r , r 2 I rd ð5:22Þ

x1rið!Þ � 0 8r 2 I rd , i 2 I c
r : ð5:23Þ

Problem (5.20)–(5.23) is pretty easy to solve for a sample realization. Let
q̂q1rð!Þ be the dual variable for constraint (5.21), reflecting the marginal value
of another car. We would like to use this sample gradient information to build
an approximation of QðRc

0Þ. The simplest strategy, of course, is to build a
linear approximation of the form:

Q̂QðRc
0Þ ¼ q̂q � Rc

0 ð5:24Þ

but these are notoriously unstable. Although techniques are available to help
these techniques (proximal point strategies, auxiliary functions), we are going
to try to build a nonlinear function similar to the exact functions that we have
seen so far. The simplest that we have seen starts with a piecewise linear
function and then ‘‘tilts’’ it using stochastic subgradients. For example, we
could start with any concave function such as:

Q̂Q0ðRÞ ¼ �0ð1� e��1RÞ

Q̂Q0ðRÞ ¼ ln ðRþ 1Þ

Q̂Q0ðRÞ ¼ ��0ðR� �1Þ
2

Ch. 9. Stochastic Programming in Transportation and Logistics 593



where R is a scalar. As an alternative, we would initialize the function by
assuming independence between the demands. Continuous functions can be
converted to piecewise linear functions by extrapolating the function between
integer values of R. Let ~qqn ¼ qð!nÞ be a stochastic subgradient of Q (given by
the dual variable of equaion (5.21)), and let Rn be the resource vector at the
nth iteration. We can then update our approximation Q̂Q using the following
updating equation:

Q̂Qnþ1ðRÞ ¼ Q̂QnðRÞ þ �nð ~qqn � rQ̂QnðRnÞÞ � R: ð5:25Þ

This strategy, dubbed the ‘‘SHAPE’’ algorithm, is provably convergent
when the function Q(R) (and its approximations Q̂QnðRÞ) are continuously
differentiable, but in transportation, we are typically managing discrete
resources, and we are interested in integer solutions.

When we are using piecewise linear functions, we can get an even better
estimate by using left and right gradients of QðRc

0,R
o
1ð!ÞÞ rather than a simple

subgradient. Let ~qqnþ and ~qqn� be the right and left gradients, respectively, of
QðRc

0,R
o
1ð!ÞÞ. Then we can perform a two-sided update using:

~QQnþ1ðRÞ ¼

~QQnðRÞ þ �nð ~qqnþ � r ~QQnðRnÞÞ � R R � Rn

~QQnðRÞ þ �nð ~qqn� � r ~QQnðRnÞÞ � R R < Rn

8<
: ð5:26Þ

There is another class of strategies that we refer to broadly as structured
adaptive functional estimators (or ‘‘SAFE’’ algorithms). In our problem, we
are trying to estimate piecewise linear, concave functions which can be
represented by a sequence of slopes that are decreasing monotonically. At
each iteration, we obtain stochastic gradients that allow us to update estimates
of these slopes, but it is important to maintain the concavity of our function
or, equivalently, the monotonicity of the slopes. We briefly review two
strategies for performing this estimation. The first is referred to as a leveling
technique since violations of concavity are fixed by leveling the estimates of
the slopes (see below). The second is called a separable, projective
approximation routine (SPAR), since we maintain monotonicity in the slopes
by performing a projection of the updated function onto the space of concave
functions.

Both approaches begin by representing the piecewise linear function Q(R)
by its slopes as follows. Let:

qr ¼ Qðrþ 1Þ �QðrÞ
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be the right derivative of Q(R) at R¼ r. We can the write:

QðRÞ ¼ Qð0Þ þ
XR�1
r¼0

qr:

Let q̂qnr be an estimate of qr at iteration n. As before, let ~qqn be a stochastic
gradient of Q at iteration n, and assume they have the property that
E½ ~qqnr � ¼ qr. Assume that at iteration n we sample r¼Rn(!). We could estimate
the slopes using the simple updating equations:

q̂qnþ1r ¼
ð1� �nÞq̂qn þ �n ~qqn if r ¼ Rnð!Þ

qnr otherwise

�
ð5:27Þ

If we assume assume that we are going to sample all the slopes infinitely
often, then it is not hard to show that limn!1 q̂qnr ¼ qr. But this updating scheme
would not work in practice since it does not maintain the concavity of the
function Q̂QnðRÞ. We know from the concavity of Q(R) that q0 � q1 � . . . � qr.
It is apparent that equation (5.27) would not maintain this relationship
between the slopes. Within an algorithm, this forces us to solve nonconcave
optimization problems, which is quite hard. We note that concavity is
automatically maintained in equation (5.25) since we are updating a concave
approximation with a linear updating term. Concavity is also maintained in
equation (5.26), since we are guaranteed that ~qqn� � ~qqnþ.

The first of our two approaches maintains concavity (monotonicity in the
slopes) by using a technique that we call leveling. Here, all we are doing is
identifying a violation of concavity after a basic update (as in equation (5.27)),
and then adjusting the neighbors of the updated slope so that concavity is
maintained. As before, let Rn(!) be the point that we sample in iteration n.
The updating equations are given by (see Fig. 5):

q̂qnþ1r ¼

�n ~qqnð!Þþ ð1��nÞq̂qnr if Rnð!Þ ¼ r

�n ~qqnð!Þþ ð1��nÞq̂qni if Rnð!Þ ¼ i< r and �n ~qqnð!Þþ ð1��nÞq̂qni < q̂qnr

�n ~qqnð!Þþ ð1��nÞq̂qni if Rnð!Þ ¼ i> r and �n ~qqnð!Þþ ð1��nÞq̂qni > q̂qnr

q̂qnr otherwise

8>>>><
>>>>:

ð5:28Þ

The second method starts with the estimate of the slopes given by equation
(5.27) and then performs a projection onto the space of functions whose slopes
are monotonically decreasing. We start by letting the left hand side of
equation (5.27) be denoted by the vector qnþ1 which clearly may violate
concavity. We can now think of Q as the space of concave functions, and let
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�Q be the nearest point projection onto the space Q. This allows us to
represent the process of converting the vector qnþ1 as the projection:

q̂qnþ1 ¼ �Q ðq
nþ1Þ ð5:29Þ

The projection �Q is the solution to the quadratic programming problem:

min
q
kq� qnk2 ð5:30Þ

subject to:

qrþ1 � qr � 0 ð5:31Þ

Solving this projection problem is very easy. Assume that after the basic
update, we have an instance where qnr�1 < qnr . Let r ¼ argminr0<rfq

n
r0 < qnr g be

the smallest index such that qn < qnr . Now find the average over all these
elements:

qn½r, r� ¼
1

r� rþ 1

Xr
r0¼r

qnr0

Fig. 5. Maintaining concavity by the levelling method.
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Finally, we let

q̂qnþ1r0 ¼
qn
½r,r� if r � r0 � r

qnr otherwise

(

Both the leveling method and the projection method produce convergent
algorithms from two perspectives. First, if all the slopes are sampled infinitely
often, then we obtain that limn!1 q̂qnr ¼ qr for all r a.s. But, we are not going to
sample all the slopes infinitely often. What we want to do is to use the
approximation Q̂Qn as an approximation of the second stage to determine the
solution to the first stage. Thus, our algorithm is going to proceed by solving:

xn0 ¼ arg max
x0

c0x0 þ Q̂QnðR0ðx0ÞÞ ð5:32Þ

subject to our first stage constraints:

X
d2D

x0ad ¼ Rþ,c0,a a 2 A ð5:33Þ

X
a2A

x0ad�1,a0 ð0, a, dÞ ¼ Rc
0,a0 a0 2 A ð5:34Þ

Fig. 6. The separable recourse problem as a pure network.
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X
a2A

x0ad � Rþ,c0,ad
d 2 Do ð5:35Þ

x0ad 2 Zþ ð5:36Þ

The problem (5.32)–(5.36) is a pure network shown in Fig. 6. Once we
obtain xn0, we find a sample realization !n and solve the optimization problem
in (5.20) again. The duals from this problem are used to update the value
function, and the process repeats itself.

Our algorithm, then, does not sample the entire domain for R0, but rather
only those that are produced by solving our first stage approximation.
Fortunately we can show that this algorithm will visit the optimal solution
infinitely often. A side benefit is that we are solving sequences of pure
networks which readily yield integer solutions. Integrality can be a major
headache in transportation applications, but we have now designed an
algorithm which always produces integer solutions. Of central importance in
this regard is the fact that our algorithm never performs smoothing on the
decision variables, as would be required if we used stochastic linearization
methods.

At this point it may seem that we are simply solving very special cases. In
fact, as we soon show, we actually have all the machinery we need to solve
very general instances of this problem.

5.6 Shipping to classification yards—a network recourse model

The next level of generalization is the challenge of working with what we
call ‘‘classification yards.’’ For the purpose of this presentation, we are going
to assume that we can send cars from classification yards to any customers in
the network (for the moment, we are not going to allow ourselves to send cars
to regional depots, since this would take us past our basic two-stage model).
For the moment, we are going to continue to assume that once cars reach a
classification yard that there is no substitution between car types: if a customer
order is for car type k, then we must provide car type k. But we are going to
assume that a single customer can be served from more than one depot.

This problem is known to the stochastic programming community as a two-
stage stochastic program with network recourse. The reason is that, unlike our
previous models, the second stage is now a general network problem (as
opposed to the much simpler problems posed by simple or nodal recourse).
Solving a network problem in the second stage is almost as difficult as solving
a general linear program, which means that we should consider algorithms
designed for general two-stage stochastic linear programs.

The research community has developed a number of algorithmic strategies
over the years. The question of whether an algorithmic strategy works has to
be answered in three levels: (1) Does the algorithm appear to work in theory?
Does it capture the mathematical properties of the problem? (2) Does it
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produce reasonable numerical results in laboratory experiments? For example,
using datasets reflecting specific classes of problems, we would like to know if
it converges quickly, producing stable, high quality solutions. (3) Does it work
in practice, producing recommendations that are acceptable to those who
have to implement them?

As of the writing of this chapter, there is a strong handle on the theory, but
numerical testing is extremely limited (given the broad diversity of problems).
For example, showing that an algorithm works well on car distribution
problems for one railroad will not always convince another railroad that it will
work on their network! Container management problems (in trucking, rail
and intermodal applications) come in a variety of sizes and characteristics.
The dynamics of short-haul regional truckload carriers are completely
different from those of long-haul national carriers. Experiments in pure
transportationapplicationsdonot telluswhether itwouldwork inotherresource
allocation settings such as supply chainmanagement and distribution problems.
And we are not even talking about applications outside of transportation and
logistics. In short, each subcommunity (and these can be very specialized) needs
to see numerical work to demonstrate effectiveness on its own problem class.

Given the very limited amount of laboratory testing of the different
algorithmic strategies (even within general transportation problems), our
discussion focuses on the qualities of different algorithms and their potential
strengths and weaknesses for our problem. We cannot definitively state what
will and will not work for our problem class, but we can discuss the qualities
of different approaches. In particular, we are interested in the degree to which
a technique allows us to exploit the underlying structure of the transportation
problem. Many transportation problems require integer solutions, and also
exhibit near-network structure. Algorithms which allow us to exploit this
network structure are more likely to yield integer solutions from LP
relaxations, or at least provide tight LP relaxations.

Scenario methods
Perhaps the best known algorithmic strategy in stochastic programming is

scenario programming, popular because of its conceptual simplicity, generality,
and use of general-purpose optimization algorithms. But, its effectiveness for
transportation applications is doubtful.

Let �̂� be a (not too large) sample of outcomes (future car orders, future car
supplies, as well as travel times). Further let p̂pð!Þ be the probability of
outcome ! 2 �̂�. We can approximate our original problem using the method
of scenarios:

max
x0,x1

c0x0 þ
X
!2�̂�

p̂pð!Þc1x1ð!Þ ð5:37Þ
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subject to:
First-stage constraints:

X
d2D

x0ad ¼ Rc
0a a 2 A ð5:38Þ

X
a2A

x0ad ¼ Rc
0ad

d 2 Do ð5:39Þ

X
a2A

X
d2D

x0ad�1,a0 ð0, a, dÞ � Rc
0a01 ¼ 0 a0 2 A ð5:40Þ

x0ad 2 Zþ a 2 A, d 2 D: ð5:41Þ

Second stage constraints:

X
d2Dc

a

x1adð!Þ þ x1ad�ð!Þ ¼ Rc
0,a 8a 2 A, 8! 2 �̂� ð5:42Þ

X
a2A

x1adð!Þ � Ro
1cd
ð!Þ d 2 Dc, 8! 2 �̂� ð5:43Þ

x1adð!Þ � 0 8a 2 A, d 2 Dc
a, 8! 2 �̂�: ð5:44Þ

We note that our decision class D only allows us to assign cars to a known
order, or to reposition cars to a general or regional depot. As a result, the
second stage problem is primarily one of assigning cars from the general and
regional depots to orders that became known in the second stage.

Scenario methods have been very popular in financial applications, but we
feel that there are specific characteristics of financial applications that are not
shared in transportation applications, and vice versa. Financial applications
are characterized by very complex stochastic processes with high levels of
interdependence reflecting the dependence of random outcomes on a relatively
smaller number of common factors. It is easier, then, to reasonably
approximate the future with a smaller number of scenarios. Also, financial
applications typically do not have integer variables.

Transportation applications, on the other hand, are characterized by a
large number of relatively independent random variables. The optimization
problems, which are typically integer, are often so large that deterministic
problems are hard (although they often have embedded network structures).
The formulation in (5.37)–(5.44) has the effect of taking a computationally
intractable problem and blowing it up into a problem that is many times
larger. Furthermore, many transportation problems exhibit a natural network
structure that is destroyed by the representation of the second stage problem.
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Benders decomposition
Benders decomposition is an appealing algorithm that replaces the very

large problems posed in scenario optimization with sequences of relatively
small problems of the form (which we state here as a minimization problem as
is standard practice in the literature):

min
x0

c0x0 þ z ð5:45Þ

subject to the first stage constraints (5.38)–(5.41) which we represent
compactly using:

A0x0 ¼ R0 ð5:46Þ

x0 � 0 ð5:47Þ

and the constraints:

z� 	ix0 � �i, 8 i ¼ 1, . . . , n ð5:48Þ

where 	i and �i are generated by solving the dual of the second stage problem,
which for compactness we can write as:

min
x1

c1x1ð!Þ

subject to:

A1x1ð!Þ ¼ R1ð!Þ þ B0x0

x1ð!Þ � 0:

Different algorithms have been proposed for generating cuts. The first
algorithm of this class is the so-called ‘‘L-shaped’’ decomposition, which
works on a finite set of outcomes (which cannot be too large, since we have to
solve a linear program for each outcome). This concept was generalized by the
stochastic decomposition algorithm which generates cuts from a potentially
infinite sample space. A sketch of the algorithm is given in Fig. 7. This
algorithm converges almost surely to the optimal solution, but the rate of
convergence on practical applications remains an open question.

The CUPPS algorithm (outlined in Fig. 8) requires a finite sample
space which can be quite large (for example, thousands or tens of thousands
of scenarios). The critical step in the stochastic decomposition is equation
(5.50) which requires smoothing on the coefficients of the cuts. The critical
step in the CUPPS algorithm is equation (5.51) which requires a simple
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arithmetic calculation over the entire sample space. Since equation (5.51) is
quite simple, it is not hard to execute even for tens of thousands of scenarios,
but it prevents the algorithm from ever being applied rigorously to complete
sample spaces (for realistic problems) which can be of the order 1010 or even
10100. From a practical perspective, it is not clear if this is useful.

We need to keep in mind that Benders decomposition is probably limited
(in transportation applications) to the types of resource allocation problems
that we have been considering (since these can be reasonably approximated as
continuous linear programs). However, there are unanswered experimental
questions even for this special problem class. First, there is the usual issue of
rate of convergence. Real car distribution problems may have over 100
regional depots and thousands of customers (for our model, it is the number
of regional depots that really impacts the second stage problem). If there are
50 car types (a conservative estimate) and 100 depots, then (realizing that we
do not have all car types at all locations) we can still anticipate upwards of a

Step 1. Solve the following master problem:

xn0 ¼ arg minfc0x0 þ z : A0x0 ¼ R0, z� 	
n
t x � �

n
t , t ¼ 1, . . . , n� 1, x � 0g

Step 2. Sample !n
2� and solve the following subproblem:

minfc1x1 : A1x1 ¼ R1ð!
nÞ þ B0x

n
0, x1 � 0g

to obtain the optimal dual solution:

vðxn0, !
nÞ ¼ arg min

v
fðR1ð!

nÞ þ B0x
n
0Þ v : AT

1 v � c1g

Augment the set of dual vertices by:

Vn ¼ Vn�1
[
fvðxn0, !

nÞg

Step 3. Set:

vnt ¼ arg maxfðR1ð!
tÞ þ B0x

n
0Þv : v 2 Vng for all t ¼ 1, . . . , n

Step 4. Construct the coefficients of the nth cut to be added to the master problem by:

�nn þ 	
n
nx0:

1

n

Xn
k¼1

ðR1ð!
kÞ þ B0x0Þv

n
k ð5:49Þ

Step 5. Update the previously generated cuts by:

�nk ¼
n� 1

n
�n�1k , 	nk ¼

n� 1

n
	n�1k , k ¼ 1, . . . , n� 1 ð5:50Þ

Fig. 7. Sketch of the stochastic decomposition algorithm.
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thousand resource states for the second stage problem. How quickly does
Benders decomposition converge for problems of this size? The problem is
that a single cut may not improve our approximation of the value of cars in a
particular location.

A second issue with Benders decomposition is that real applications require
integer solutions. When the flows are relatively large, solutions are easily
rounded to obtain reasonable approximations to the discrete version of the
problem. In actual applications, there can be many instances where flows (to
small locations, or of unusual car types) are quite sparse and fractional
solutions become more problematic. In these cases, fractional solutions can
involve flows that are less than one, and simple rounding may produce
infeasible solutions. At a minimum, dealing with fractional solutions can be a
nuisance.

Despite these questions, Benders decomposition is a promising technique
that needs to be tested in the context of specific applications.

Stochastic linearization techniques
A powerful set of techniques is based on linear approximations of the

recourse function. These fall into two groups. The first uses pure linear
approximations, but performs smoothing on the first stage variables to
stabilize the solution. The second group introduces some sort of nonlinear
stabilization term.

Step 1. Solve the following master problem:

xn0 ¼ arg minfcxþ z : A0x0 ¼ R0, z� 	
n
kx � �

n
k, k ¼ 1, . . . , n� 1, x � 0g

Step 2. Sample !n 2 � and solve the following dual subproblem:

vðxn, !nÞ ¼ arg minfðRoð!nÞ þ B0x
n
0Þv : AT

1 v � c1g

Augment the set of dual vertices by:

Vn ¼ Vn�1
[
fvðxn, !nÞg

Step 3. Set:

vnð!Þ ¼ arg maxfðRoð!Þ þ B0x
n
0Þv : v 2 Vng for all ! 2 � ð5:51Þ

Step 4. Construct the coefficients of the nth cut to be added to the master problem by:

�nn þ 	
n
nx0:

X
!2�

pð!ÞðR1ð!Þ þ B0x0Þv
nð!Þ

Fig. 8. Sketch of the CUPPS algorithm.
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The pure linearization strategy solves sequences of problems of the form:

x̂xn0 ¼ arg min
x0

c0x0 þ qn�1 � R1ðx0Þ: ð5:52Þ

To calculate qn, let ~qqn as before be our stochastic gradient obtained as the
dual variable of the resource constraint from the second stage using a Monte
Carlo realization !n. We then smooth these gradients to obtain:

qn ¼ ð1� �nÞqn�1 þ �n ~qqn: ð5:53Þ

Having obtained the solution x̂xn1, we then smooth this as well:

xn0 ¼ ð1� 	
nÞxn�10 þ 	nx̂xn0: ð5:54Þ

For both equations (5.53) and (5.54), we would normally require the usual
conditions on the stepsizes for stochastic problems, namely that

P1
n¼0 �

n ¼ 1

and
P1

n¼0 ð�
nÞ

2 <1, although we note in passing that this is not normally
satisfied by the stepsize rules used in practice.

Stochastic linearization techniques are clearly the simplest to use, but are
unlikely to work in practice simply because of the lack of stability. Stability is
imposed on the solution primarily through the use of declining stepsizes, but
this is an artificial form of stability. Furthermore, the smoothing on the first
stage variables performed in equation (5.54) is a serious practical problem
because it completely destroys integrality. Rounding is hard for large
problems because it can be difficult ensuring conservation of flow in the
presence of substitutable resources.

Despite these weaknesses, techniques based on linear approximations are
attractive for transportation applications since they retain the structure of the
original problem. If the first stage is a network problem, then adding a linear
adjustment term retains this property. Linear approximations are also easy to
compute and store. We may be able to overcome the instability of pure
linearization techniques by employing any of a variety of nonlinear
stabilization terms. One notable example is proximal point algorithms,
which solve sequences of problems of the form:

xn0 ¼ arg min
x0

c0x0 þ qn�1 � R1ðx0Þ þ 
 ðx0, x
n�1
0 Þ

where  ðx, xn�1Þ is a distance metric such as  ðx,xn�1Þ ¼ kx� xn�1k2. xn is
computed using:

xn ¼ ð1� 	nÞxn�1 þ 	nxn:
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Note that at the last iteration, the final solution is xn, not xn. xn is used only
to stabilize the solution.

In engineering practice, we can be creative in the construction of the
distance metric  ðx, xn�1Þ. If it is separable in x, then we may find ourselves
solving a separable, convex optimization problem. If we are particularly
interested in integer solutions, we can construct a piecewise linear function
defined on discrete values of x (even if xn�1 is fractional).

A second type of nonlinear stabilization strategy is the SHAPE algorithm
first presented in Section 5.5.2. This is a type of auxiliary function algorithm
where we start with an artificial auxiliary function Q̂Q0ðRÞ, and then update it
using stochastic gradients as demonstrated in equation (5.25). An attractive
feature of this algorithm is that the auxiliary function can (and should) be
chosen to retain the structure of the first stage problem as much as possible.
For our car distribution problem (and similar applications), piecewise linear,
separable approximations are particularly attractive.

Nonlinear functional approximations
Our last class of strategies tries to explicitly approximate the recourse

function, without any guarantee of convergence to the exact function. We do
not include algorithms such as the one-sided SHAPE algorithm (equation
(5.25)) in this group because there is no explicit attempt to approximate the
recourse function. We also do not include Benders decomposition simply
because we feel that this strategy is in a class by itself. But we do include both
the two-sided SHAPE algorithm (equation (5.26)) and the structured adaptive
functional estimators.

We first introduced these algorithms in the context of a recourse function
Q(R) which could be written as a separable function of the resource vector R.
Now consider what would happen if we apply the exact same algorithms to a
nonseparable problem. We still produce a separable approximation of Q, and
we still solve sequences of networks that are identical to Fig. 5. The important
difference is that we are solving sequences of separable approximations of
otherwise nonseparable functions. For continuously differentiable problems,
this can be an optimal strategy (in the limit). For nondifferentiable problems
(as we are considering) the result is an algorithm that is very near optimal with
a much faster rate of convergence than has been achieved using Benders
decomposition.

Extension to substitution across car types
In the previous section, we retained our assumption that there was no

substitution between car types in the second stage. However, the substitution
between classification yards (spatial substitution) produced a problem with
network recourse (we had to solve a transshipment problem in the second
stage). Now consider what happens if we allow substitution between car types,
which produces the second stage network illustrated in Fig. 9. We quickly see
that while this expands the set of options for a car, it is still a network, and is
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mathematically equivalent to the problem which only allows spatial
substitution. In addition, we are also implicitly allowing temporal substitu-
tion. In the second stage, we will forecast demands that are actionable on
different days, as well as cars that will become available on different days.
However, we are allowing general assignments of cars to demands that may
require cars to be held to meet the demand, or require demands to wait until
the car arrives.

We see, then, that we can use the same algorithmic strategy for
handling substitution between car types as we did for geographic substitution.
But this avoids the more practical question: will it work? It is much more
convincing to argue that spatial problems will produce approximately
separable recourse functions than would arise in the case with other forms
of substitution. For example, it is quite likely that the cost of substituting
other box cars in the same car group is quite small. In fact, this is the reason
that a railroad might reasonably ignore car subgroups and just model car
groups.

For two-stage problems, there is a strong reason to believe that separable
approximations will work well, even when the recourse function is not even
approximately separable. The logic behind this argument is that for n suffi-
ciently large, Q̂Qn will stabilize, and therefore so will xn0. As xn0 (approximately)
approaches a limit point, Rn

1ðx
n
0Þ will approach a limit point, allowing us

to produce an accurate (but not perfect) piecewise linear approximation

Fig. 9. Illustration of second stage substitution between car types and locations.
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Q̂Qn
j ðRjÞ of the jth dimension of Q(R), at the point R ¼ Rn

1ðx
n
0Þ. Thus, a

separable approximation only needs to be a good local approximation to
provide good results.

Summary
The choice of the best algorithm for two-stage resource allocation problems

remains an open question. Two-stage problems are an important foundational
problem, but in transportation applications, the usual goal is to solve
multistage problems. However, it is important to study the performance of an
algorithm in a two-stage setting first, and it is difficult to believe that an
algorithm that does not work well for two-stage problems would turn out to
work well in a multistage application. But the converse may not be true; an
algorithm that does work well for a two-stage problem may not work well in a
multistage setting. It is possible for an algorithm (such as the separable,
nonlinear functional approximations) to exploit the limiting behavior of the
first stage decisions, a property that we lose immediately in the context of
multistage problems.

Our belief is that while scenario methods are unlikely to prove attractive in
practice, the other three major classes of techniques (Benders decomposition,
stochastic linearization with nonlinear stabilization strategies, and nonlinear
functional approximations) all deserve serious study. We believe that non-
linear functional approximations are going to work the best for two-stage
problems because: (a) they attempt to explicitly approximate the recourse
function; and (b) they exploit the structure of problems that arise in
transportation. However, we have not yet addressed some of the more difficult
dimensions of transportation applications (some of which are touched on
below). Nonlinear approximations can work the best in laboratory experi-
ments, but are much more difficult to use than linear approximations. Pure
linear approximations are too unstable, but linear approximations with
nonlinear stabilization terms (proximal point algorithms or auxiliary
functions) may offer an attractive alternative. All of these approximations
are separable, and it is simply not clear how well these will work in multistage
applications.

5.7 Extension to large attribute spaces

Up to now, we have considered a problem where there are jKj car types
spread among jIj locations. Using our earlier notation, the attribute vector of
a car would be represented by a¼ (k, i). Thus, our attribute space A has
jAj ¼ jKj � jIj elements. A large railroad might have several hundred regional
depots and 50 to 100 car types, with a total of several thousand combinations.
Large, but not hard to enumerate on modern computers.

Now consider what a real car distribution problem looks like. While
there are, in fact, 50 to 100 real car types, these cars are allocated among
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several dozen pools which represent groups of cars controlled by individual
shippers. The allocation of cars to pools is negotiated periodically between the
shipper and the railroad, and cars can be moved from one pool to another,
reflecting the evolving needs of the shippers. Cars are also characterized
by the railroad that owns them (when they are not in a pool). Box cars
sometimes carry dirty freight that limits their ability to carry cargo (such as
food) that requires a clean car. For this reason, cars carry the attribute of the
commodity type that they last carried. Finally, some cars may have equipment
problems that require maintenance. These problems may range from
minor issues that do not affect the use of the car to more serious equipment
problems.

When we use this full vector of attributes, we now find that there are not
several thousand possible attributes, but several million. Now we cannot even
generate the entire attribute space. This creates an interesting problem. In our
optimization model, we may wish to consider acting on a car with what is now
a multiattribute vector a with decision d, producing a car with attribute vector
a0. Since we are not able to enumerate the space A, we may not have an
approximation for Q̂Qn

a0 ðRa0 Þ. As a result, we have to devise a strategy for
approximating Q̂Qn

a0 ðRa0 Þ.
We are not able to address this issue in depth, but it is important to

understand some of the problems that arise. First, it is easy to see that we
should try to make sure that our initial approximation dQ̂Q0

a0 ðRa0 Þ=dRa0 jRa0¼0
is

an optimistic estimate of @QðRÞ=@Ra0 jR¼0. If we did not do this, then a low
estimate might result in us choosing not to make the decision d that produces
a resource with attribute a0. Since we never visit that resource state, we never
improve our approximation.

In practice, the use of optimistic estimates of the value of a resource
may not work. We have found that initial approximations that are
guaranteed to be optimistic are actually too optimistic. Consider choosing
between decisions d0 and d00. Assume that decision d0 produces a resource
with attribute a0 while decision d00 produces a resource with attribute a00.
Further assume that we have generated the attribute a0 (and therefore
have an approximation Q̂Qn

a0 ðRa0 Þ), but we have never generated the attribute a00.
If we use an optimistic approximation for Q̂Qn

a00 ðRa00 Þ, then we would choose
d00 just because we have never tried it before. The result is the steady
exploration of every possible decision, and a virtual enumeration of the
attribute space A.

A more practical approach is to assume that we have access to an
aggregation function GðaÞ� âa where âa 2 ÂA is an aggregation of the original
attribute space. We assume that ÂA is not too large and can be enumerated.
We further assume that Q̂Qn

âaðRâaÞ is a ‘‘good’’ approximation of Q̂Qn
aðRaÞ when

GðaÞ ¼ âa. We then make sure that we repeatedly sample gradients and update
Q̂Qn

âaðRâaÞ for all âa 2 ÂA.
We are not aware of any formal convergence theory for this approach (or

for any other algorithm for this problem class). But real problems in
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transportation are characterized by a much richer vector of attributes than is
normally considered by the academic community.

6 Multistage resource allocation problems

We now turn to the challenge of solving multistage problems. In multistage
problems, we have to capture the sequential decision-making process as
information (and decisions) evolve over time. For transportation problems,
we encounter the reusability of resources; once a vehicle moves a load, it is
available to be used again.

We could motivate our multistage problem using our rail car distribution
example, but it is useful to bring other applications into the picture. Examples
include:

1) Fleet management for truckload trucking—In truckload trucking, a
truck moves an entire load of freight from origin to destination.
Uncertainty plays a major role in the long haul truckload market, where
loads can take between 1 and 4 days to deliver. Customers sometimes
request trucks the same day the order is made, but more often call in one
or 2 days in advance. In sharp contrast with the rail industry, the
truckload carrier does not have to accept every load, and this is one of
the major challenges. Emerging electronic market places, where loads
are posted on web sites, open the possibility of taking loads that do not
have to move for several days. This is a classic problem of decision-
making under uncertainty.

2) Driver management for long-haul less-than-truckload motor carriers—
LTL carriers face the problem of timing the movement of loads over the
network, requiring the careful management of drivers.

3) Management of jets in the fractional ownership industry—In this
business, high net worth individuals and business executives will own a
fraction of a jet. This gives them access to the entire fleet of jets. They
may call the company with as little as 8 h notice and request that a jet
move them from a local airport to any other airport. After the move, the
fleet operator will move the jet to another location.

4) Routing and scheduling transport aircraft for the air mobility
command—The AMC works like a large trucking company, moving
freight for the military using large transport aircraft. They are typically
used in support of emergency situations where requests for freight
movement arise dynamically.

Compared to our rail car distribution problem, these applications are
characterized by relatively shorter travel times and less flexibility to satisfy
customer orders at times other than when they were requested.

Multistage problems are, of course, much harder than two-stage problems,
but we are going to approach them by building on the tools we have
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already introduced. Our strategy for solving multistage problems is to solve
them as sequences of two-stage problems. Students of dynamic programming
will see strong similarities in our modeling approach. But multistage problems
do introduce a fresh set of modeling and algorithmic issues that simply do not
arise in two-stage problems.

We start in Section 6.1 with a formulation of the problem. Then, Section
6.2 outlines the general algorithmic strategy. Section 6.3 describes the
implementation in the context of single commodity flow problems. Section 6.4
outlines the challenges that arise when we solve multicommodity problems in
a multistage setting. Finally, Section 6.5 describes the complications that are
introduced when we model the property that it takes more than one time
period to go from one location to another.

6.1 Formulation

We present the basic multistage problem with somewhat more generality
than we have used previously. We first define the exogenous information
arriving to our system:

R̂Rt ¼ Vector of new arrivals in period t, where R̂Rt ¼ ðR̂R
o
t , R̂R

c
t Þ.

�t ¼ Complete vector of new information arriving in period t, including
both R̂Rt as well as other information about system parameters (travel
times, costs, and parameters governing the physics of the problem).

For our purposes, we are only interested in the resource state Rt, and the
only information process we are modeling at the moment is the arrival of new
resources, R̂Rt. Using this notation, our history of states, information and
decisions (given earlier in equation (5.1)) would look like:

ht¼fR
þ
0 , x0, R0, R̂R1, R

þ
1 , x1, R1, R̂R2, R

þ
2 , x2, R2, . . . , R̂Rt, R

þ
t , xt, Rt, . . .g

ð6:1Þ

There are three perspectives of the state of our system:

Rt ¼ Vector of resources available in period t after decisions xt have been
made.

Kt ¼ What is known at time t after the new information �t has been incor-
porated. Kt includes Rt plus what we know about parameters that
govern the dynamics of the system.

It ¼ Set of information available at time t for making a decision. It includes
Kt, but it might also include forecasts of future activities (activities
which are not ‘‘known’’ now, but are the result of a forecasting
exercise).
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Our process is controlled by the decisions we make:

xt ¼ Decisions which are made after new information in period t has
become known.

X�
t ðItÞ ¼ The decision function of policy �.

Our decisions are chosen to maximize the expected total contribution over a
planning horizon. Our contribution function is expressed as:

ct(xt,Kt) ¼ The contribution generated in period t given decision xt, and
what is known, Kt.

When resources are allocated in time t, they have to satisfy flow con-
servation equations of the form:

X
d2D

xtad ¼ Rt�1,at þ R̂Rt,at

where we assume that we can only act on resources that are actionable now
(Rtt). The physical dynamics of the system are given by:

Rt,a0t0 ¼ Rt�1,a0t0 þ
X
a2A

X
d2Da

�t0,a0 ðt, a, dÞxtad 8a
0 2 A, t0 � tþ 1:

ð6:2Þ

It is often useful to express flow conservation and system dynamics in
matrix form, which we do using:

Atxt ¼ Rt�1 þ R̂Rt ð6:3Þ

Rt � Btxt ¼ Rt�1: ð6:4Þ

For reasons that are made clear in Section 6.2, we have written our
equations directly in terms of the incomplete resource vector Rt. The complete
resource vector is simply Rþt ¼ Rt�1 þ R̂Rt.

The informational dynamics can be written generally as:

Ktþ1 ¼ UK ðKt, �tþ1Þ ð6:5Þ

which is how we would represent the process of updating demand forecasting
equations, parameter estimation equations, and the storage of other types of
information.
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The basic statement of the multistage problem is now given by:

max
�2�

E
X
t2T

ctðX
�ðItÞ, KtÞ

( )

subject to flow conservation (equation (6.3)), resource dynamics (equation
(6.4)) and informational dynamics (equation (6.5)). There may also be upper
bounds on flows representing physical constraints.

The challenge, now, is choosing a function X�(It). Popular choices include
myopic policies (It¼Kt), or rolling horizon procedures, where It ¼ ðKt, �̂�tÞ

where �̂�t represents a forecast of future events made with the information
known at time t. If j�tj ¼ 1 then we are using a point estimate of the future and
we obtain classical deterministic methods for handling the future. In the next
section, we discuss how adaptive dynamic programming methods can be used.

6.2 Our algorithmic strategy

Our strategy for solving multistage problems is based on techniques from
approximate dynamic programming. Since this approach is not familiar to the
stochastic programming community, some background presentation is useful.
Recall from Section 6.1 (and in particular equation (6.1)) that we can measure
the state of our system before or after we make a decision. It is common in the
dynamic programming and control community to write the optimality
equations using the state before we make a decision, producing optimality
equations of the form:

Qþt ðR
þ
t Þ ¼ arg max

xt
ctðX

�ðItÞ, R
þ
t Þ þ EfQþtþ1ðR

þ
tþ1Þ j R

þ
t g: ð6:6Þ

Classical dynamic programming techniques are computationally intractable
for this problem class. Solving equation (6.6) using classical discrete dynamic
programming techniques encounters three ‘‘curses of dimensionality’’: the
state space, the outcome space and the action space. Each of these variables
are vectors (and potentially vectors of high dimensionality). Computing the
value functions using a backward recursion requires computing equation (6.6)
for each possible value of the state variable. Computing the expectation
requires summing over all the outcomes in the outcome space. Finally, since
the expected value function may not have any special structure, solving the
optimization problem requires evaluating all possible values of the decision
vector xt.

We overcome this problem using the following strategy. First, recognizing
that we do not know Qþtþ1, we replace it with an appropriate approximation
that for the moment we denote by Q̂Qþtþ1ðR

þ
tþ1Þ. Next, we recognize that we

cannot compute the expectation in equation (6.6). The common strategy is to
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replace the expectation with an approximation based on a sample taking from
the outcome space:

Qþt ðR
þ
t Þ ¼ arg max

xt
ctðX

�ðItÞ, R
þ
t Þ þ

X
!̂!2�̂�

pð!̂!ÞQþtþ1ðR
þ
tþ1ð!̂!ÞÞ: ð6:7Þ

Equation (6.7) can be exceptionally difficult to solve for the types of high
dimensional, discrete resource allocation problems that arise in transporta-
tion. It is particularly inelegant when we realize that it is often the case that the
myopic problem (maximizing ctxt) is a pure network, which means the
introduction of the approximate value function is making a trivial integer
program quite difficult (the LP relaxation is not a good approximation).

Equation (6.7) is quite easy to solve if we use a linear approximation for
Q̂Qtþ1. In this case:

Q̂Qþtþ1ðR
þ
tþ1Þ ¼ q̂qþtþ1 � R

þ
tþ1

¼ q̂qþtþ1 � ðRt þ Atxt þ R̂Rtþ1Þ: ð6:8Þ

Taking conditional expectations of both sides of equation (6.8) gives:

EfQ̂Qþtþ1ðR
þ
tþ1Þ j R

þ
t g ¼ Efq̂qþtþ1 � ðRt þ Atxt þ R̂Rtþ1Þ j R

þ
t g

¼ q̂q1tþ1Rt þ q̂qþtþ1Atxt þ Efq̂qþtþ1R̂Rtþ1 j R
þ
t g: ð6:9Þ

The only term on the right side of equation (6.9) involving the expectation
is not a function of xt, so it is only a constant term and can be dropped. The
resulting optimization problem is identical to the original myopic optimiza-
tion problem with a linear adjustment term which would never destroy any nice
structural properties of the original problem (for example, network structure).

So, a linear approximation allows us to avoid the problem of taking multi-
dimensional expectations. But what if we use a nonlinear approximation?
Now the presence of the expectation presents a serious computational com-
plication. We can circumvent the problem by formulating our optimality
recursion around the incomplete state variable Rt. This gives us optimality
equations of the form:

Qt�1ðRt�1Þ ¼ Efarg max
xt

ctxt þQtðRtðxtÞÞjRt�1g: ð6:10Þ

Again, we propose to replace the recourse function Qt(Rt) with an
approximation Q̂QtðRtÞ. Note the shift in the time index, which reflects the
information content of each variable. We still face the problem of computing
(at least approximately) the expectation. However, we are not really interested
in computing the expectation. Instead, we need an action xt which depends on
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both Rt�1 and the new arrivals R̂Rt. For this reason, we would make a decision
contingent on a single sample realization, allowing us to write our decision
function using:

X�
t ðRt�1, R̂Rtð!ÞÞ ¼ arg max

xt
ctxt þ Q̂QtðRtðxt, !ÞÞ ð6:11Þ

subject to:

X
d2D

xtad ¼ Rc
ta þ R̂Rc

tað!Þ a 2 A ð6:12Þ

X
a2A

xtad � Ro
tad
R̂Ro

tad
ð!Þ d 2 Do ð6:13Þ

xtad 2 Zþ ð6:14Þ

X�
t is an approximate decision function which can be viewed as a class of policy

(in the language of Markov decision theory), where the policy is determined
by the choice of Q̂Qt. Because we have formulated the recourse function in
terms of the incomplete state variable, there is no need to directly approximate
the expectation (this is being done indirectly through the estimation of Q̂Qt). We
now face the challenge of determining Q̂Qt. Fortunately, we only have to use the
techniques that we described earlier for the two stage problems. Linear
approximations remain the simplest to use, but current experimental evidence
suggests that piecewise linear, separable approximations are both relatively
easy to solve and also provide much higher quality solutions.

Our overall algorithmic strategy is shown in Fig. 10. We refer to this as the
‘‘single-pass’’ version of the algorithm. We initialize Q̂Qt for all t. We then
simulate forward in time, using dual variables to update the approximation of
Q̂Qt, sampling new information as the algorithm progresses.

The single pass version of the algorithm is the easiest to implement, but it
may not work the best. The problem is that it takes a full forward iteration to
pass information back one time period. An alternative is to use a two-pass
version of the algorithm, where there is a forward pass making decisions, and a
backward pass updating dual variables. This version is described in Fig. 11.

These algorithms do not describe specifically how to update the functional
approximations Q̂Qn. For the single-pass version of the algorithm, this updating
process is identical to that used for the two-stage problem. We simply use the
dual variables for the flow conservation constraint to update Q̂Qn just as we did
in Section 5.5.2. As we have seen, there are a number of ways to update the
value function, so we represent this in general using the notation:

Q̂Qn
t  UQðQ̂Qn�1

t , qnt , R
n
t Þ:
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Updating the value function in the two-pass version is a bit more
involved, but the payoff is an updating process that possesses one particularly
nice theoretical property. In addition, it appears to work better in
practical applications. For the pedagogical purposes of this chapter, we are
going to outline the basic idea graphically. Recall that we are solving
sequences of pure networks at each time t. At each point in time, we obtain
not only an optimal solution but also an optimal basis. Fig. 12 shows
the sequence of optimal bases over three time periods. Recall that
the network structure of our one-period problems consists of links
representing decisions in time period t plus links that represent our piecewise
linear value functions. We are interested only in the portion of the basis
that consists of links in time period t (with coefficients from the vector ct),
and not in the links which represent the approximation Q̂Q. We note that as a
result of our network structure, each basis path from a resource node consists
of one or more links in time period t, finally ending in a node in a future
time period.

After building the basis paths in the forward simulation, we now have a set
of paths extending through the entire horizon. We then compute the cost of a
path from a resource node t for attribute vector a until the end of the horizon.
Let qnta be the cost of the path from resource node a at time t until the end

Step 0. Initialization: Initialize Q̂Q0
t , t 2 T . Set n¼ 0.

Step 1. Do while n�N: Choose !n
2�

Step 2. Do for t¼ 0, 1, . . . ,T�1:

Step 2a. Solve equation (6.11) to obtain xnt ¼ X�
t ðR

n
t , Q̂Q

n�1
tþ1 Þ and the duals q̂qnt of the

resource constraint equation (6.12).

Step 2b. Update the resource state: Rn
tþ1.

Step 2c. Update the value function approximations using Q̂Qn
t .

Step 3. Return the policy X�
t and Q̂QN .

Fig. 10. Single pass version of the adaptive dynamic programming algorithm.

Step 0. Initialize Q̂Q0
t , t 2 T . Set n¼ 0.

Step 1. Do while n�N: Choose !n
2�

Step 2. Do for t¼ 0, 1, . . . ,T�1:

Step 2a. Solve (6.11) to obtain xnt ¼ X�
t ðR

n
t , Q̂Q

n�1
tþ1 Þ and the duals Q̂Qn

t of the resource

constraint (6.12).

Step 2b. Update the resource state: Rn
tþ1.

Step 3. Do for t¼T�1, T�2, . . . , 1, 0:

Step 3a. Compute marginal value of a resource, qnt , using Q̂Qn
tþ1 and the optimal basis

from the forward pass.

Step 3b. Update the value function approximations, Q̂Qn
t  UQðQ̂Qn�1

t , qnt ,R
n
t Þ.

Step 4. Return policy X�
t and Q̂QN .

Fig. 11. Double pass version of the adaptive dynamic programming algorithm.
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of the horizon along this basis path. These path costs have a very nice
property. Let:

F�t ðRt, !
nÞ ¼

XT
t0¼t

ctX
�
t ðItð!

nÞÞ ð6:15Þ

be the costs of a policy � (determined by the functional approximation Q̂Qn) for
outcome !n in iteration n, starting in time period t. Then we have:

Theorem 2. Let qnt ¼ ðq
n
taÞa2A be the vector of path costs from time t to the end

of the horizon, given outcome !n and functional approximations fQ̂Qn
t gt2T

computed from a backward pass. Then qt satisfies:

F�t ðRt, !
nÞ � F�t ðR

0
t, !

nÞ � qnt � ðRt � R0tÞ

Furthermore, if the basis paths in each period t are flow augmenting paths into
the supersink, then qnt is a right gradient of F�t ðRt,!

nÞ.

This is a very nice result. These paths are not too hard to compute and
provide accurate estimates of the future value of a resource. It turns out that
the ability to compute right derivatives is very important. If we just use the
dual variables, we overestimate the value of a resource in the future,
producing unwanted empty moves.

With our ability to compute valid stochastic gradients of the cost function,
we are ready to apply all the tricks we learned for two-stage problems for
computing the approximate value functions, Q̂Qn

t . The forward pass/backward

Fig. 12. Optimal network basis from the forward pass.
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pass logic is easy to execute and computationally tractable. The Monte Carlo
sampling logic avoids problems with expectations. This almost looks too good
to be true.

Multistage problems, however, have a few more surprises for us. We begin
by discussing the problem of computing expectations, even when we use
approximations of the recourse function. We next focus on the issue of
problem structure. Keep in mind that transportation problems can be very
large, and we are still interested in integer solutions. The first challenge that
arises in multistage problems is that resources are reusable (box cars do not
simply vanish after we use them). This introduces structural problems that did
not occur with two-stage problems, which we review in the context of both
single and multicommodity flow problems. We then briefly discuss one of the
more annoying, but unavoidable, features of transportation problems:
multiperiod travel times.

6.3 Single commodity problems

The difference between the two-stage problem and the one-period problem
in a multistage application is that the assignment of a resource to a task
produces a resource in the future. In two-stage problems, once the car was
assigned to an order in the second stage, it vanished from the system. In
multistage problems, we find that we have to solve the type of network
depicted in Fig. 13, which is a pure network. This can be solved with
commercial LP solvers or specialized network algorithms. Assuming that the
functions Q̂Qn

tþ1ðRÞ is piecewise linear, with breakpoints defined for integer
values of R, our pure network has integer data (upper bounds and resources)
and as a result simplex-based algorithms will return integer solutions.

Pure networks have another attractive property. Linear programming
codes will return a dual variable ~qqta for the resource constraint equation
(6.12). It is far more desirable to obtain explicit right and, if possible, left

Fig. 13. Network structure of a one-period single commodity problem.
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gradients, which we can denote ~qqþt and ~qq�t . With pure networks, left and right
gradients can be found by solving flow augmenting path problems into and
out of (respectively) the supersink. A right gradient gives us a precise estimate
of a particular slope of the recourse function. The computation of explicit left
and right gradients is very important in problems with large attribute spaces,
where the values of Rta can be relatively small. If A is small relative to the
number of resources being managed (implying that the values of Rta are much
greater than one), then the issue is unlikely to be noticeable.

The pure network structure actually arises in a larger class of problems.
Assume that we are modeling resources with attribute a, and recall from
Section 3 that aMðt, a, d Þ is the terminal attribute function, giving the attributes
of a resource with attribute a after decision d has been applied to it. Now
define:

Definition 3. A resource allocation problem has the Markov property if
aMðt, a, dÞ ¼ aMðt, a0, dÞ, 8a, a0 2 A.

The Markov property for resource allocation problems implies that the
attributes of a resource after it has been acted on is purely a function of the
decision. Classical single commodity flow problems exhibit this property
because a truck in location i which is then assigned to move a load from i to j,
is now a truck at location j. If all the trucks are the same, then the attribute of
the truck (its location) is purely a function of the attribute of the decision
which was to move a load to j. If there were different types of trucks that could
serve the load (a multicommodity problem), then the attribute of the truck
after moving the load continues to have the attribute of the truck before the
load (a characteristic that has nothing to do with the decision).

It is apparent that classical multicommodity problems which allow
substitution of different commodity types for the same task will never have the
Markov property, but multiattribute problems (where the attribute vector a
consists purely of dynamic attributes), can possess this property. Consider a
chemical trailer that can move basic argon gas or purified argon gas. Only
‘‘clean’’ trailers can move purified argon gas. A clean trailer can move basic
gas, but then it is no longer clean. There is no substitution for purified argon
gas, and any truck moving basic argon gas is no longer clean (although it can
be put through a cleansing process). Thus, the attributes of the truck after a
trip are determined completely by the characteristics of the trip.

6.4 Multicommodity problems

When we encountered single commodity problems, we found that the single
period problems were pure networks if the approximation of the recourse
function were linear, or piecewise linear, separable. Now we consider what
happens when we try to solve multicommodity problems. Recall that we let I
be a set of locations and K be the set of commodities. We follow the standard
notation of multicommodity flow problems and let Rk

ti be the number of
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resources of type k in location i, and let xktid be the number of resources of type
k in location i that we act on with decision d at time t.

Below, we show that multistage, multicommodity problems are especially
easy to solve if we use linear value function approximations, whereas the use
of separable nonlinear (piecewise-linear) approximations introduces compli-
cations which, while tractable, have to be addressed.

The case of linear approximations
When we replace the value function Qt(Rt) with an approximation Q̂QtðRtÞ,

we obtain the decision function:

X�
t ðItÞ ¼ arg max

x

X
i2I

X
d2D

ctidxtid þ EfQ̂QtðRtðxtÞÞ j Rt�1g ð6:16Þ

If we use a linear approximation for Q̂Q, the equation (6.16) reduces to:

X�
t ðItÞ ¼ arg max

x

X
i2I

X
d2D

ctidxtid þ
X
t0>t

X
j2I

q̂qt, jt0 ðRt, jt0 ðxt, !tÞÞ ð6:17Þ

¼ arg max
x

X
i2I

X
d2D

ctidxtid þ
X
t0>t

X
j2I

q̂qt, jt0Rt, jt0 ðxt, !tÞ ð6:18Þ

where:

Rt,jt0 ¼
X
i2I

X
d2Di

�t0, jðt, i, dÞxtid ð6:19Þ

Substituting equation (6.19) into (6.18) gives:

X�ðItÞ ¼ max
x

X
i2I

X
d2D

ctidxtid þ
X
t0>t

X
j2I

q̂qt, jt0
X
i2I

X
j2D

�t0, jðt, i, dÞxtid

ð6:20Þ

¼ max
x

X
i2I

X
d2D

ctidxtid þ
X
i2I

X
d2D

X
t0>t

X
j2I

�t0, jðt, i, dÞq̂qt, jt0xtid

 !

ð6:21Þ

It is easy to see that:

X
t0>t

X
j2I

�t0, jðt, i, dÞq̂qt, jt0xtid ¼ q̂qt,iM
tid
,tþ�M

tid
xtid ð6:22Þ
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where iMtid is our terminal attribute function (using location indices instead of
attribute vectors) and �Mtid is the time required to complete the decision. This
allows us to reduce equation (6.22) to:

X�ðItÞ ¼ max
x

X
i2I

X
d2D

�
ctid þ q̂qtþ1,iM

tid
,tþ�M

tid

�
xtid : ð6:23Þ

Equation (6.23) demonstrates that a linear approximation of the recourse
function is the same as adding a price to the cost of each assignment, with the
same structure as the original one-period problem. So, solving multi-
commodity flow problems with linear approximations is no harder than
solving single commodity problems.

The case of nonlinear approximations
The situation is somewhat different when we are using nonlinear functional

approximations. Our one-period problem now takes on the network structure
shown in Fig. 14 which is itself a multicommodity flow problem, if we are
using nonlinear functional approximations. We note, however, that these are
not especially large multicommodity flow problems, since they are for a single
time period. Perhaps the most significant practical problem that might arise is
the loss of integrality. In fact, we have found that a commercial LP package
solving a continuous relaxation of the problem returns integer solutions
99.9% of the time (the rare instance of a fractional solution is quickly solved
with branch and bound or simple rounding heuristics).

Perhaps the more practical challenge of multicommodity flow problems is
that we do lose the ability to find left and right gradients using flow

Fig. 14. Network structure of a one-period multicommodity problem.
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augmenting path calculations. As we pointed out before, this is not necessary
for all problem classes, but we have worked on problems with large attribute
spaces where dual variables from the LP solver are simply not good enough. In
this case, we are resorting to performing numerical derivatives (incrementing
the right hand side and solving the problem again). Since the optimal basis is
often optimal for the perturbed problem, this procedure can be quite fast.

6.5 The problem of travel times

One of the most annoying characteristics of transportation is the property
that it takes time to complete a decision. Using the vocabulary of discrete time
models, we refer to these problems as having ‘‘multiperiod’’ travel times. More
generally, we would refer to these as ‘‘multiperiod transfer times,’’ since there
are many activities in transportation that do not actually involve moving from
one location to another (drivers have to go on rest, trailers have to be cleaned,
locomotives have to be maintained). But, the concept of traveling between
locations is easy to visualize.

The implication of multiperiod travel times is that after acting on a resource
at time t, the resource is committed to an activity in time period tþ 1 and we
cannot act on it. At the same time, we cannot ignore it, because it will
eventually complete its movement, and we have to take this into account when
we make decisions in time period tþ 1. Fig. 15 illustrates the issue in the
context of fleet management. Assume that we will need containers at location
c at time t¼ 6, and we can move them there from either a, which is five time
periods away, or from d, which is only two time periods away. Because a is

Fig. 15. Multiperiod travel times imply that decisions to move vehicles at different points

in time can produce available capacity at the same time in the future.
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farther away, we will first look at the problem of the shortage of containers at
c for time t¼ 6 at time t¼ 1. At this point, we would not have considered
moving containers from location d, since this decision would not be made
until t¼ 4. Seeing the shortage, we might move containers the longer distance
from a to c, rather than waiting until time t¼ 4 and moving them from the
closer location at d.

The modeling of multiperiod travel times is the same as the modeling of
lagged information processes. Earlier in the chapter, we introduced the
notation Rtt0 which gives the vector of resources that we know about at time t
which become actionable at time t0. The difference between t0 and t is the
information lag. Lags can arise when customers call in orders in advance. In
the case of our rail car distribution problem, it can arise when a shipper tells
the carrier that a freight car will become empty in 3 days. Information lags
also arise whenever the travel time from one location to another is more than
one time period.

The problem of multiperiod travel times is unique to multistage stochastic
models, and furthermore it is unique to the usage of nonlinear functional
approximations. With a nonlinear function, location a ‘‘sees’’ the steeper part
of the slope of the function at c, since we have not yet made the decision to
move cars from d. The result is something that we call the ‘‘long haul bias,’’
which arises in any application where resources can be committed in the
future.

The standard solution for problems of this type is to use an augmented
state variable. Assume that a container started moving from i to j, departing at
time t, on a trip that requires time �ij. Now let the variable s be the remaining
time in the trip, so at time tþ 1, we would have s ¼ �ij � 1. Using our
multiattribute notation, the remaining trip time s simply becomes a new
dimension of the attribute vector a. Given this representation, we can solve
multiperiod problems using the same techniques that we have described up to
now.

This particular solution creates practical problems in transportation
applications. Problems in trucking and rail, for example, can have trip
times that range from 30 min to 3 days (for movements from the midwest
to the west coast). We can often work with time steps of 2 or 4 h, producing
trips that are often 10–20 time periods in length. The result is an attribute
space A that is now approximately 10 times bigger (a dramatic increase
in the size of the problem). Since a single movement is now broken into 10
or 20 time steps, pure forward pass algorithms become completely
unworkable, although we can partly overcome the slow backward communi-
cation of duals using shortcuts that take advantage of the properties of the
problem.

The augmented state representation has to be viewed as a brute force
solution to the problem of multiperiod travel times which can actually hide
nice structural properties. For example, it is not readily apparent using this
representation that the problem of multiperiod travel times vanishes when we
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use linear functional approximations. When Q̂QC,tþ6 is a linear function, both
locations a and d ‘‘see’’ the same slope. If they both send containers in
response to an attractive slope, then the sample gradient of the function at
location c will be reduced, and the location will become less attractive. Over
sufficient iterations, the model should discover the slope that attracts capacity
from closer locations but not farther ones.

It is beyond the scope of our presentation to fully describe the solution to
the ‘‘multiperiod travel time’’ problem when using nonlinear functional
approximations, but we note that it involves replacing the single functional
approximation Q̂Qt0 with a family of functions Q̂Qtt0 which are used to describe
the impact of decisions made at time t on future points in time t0>t. This
approach produces solutions that are comparable in quality to those obtained
using nonlinear approximations with single-period travel times, but as of this
writing, the theory behind this approach is immature.

We again see that linear approximations avoid complexities that arise in
the context of nonlinear approximations. But, the jury is still out regarding
the approach that will produce the best results in the laboratory, and
implementable results in the field.

7 Some experimental results

There is surprisingly little work comparing different stochastic program-
ming approaches. This is especially true of multistage problems, but it is even
true of the much more mature two-stage problem. Furthermore, the work on
two-stage problems has not been done explicitly in the context of resource
allocation problems (they are simply characterized as two-stage linear
programs) which makes it difficult to generate a library of datasets which
focus on the specific dimensions of resource allocation problems (such as
number of locations, number of commodity types, repositioning costs in the
second stage, and so on). As a result, we do not have a standard library of test
datasets for either two-stage or multistage resource allocation problems.

This chapter has described the use of a relatively new class of
approximation strategies that are especially well suited to resource allocation
problems. These approximations focus on using linear or separable, nonlinear
approximations of the recourse function. Many resource allocation problems
require integer solutions. Separable, nonlinear functions can be constructed as
piecewise linear approximations which produces first stage problems that are
either pure networks, or integer multicommodity flow problems with very
tight LP relaxations. In this section, we provide some preliminary compari-
sons between these approximation strategies and a variant of Benders
decomposition called the CUPPS algorithm.

Section 7.1 describes some experiments that were performed in the context
of two-stage problems. Section 7.2 then presents some results for multistage
problems.
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7.1 Experimental results for two-stage problems

Virtually all problems in transportation and logistics involve multistage
problems, but as our discussion has demonstrated, multistage problems are
typically solved as sequences of two-stage problems. As a result, we have to
begin with an understanding of how well we can solve two-stage problems.

We undertook a series of preliminary experiments focusing on questions
regarding rate of convergence, scalability and solution quality. We used a
randomly generated dataset (which allowed us control over its characteristics),
and compared SPAR (which uses separable, piecewise linear approximations)
and CUPPS (based on Benders decomposition). Our evaluation strategy
consisted of running each algorithm for a fixed number of training iterations,
and then comparing solution quality over a series of testing iterations.

Our datasets were created very simply. N locations were uniformly
generated over a 100� 100 square. Initial supplies of resources were randomly
generated and spread around these locations. The resources and demands
were generated in such a way that ensured that the expected number of
resources equaled the expected number of demands (our work has shown that
this is when the problems are the most difficult, the most interesting and the
most realistic). Demands (in the form of loads of freight to be moved) were
randomly generated with both an origin and a destination, where the contri-
bution from covering a demand was set at $1.5 per mile, where the length
of the load is given by the distance from the origin to the destination.
Transportation costs in the first stage are fixed at $1 per mile, while
transportation costs in the second stage are fixed at $2 per mile. This
provides an incentive to reposition in the first stage before we know what the
demands are.

Our first experiments studied the rate of convergence of each algorithm on
a dataset with 30 locations. Fig. 16 shows the objective function for SPAR and
CUPPS averaged over 50 testing iterations, as a function of the number of
training iterations. With 950 training iterations, the methods are virtually
identical. However, as the number of training iterations diminishes, SPAR
seems to perform better, suggesting that it has a faster rate of convergence.

This conclusion is supported in Fig. 17 which compares SPAR and CUPPS
as a function of the number of locations. For each run, we used 200 training
iterations, and the algorithms were run on problems with 20, 30, 40 and 90
locations. The results show that SPAR and CUPPS work similarly for smaller
problems, but that SPAR works better (with 200 training iterations) for larger
problems. This suggests that the SPAR-class algorithms exhibit a faster rate of
convergence, especially as the problem size grows.

We finally looked at the results for every observation within the test sample
to get a sense of the distribution of the difference between SPAR and CUPPS
(see Fig. 18). To our surprise, we found that SPAR and CUPPS provide
almost identical results for every outcome for smaller datasets. For larger
datasets, SPAR outperformed CUPPS on every outcome.
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Fig. 16. The effect of the number of training iterations on SPAR and CUPPS, illustrating

the faster convergence for SPAR.

Fig. 17. SPAR vs. CUPPS for two-stage problems, illustrating better results for SPAR

when the problem size grows.
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7.2 Experimental results for multistage problems

The solution of multistage problems for our applications consist of solving
sequences of two-stage problems. The question now is, how well does this
work? Should we expect that an optimal or near-optimal algorithm for two-
stage problems will work similarly on multistage problems?

The biggest difference between two-stage and multistage problems for our
problem class is that the sequences of two-stage problems that we solve in a
multistage setting have random initial starting states. When we solve a two-
stage problem, the initial state is (normally) deterministic. This means that the
optimal solution to the first stage is deterministic, which means that our
approximation for the second stage has to be accurate only in the vicinity of the
optimal solution of the first stage. In the case of multistage problems, the initial
resource state at some time t in the future depends on previous decisions, while
the approximation of the recourse function for this problem is fixed, and must
perform well over a range of initial states. As a result, the demands on the
accuracy of the recourse function for the second stage are much higher.

A major difficulty that arises in the evaluation of approximations for
multistage problems is identifying a good benchmark. Optimal solutions are
simply not obtainable, and tight bounds are not readily available. For this
reason, we use two strategies. First, it is useful to see how well a stochastic
algorithm works on a deterministic problem. This need arises since it is
typically the case that a company will want to test how well the algorithm
works by running it on past history (which is deterministic). Deterministic
formulations tend to be the benchmark, and if a stochastic algorithm does not
work well on a deterministic problem, it raises the question of how it can be a
good method for a stochastic problem.

The second strategy we use is to compare against deterministic rolling
horizon procedures using stochastic data. Again, this is the most common
strategy used in engineering practice for solving stochastic problems.

We first ran the SPAR algorithm on a deterministic, single commodity
problem which can be formulated as a pure network. A significant assumption
is that the time at which a load had to be moved was fixed (so-called tight
time windows). Table 1 reports these results for problems with 20, 40 and

Table 1
Percentage of integer optimal value obtained using SAFE for second set of
deterministic experiments with single-period time windows (network problems)

Locations Simulation horizon

15 30 60

20 100.00% 100.00% 100.00%
40 100.00% 99.99% 100.00%
80 99.99% 100.00% 99.99%
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80 locations. These results indicate that the algorithm is effectively returning
optimal solutions (Fig. 18).

We then ran the algorithm on four stochastic datasets and compared
against a rolling horizon procedure (RHP). The RHP used a point forecast of
the future to make decisions for the current time period. Tests were run with
different planning horizons to ensure that we were using the best possible
planning horizon for the RHP. The results are shown in Fig. 19 which shows
that the SPAR algorithm is producing results that are significantly better than
a deterministic RHP.

Further research is needed before we understand the true value of a
stochastic formulation. Our rolling horizon experiments were performed
assuming that there was no advance information. The value of a stochastic
model also depends on the economics of making the wrong decision (the
recourse).

8 A list of extensions

This chapter has introduced a basic problem class, discussing along the way
practical algorithmic strategies, but steadily introducing issues that address
the richness of transportation problems. Our notational framework, which at
first may seem clumsy to researchers accustomed to even simpler notation, is

Fig. 18. SPAR outperforms CUPPS as the problem size grows for every outcome in the

testing dataset.
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designed to provide a natural bridge between the classical notation of
mathematical and stochastic programming, while providing for some of the
issues that arise in practice. Our progression of problems, from two-stage to
multistage, from single commodity with no substitution through multi-
commodity and heterogeneous resource allocation problems, was designed to
bring the reader through a list of issues that add to the realism of the model
being considered.

We have brought the reader to the edge of realistic problems that rise in
practice, but real problems of the type that arise in freight transportation have
even more surprises to delight and frustrate the research community. In this
section, we provide a hint of problems that remain to be addressed. All of the
issues listed below represent forms of inaccurate information.

a) Random travel times—Not only are there multiperiod travel times, it is
normally the case that the travel time is random. A travel time may be
uncertain even when a decision is made.

b) Advance information—Customers place orders in advance. Railroads
might let you know that they will give you empty cars in 3 days. A driver
might tell you that he will start in a week. We need to model the
presence of information that is known, but not actionable.

c) Demand backlogging and the ‘‘now vs. later’’ problem—If we do not
serve the customer request now, we may be able to serve it later (at a
price). We can assign a driver to a distant load now, or wait for a closer

Fig. 19. Comparison of SPAR approximations to rolling horizon procedures for 20

location datasets and different substitution rules.
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load to be called in later. We need to identify when we should make a
decision now (to serve a request) or wait until later.

d) Multiple, reusable layers—Perhaps the most challenging problem is the
presence of multiple resource layers. (Recall that customer demands can
also represent a kind of resource layer). The simplest example arises with
backlogging demands: if we do not serve a demand now, it is still in the
system in the next time period. In freight transportation, we may have to
manage drivers, tractors and trailers, or locomotives, boxcars and crews.
It is possible to model some freight transportation operations with four
or five layers, and most of them are reusable.

e) User noncompliance—An overlooked dimension of most models is that
what the model is recommending is not what is being implemented. So
the costs and contributions that we are adding up in the computer are
not the costs and contributions we are getting in the field. The difference
between what a model recommends and what is implemented in the field
is a source of randomness that draws into question the value of so-called
optimal solutions that ignore this source of randomness.

f) Multiagent control—Large problems are typically broken into smaller
problems which are managed by different people. Decisions made by one
person need to anticipate the impact on another. But it is impossible to
predict what someone else will do with certainty. This is not the same as
the user compliance problem, but it is another instance of solving a
problem where the randomness is in predicting what someone will do.

g) Data errors—We all know about data problems and recognize that we
have to fix them, but we overlook the fact that the presence of data
errors is again a source of noise. If data errors are going to require
humans to override model recommendations, then so-called ‘‘optimal’’
solutions are no longer optimal (even within a single stage).

h) Incomplete information—Random variables arise when we have
information that is not known now, but can be measured later. There
are problems where information is unknown but can never be measured
directly, which means we could never estimate a probability
distribution. But the missing information is captured in historical
databases of past decisions.

9 Implementing stochastic programming models in the real world

We close our discussion of stochastic problems by raising some of the issues
that arise when we try to implement stochastic programming models in
practice. In the beginning of this chapter, we made the argument that explicit
models of uncertainty produce more realistic behaviors, often exactly the
behaviors that humans will mimic (perhaps with less precision) but
deterministic models will overlook.
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Humans have an innate ability to deal with imperfect information and
noise. We allow more time to make an appointment. We provide slack time in
airline schedules to allow for possible delays. We own extra trucks and
locomotives to account for breakdowns, congestion and spikes in demand.
Trucking companies have large rooms of people planning operations who
spend 90% of their time collecting and verifying data, and only 10% actually
making decisions. We would expect that planners would quickly embrace
models which capture the uncertainty that they spend so much time dealing
with.

Surprisingly, this is not the case. Stochastic models arise because of the
need to forecast an activity in the future, a forecast that is made with
uncertainty. And yet in the business world, the word ‘‘forecast’’ is
synonymous with the concept of a ‘‘point forecast.’’ When we ask for a
forecast of the number of box cars needed in a region next week, we do not
want to be told ‘‘somewhere between 70 and 100.’’ When we ask for a forecast,
we expect an answer such as ‘‘85.’’

At the heart of any stochastic programming application is a distributional
forecast, an explicit recognition that a range of outcomes is possible. As much
as people in operations have learned to deal with uncertainty, they uniformly
have difficulty working with models which capture this uncertainty. Often this
is because they are looking either for a specific recommendation of what to do
right now (which even a stochastic model should do) or a plan of what should
be done in the future. It can be said that a plan is a (point) forecast of a
decision. Even for events in the future, people want to be told what is going to
happen (even if they realize a plan has uncertainty, they are still looking for a
specific estimate of what is going to happen).

Consider the practical difficulty of testing a stochastic model. In a
deterministic model, we expect the model to move exactly the number of
freight cars that are needed. If a deterministic model moved 60 cars to satisfy
orders for 50, we might reasonably conclude that there was some sort of bug
in the software. Yet this might be exactly the right answer for a stochastic
model. But how do we know that we are getting optimal behavior, or simply
the result of a programming error?

For this reason, we usually first test a stochastic programming model by
solving a deterministic problem, and comparing the solution against a
standard solver for deterministic problems. It seems obvious that an algorithm
that can solve a stochastic problem should also be able to solve a deterministic
problem, but this can be harder than it looks. Figure 20 shows a recourse
function for deterministic and stochastic models. As a rule, stochastic
problems are smoother and better behaved. As a result, linear approximations
can work quite well. However, these same techniques will not work as well
on the sharply angled function produced when we replace our range of
possible outcomes with a point forecast. While we can argue that we should
not have to test our stochastic algorithm on a deterministic model, this is
a powerful debugging and testing tool, and we have found that it is necessary
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to develop techniques that work well on deterministic as well as stochastic
problems.

10 Bibliographic notes

The techniques in this chapter have their roots in stochastic approximation
methods (Robbins and Monro (1951), Blum (1954), Dvoretzky (1956),
Gladyshev (1965)), stochastic gradient methods Ermoliev (1988), general
stochastic linear programming (Birge and Louveaux (1997), Infanger (1994),
Kall andWallace (1994),Higle andSen (1991)) anddynamicprogramming (both
classical methods reviewed in Puterman (1994), and approximate methods,
such as those covered in Bertsekas and Tsitsiklis (1996)). For reviews of these
topics, the reader is referred to the introductory chapters in this volume.

Applications in transportation and logistics represented some of the earliest
motivations for stochastic programming. Dantzig (1955) used fleet manage-
ment (in an airline setting) as an early motivation for stochastic programming.
Ermoliev et al. (1976) formulated the planning of empty shipping containers
as a stochastic program.

There has been a rich history of research in fleet management in the context
of the ‘‘car distribution problem’’ of railroads. Most of this work consists of
deterministic linear programmingmodels (Feeney (1957), Leddon andWrathall
(1967), Gorenstein et al. (1971), Misra (1972), White (1972), Herren (1973,
1977), White and Bomberault (1969), Haghani (1989), Mendiratta (1981) and
Mendiratta and Turnquist (1982)). Dejax and Crainic (1987) provide a thor-
ough review of the research in fleet management at the time, covering both rail
and intermodal container applications. Crainic et al. (1993) provide a general
stochastic, dynamic model for container distribution.

Jordan and Turnquist (1983) provide a stochastic formulation of the empty
car distribution problem. In their model, a car could be assigned to at most
one demand, and cars could not be repositioned more than once. This structure
allowed the problem to be formulated as a nonlinear programming problem.
Powell (1986) extended this methodological approach, using the trucking
industry as the context, to multistage problems with reusable resources.

Fig. 20. Recourse functions for deterministic and stochastic functions.
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This formulation involved forming deterministic decision variables which
specified the percentage of the supply of trucks at a node that would be moved
loaded or empty from one location to another. This line of research, however,
was unable to properly model the recourse strategy where a truck might be
assigned to choose from a set of loads going out of a location to various
destinations.

Powell (1987) solved this problem in a way that produced a pure network
formulation for the first stage subproblem (see Powell (1988) for an overview
of different ways of formulating the problem). A major strength of the
technique was that it produced nonlinear functions of the value of vehicles in
the future. The ideas behind this research produced a series of articles that
approximated the recourse function by using the structure of the underlying
recourse function (Powell and Frantzeskakis (1992), Frantzeskakis and Powell
(1990), Powell and Cheung (1994a,b) and Cheung and Powell (1996)). These
papers introduced concepts such as nodal recourse (the recourse is to allocate
flow over different links out of a node), tree recourse (the recourse is to
optimize flows over a tree) and other restricted recourse strategies aimed at
approximating more complex problems. Although the results were promising,
this line of research required approximating the future in a way that prevented
the techniques from being applied to the most general (and realistic) problems.

Powell (1998) (see also Carvalho and Powell (2000)) took a different tact
and solved the problem as a sequence of network problems, using linear
approximations of the value of the future. This approach was computationally
quite easy, and scaled to much harder problems. Powell et al. (2002b) showed
how the technique could be applied to the heterogeneous resource allocation
problem, which is a more general problem than the multicommodity flow
problem (the resource attribute space is much larger). The use of linear
approximations to represent the future, however, produced instabilities that
were solved by the use of control variables that limited the amount of flow
that could be moved from one location to another. This worked very well for
single commodity problems, but did not scale well to multicommodity or
heterogeneous resource allocation problems.

Godfrey and Powell (2001) introduce an adaptive sampling technique,
dubbed the CAVE algorithm, that produces nonlinear approximations of a
recourse function using stochastic gradients. The method is easy to apply and
produces piecewise linear, separable approximations of a recourse function.
Furthermore, all it requires is the dual variable from a second stage problem,
and does not require that the problem have any particular structure. Experi-
mental work suggested that the algorithm might be optimal for two-stage
problems, but at a minimum it produced results that were extremely close to
optimal for both deterministic and specially structured stochastic problems.
Godfrey and Powell (2002a) apply it to stochastic, multistage problems and
demonstrate very good results relative to rolling horizon procedures. Godfrey
and Powell (2002b) investigated the case of resource allocation where
the travel time from one location to another can be multiple periods.
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A naive application of the CAVE algorithm produced extremely poor results,
and a variation is suggested that provides results that are comparable to the
single period travel time case.

Topaloglu and Powell (2002) applies similar techniques to stochastic
multicommodity flow problems. This problem class introduces the additional
complexity that multicommodity problems, combined with nonlinear
approximations of the future, produce sequences of (usually integer)
multicommodity flow problems. The method appears to work well on both
deterministic and multistage stochastic integer multicommodity flow
problems.

The SPAR algorithm is part of a broader class of algorithms that use
stochastic gradients but maintain structural properties such as concavity. This
strategy was first suggested in Godfrey and Powell (2001) as the CAVE
algorithm, but the SPAR algorithm, introduced by Powell et al. (2002a), offers
several provable convergence results and appears to also work better
experimentally (see Topaloglu and Powell, 2002 for the use of these techniques
for multistage problems). Auxiliary function methods (Culioli and Cohen,
1990; Cheung and Powell, 2000) maintain concavity by starting with a
concave function and using stochastic gradients to update the function
(effectively tilting it).
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Abstract

We give the reader a tour of good energy optimization models that explicitly
deal with uncertainty. The uncertainty usually stems from unpredictability of
demand and/or prices of energy, or from resource availability and prices. Since
most energy investments or operations involve irreversible decisions, a stochastic
programming approach is meaningful. Many of the models deal with electricity
investments and operations, but some oil and gas applications are also
presented. We consider both traditional cost minimization models and newer
models that reflect industry deregulation processes. The oldest research precedes
the development of linear programming, and most models within the market
paradigm have not yet found their final form.

Key words: Stochastic programming, energy, regulated markets, deregulation,
uncertainty, electricity, natural gas, oil.

1 Introduction

The purpose of this chapter is to discuss the use of stochastic programming
in energy models. This is not a well defined topic. Let us therefore start by
outlining what this chapter is and what it is not. First, this is not an annotated
bibliography. Its purpose is to help the reader see where stochastic pro-
gramming can be used, and to point to relevant existing literature. We do not
attempt to be complete in our references, only to help the reader find good
starting points. We shall discuss both existing models and the potential for
new arenas.

A. Ruszczyński and A. Shapiro, Eds., Handbooks in OR & MS, Vol. 10
� 2003 Elsevier Science B.V. All rights reserved.
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Then, what shall we understand by the reference to energy models in
stochastic programming? Generally, stochastic programming refers to a
problem class, and not to the choice of solution procedures. Many of the
models in this class can be solved both with tools from mathematical
programming and as stochastic dynamic programs (SDPs). This book is about
stochastic programs solved with tools from mathematical programming.
However, the view we have taken in this chapter is that we cannot include or
exclude interesting models solely on the basis of what solution method the
authors have chosen. Hence, if an existing model represents a stochastic
dynamic decision problem which can be formulated as a stochastic program,
we include it irrespective of whether it is solved with methodology from
mathematical programming or set and solved as an SDP.

Furthermore, to have made the point, this chapter is not about operations
research and energy. This ought not to affect our models too much, as we are
of the opinion that most real decision are made under uncertainty, but it will
affect our referencing to the literature.

As part of the preparation for this chapter we had the privilege of reading a
text, which for our field, is very old. Massé (1946) authored two volumes on
hydro scheduling. The books are based on work performed before and during
World War II. Of course, he does not discuss stochastic programming as
such—the term was not invented at the time—but he discusses models and
methodology that would fit the premises of this chapter. It is very interesting
to see how he walks his readers through some very deep arguments about why
deterministic model are not good enough. He points to the fact that looking
at a deterministic future is far too optimistic, and that flexibility will be
disregarded.

His major point is that hydro scheduling is about releasing water such that
the immediate financial gain equals the expected future value of water. The
expected future value of water is presented as a function of reservoir level,
present inflow (to the extent that there is memory in that process), and time
(to represent seasonality). He gives optimality conditions for this case. In fact,
he has a long discussion to the effect that all uses of natural resources is a
tradeoff between use now and use in a stochastic future. To illustrate the use
of statistics about the future, he makes the reference that if you wish to check
the probability that you are alive tomorrow, you look at your present health,
if you wish to know if you are alive in thirty years, you resort to statistics.

Another fact, dear to all stochastic programmers, is his pointing out that
while deterministic multiperiod optimization yields decisions for all periods, a
stochastic approach only yields policies or strategies.

A further major issue in the books is the objective function of the opti-
mization. Should we maximize expected profit or expected utility (which he
denotes psychological expectation in contrast to mathematical expectation)?
He is concerned about some of the well known paradoxes when using expected
profit, and he always refers to Borel for these examples. He is also very much
concerned about risk, and strongly believes that risk will always be with us.
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(He clearly had not thought of hedging in the financial markets.) He comes
very close to defining an efficient frontier with expected profit on one axis and
the probability of shortage of water on the other. His premise here is that the
owner of a reservoir has agreements with some supplier, and that any
reasonable agreement will be such that in extremely dry years, the contract
cannot be fulfilled.

When decision problems are formulated and solved as deterministic
problems, odd and special situations are often automatically excluded from
consideration as only the expected values—the normal cases—are considered.
Massé has the view that this can be dangerous, as what may appear to be a
detail at the time of analysis, may later turn out to have had a major effect on
the development: ‘‘Le nez de Cléopâtre, s’il eût été plus court, toute la face de
la terre aurait été changée.’’

This chapter has five more sections. Section 2 is on regulated electricity
markets. This is clearly the best developed area for use of stochastic
programming in energy. Section 3 discusses the much newer area of de/re-
regulated electricity markets. We close with two shorter sections on oil and
natural gas, and a conclusion.

2 Electricity in regulated markets

This section discusses models for electricity production, thermal and hydro-
based, in a setting of a regulated utility. Transmission planning and operations
will not be considered. The utility can be either a single producer, or several
producers that are perfectly coordinated by choice or by law. Much of the
newer literature on electricity production is set in a framework of de(re)regu-
lation and competition. We wait with this subject until the next session.

2.1 Overview of models

Many different models are used in power systems planning. A possible
classification divides the different models according to the planning horizon.
Long term planning models deal with investments and typically have a 15–20
year horizon. Medium term planning is done over a 1–3 year range, and deal,
for example, with reservoir management. Short term planning typically deals
with problems with horizons of one week or shorter, such as unit commitment
and economic dispatch.

The perspective taken in these models is that of a social planner or an ideal
public utility. The industry has traditionally been heavily regulated with
considerable central planning. The reason for regulation is that the industry is
prune to market failure; use of the transmission grid causes changes in its
capacity in other parts of the network (externalities). If demand and supply is
not matched at each instant, the whole or large parts of the system breaks
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down; reliability is a public good. Local utilities have typically had a
monopoly within their area, preventing competition.

The demand in these models is mostly portrayed as price-inelastic; a
deterministic or stochastic demand is to be met at minimum cost. A standard
textbook on electricity operations is Wood and Wollenberg (1996). Some of
these models may still have some relevance in a market setting, because the
deregulated utility often still has the obligation to serve local demand.
Similarly, the utility may have committed to a particular load schedule in the
spot market.

2.2 Long term planning

By long term planning we will normally mean planning large investments,
be that building thermal units, or constructing hydro reservoirs and turbines.
The starting point for such an analysis is always a projection of future load
(demand). Let us first briefly see how the load is normally presented in such a
setting. The starting point will a load curve for each individual day of the
year—possibly split into groups of days with similar patterns. These curved
will possess the common pattern of having peaks in the morning and
afternoon, reflecting our way of life. The first step is to sort these curves
according to decreasing loads, to achieve daily load duration curves. These
curves are then added together to form a curve like the one in Fig. 1. To the
left is the hour with the highest load during the whole year, and to the right the
one with the lowest. For example, h is the number of hours in a year for which
the load is at least L (MW).

Normally, this curve is not smooth, but step-wise, as the unit along the
horizontal axis is at least one hour. To simplify the presentation, let us assume
that there are only two steps, the base load period and the peak load period.
What we are about to present is inspired by Murphy et al. (1982), and the first
result we are to illustrate comes from that paper. Consider the simplified
picture in Fig. 2

The total energy consumption in base load is given by t2L1, and in peak
load t1ðL2 � L1Þ. Assume we have two technologies, for example two different

Fig. 1. Load duration curve for one year (8760 h).

640 S.W. Wallace and S.-E. Fleten



types of thermal units, and let us simply denote them ‘1’ and ‘2’. Let f1 be the
annualized fixed costs per unit of production capacity for technology 1, and let
c1 be the operating costs per MWh, also for technology 1. For technology 2, f2
and c2 are similarly defined. Let xi for i ¼ 1, 2 be the installed capacity of
technology i. Furthermore, let yib be the production of base load for
technology i and correspondingly yip for peak load. The (deterministic)
problem now becomes:

min
X2
i¼1

fixi þ
X2
i¼1

ciðt2yib þ t1yipÞ ð2:1Þ

subject to

y1b þ y1p � x1

y2b þ y2p � x2

t2ð y1b þ y2bÞ ¼ dbð¼ t2L1Þ

t1ð y1p þ y2pÞ ¼ dpð¼ t1ðL2 � L1ÞÞ

and non-negativity ð2:2Þ

where db is the load in the base period and dp the additional demand in the
peak period. The first two constraint say that production cannot exceed
installed capacity of the two technologies, whereas the last two constraints
express that base load and additional peak load must be satisfied.

This model helps us find the optimal investment to meet a known future
demand. But, of course, future demand is not known. Hence, as a first step of
making the model more realistic, let us assume that there are several possible
future load duration curves. Let curve k occur with probability pk. A
straightforward recourse model now becomes.

min
X2
i¼1

fixi þ
XK
k¼1

pk
X2
i¼1

cki ðt2y
k
ib þ t1y

k
ipÞ ð2:3Þ

Fig. 2. Simplified load duration curve for illustrative purposes.
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subject to, for all k

yk1b þ yk1p � x1

yk2b þ yk2p � x2

tk2ð y
k
1b þ yk2bÞ ¼ dk

b ð¼ tk2L
k
1Þ

tk1ð y
k
1p þ yk2pÞ ¼ dk

p ð¼ tk1ðL
k
2 � Lk

1ÞÞ

and non-negativity ð2:4Þ

where superscript k always refers to load duration curve (scenario) k. Note
that the first stage variables xi do not have a superscript k. Also note that for
given values of the first-stage decisions xi, this problem falls apart and
becomes standard transportation network flow problems, one for each load
duration curve, see Wallace (1986) for details.

What would we expect to get from (2.3) and (2.4) if we compare its solution
to the case where (2.1) and (2.2) are solved with the expected load duration
curve, that is, the case where we instead of scenarios use a ‘typical’ or average
year and arrive at a deterministic model? Or even more importantly, how do
we expect the solution to the stochastic optimization problem to differ from
individual scenario problems? Different technologies for energy production
will vary in some aspects. Some will have long lead times, high investments
costs and low operating costs, others will have shorter lead times, lower
investment costs, but at the price of higher operating costs. In a given
scenario, the future demand will be known with certainty. That will tend to
produce the use of a technology which perfectly matches the load. This will
typically be a technology with high investment costs and low operating costs.
The capacity of the unit will perfectly match the needs reflected in the load
duration curve (scenario). Over-investments will never take place, and
shortages will never occur. Smaller units which are more flexible, but have
higher operating costs, will tend to lose out, as their qualities will not be
reflected in the model. Why pay for flexibility you do not need? An example of
these aspects is shown by Smeers (1990), where he discusses the relationship
between coal (expensive but flexible) and nuclear (inexpensive but also
inflexible).

An interesting question raised in Murphy et al. (1982) is if there is a version
of the deterministic problem, such that if we solve that problem, we obtain the
solution to the stochastic problem. From a general point of view, this is
something we normally do not find for stochastic programs, but in this case
there is a result.

Take the individual load duration curves, and multiply the duration of each
block by pk. In our simplified example, multiply all numbers on the horizontal
axis by pk to obtain tk1pk and tk2pk. Notice that a year is 8760 h, thusP

tk2pk ¼ 8760. Create a new load duration curve from these new curves to
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arrive at a new aggregated curve. This is illustrated in Fig. 3. In the horizontal
summation we have kept the patterns for peak and base load in the scenarios.
This is only to make it easier to see where the columns come from. In reality,
in the summation, there are four different load levels, to be treated with four
parameters ti and four load levels Li. Generally, the number of steps in the
sum equals the sum of the number of steps in the individual load duration
curves.

The main result here is that if we carry out a deterministic investment
analysis using this horizontally aggregated load duration curve, we obtain the
same solution as if we had solved the recourse problem above. But the
problem is simpler as the number of constraints saying that we cannot use
capacity not installed will decrease from k times the number of technologies to
just the number of technologies.

But the result is dependent on some assumptions, in particular that the
operating costs do not vary with output level, implying that the cki are fixed
irrespective of technology i being used for base or peak load (as it is in (2.3)
and (2.4)), and irrespective of scenario, so cki :ci. But even so, this is a strong
and interesting result for the two-stage case.

Sherali et al. (1982, 1984) discuss the model in greater detail, with an
emphasis on cost sharing for the fixed charges fi. This brings the problem into
the realm of peak load pricing, that is, the cost of capacity is always related to
those (users or scenarios) that have the maximal use of the capacity.

The load duration curve can also be approximated in a different way. An
example is given in Fig. 4. In this case the resulting problem is quadratic. For
a discussion, see the very early paper of Louveaux (1980).

Discrete decisions
The basic recourse model above can of course be extended in many

directions. First, in many cases the variables xi can take on only a finite

Fig. 3. Horizontal aggregation of two load duration curves.
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number of values, which brings us into (stochastic) mixed integer program-
ming. Bienstock and Shapiro (1988) integrates capacity expansion, supply
contracts and operations planning in an electricity utility via a two-stage
stochastic program with integer variables in both stages.

Multi-stage and lead times
In the same way, there are obvious possibilities in setting up a multi-stage

problem, where load duration curves are revealed over time, and investments
made stage by stage. Such a setup will show the importance of lead times in
construction. The option to wait will favor the technologies with short lead
times. This effect is not easy to capture in single- or two-stage models. Hence,
this dynamic effect comes in addition to the effect discussed earlier where a
stochastic model will be able to favor flexible technologies (that are never
optimal in deterministic worlds). A good discussion of this problem can be
found in Gardner and Rogers (1999). Flexibility is also discussed by Gardner
(1996), where there is a focus on the relationship between flexibility in the
financial sense, and the effects of emission control of acid-gas. The paper
shows that when acid-gas emission control is added, some of the more flexible
technologies lose in the competition. This is particularly true for gas
combustion turbines. For further discussions of emission policies, see Manne
and Richels (1991, 1995), Manne and Olsen (1996) and Birge and Rosa (1996).

Other contributions in the multi-stage setting areManne and Richels (1978),
Gorenstin et al. (1993), Dantzig and Infanger (1993), Escudero et al. (1995)
and Pereira et al. (1995).

Shortage—or lost load
It is traditional in monopoly-based production planning to take it for

granted that all demand must be satisfied. Qiu and Girgis (1993) take a
different view, and say that since, ultimately, end users must always pay for
the investments, they may be better off with a slight probability of an outage.
They therefore set up a capacity investment problem where outages are priced
rather than forbidden. Taking into account that scenarios (possible load
duration curves) will always be somewhat subjectively chosen, and that

Fig. 4. Discretization of load duration curve resulting in a quadratic objective function.
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outages to some extent correspond to worst-case analysis, it may be very
good, modeling-wise, to allow for outages at a high cost. There will always be
a slight chance that something even worse than the worst scenario of the
model could occur, and hence, that an outage could occur even if the model
claimed otherwise.

A further discussion of long-term planning can be found in Hobbs (1995).

2.3 Medium-term planning

Hydro-thermal scheduling
An important problem in the medium-term scale is hydro-thermal

scheduling. For hydro reservoirs, the problem is essentially to strike a
balance between immediate and future (opportunity) costs of using the water.
Stochastic optimization models for this problem are in daily use in hydro-
dominated systems.

The following section presents the production scheduling problem. There
are T time periods, or stages, as illustrated in Fig. 5.

Periods are time intervals between stages, which are discrete points in time.
The first period is deterministic. To simplify exposition, the problem is
formulated for a producer with only one reservoir.

The producer is operating an ongoing business with an infinite future. We
would like to avoid end effects, which are distortions in the model decisions
due to the fact that the model has a finite horizon, whereas the real business
problem has an infinite horizon. For example, if in the model the value of the
reservoir at the end of the model horizon is too low, say equal to zero, then the
end effect would be that too much water is sold in the last stage. There are
several alternatives for this problem. One is choosing the date of stage T such
that it makes sense to constrain the reservoir to be either empty or full at that
date, i.e., in the spring before snowmelt, or in the fall before winter sets in.
Another alternative requires estimating the end-of-horizon value of water in
the reservoirs from a more aggregate model with a longer time span. Third,
one can choose the time horizon of the model to be long enough to make the
first stage decisions unaffected by the choice of horizon reservoir value
function. See Grinold (1980) for an approach to dealing with end effects in
general energy models. Grinold’s observation is that the dual variables at the
end of the horizon should be in a steady state, and suggests introducing dual
constraints (i.e., primal variables) to ensure this. Another way of achieving
steady state dual variables in the reservoir management problem is described
by Lindqvist (1962). It involves starting with a guess for the dual variables,
which in this case equals the incremental values of stored water in the

Fig. 5. Time scale example.
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(equivalent) reservoir, and iterating over the last year of the planning horizon
replacing the guesses with the water values obtained for one year before the
end of the horizon.

The stochastic variables are inflow, and demand �. Scenarios are possible
histories of realizations of the stochastic variables up to the end of the
horizon. The event tree in Fig. 6 shows how the uncertainty unfolds over time.
A scenario in the event tree is a path from the root node to a leaf node. Each
node n represents a decision point, or equivalently a state, corresponding to a
realization of the random variables up to the stage of state n, denoted t(n). The
root state is n¼ 1, and scenarios are uniquely identified by states at the last
stage, belonging to the set S. The set of all states is denoted N. The states have
unconditional probabilities Pn, satisfying 8 t

P
njt(n)¼ tPn¼ 1. Every state

except the root has a parent state a(n). Let stage t decisions (for period t) be
made after learning the realization of the stochastic variables for that period.

The inflow process is multidimensional and has strong seasonal
components. The main bulk of inflow to reservoirs in North America and
northern Europe comes during spring, whereas in winter the precipitation
accumulates as snow. Forecasting the inflows and capturing the structure of
the processes and their degree of predictability is of vital importance to hydro
scheduling models. This issue is discussed by Tejada-Guibert et al. (1995).

The decision variables are reservoir discharge, vn, spill, rn, and reservoir
level ln. Each variable in the problem is indexed by the state to which it
belongs. Power generation is generally a nonlinear function of the height of
the water in the reservoir and the discharge, and could be non-convex. In our
exposition we disregard head variation effects, and assume that generation is
proportional to flow through the station, �vn, where � is the constant hydro-
plant efficiency. In practice however, head variation effects can be significant,
particularly when balancing reservoirs with different characteristics. If a
downstream reservoir has little storage capacity, then keeping its head up in
order to maximize efficiency may lead to increased risk of spilling water if
inflow increases too rapidly. This area needs further research.

Let VLðlnÞ be the value of the reservoir at the end of the horizon as
a function of the reservoir level. This function must be specified to avoid
end effects. If a long term scheduling model is available, VL may be extracted

Fig. 6. Event tree and time scale example for T¼ 5. The nodes represent decisions, while

the arcs represent realizations of the uncertain variables.
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from this model, e.g., in the form of incremental value of stored water in
reservoirs.

It is assumed that there is no direct variable cost of hydro production.
Thermal generation is represented by pin, for energy generated by unit i 2 I in
state n. This incurs variable cost FCið pinÞ, a convex function of pin. It consists
mainly of fuel costs, and is usually modeled as linear, piecewise linear or
quadratic. Nonconvex cases are plausible, for example in the case of a unit
that can be fed multiple types of fuels. With a typical minimum time
resolution of one week it is reasonable not to include startup costs for thermal
generation. Let � be a discount interest rate, Nt is the number of years (in
fractions of years) to period t,

min
p,v

X
n2N

Pnð1þ �Þ
�NtðnÞ

X
i2I

FCiðpinÞ

" #
�
X
s2S

Psð1þ �Þ
�NTVLðlsÞ ð2:5Þ

The hydro reservoir balance is

ln � laðnÞ þ vn þ rn ¼ �n, ð2:6Þ

The demand constraint reads

�vn þ
X
i2I

pin � �n ð2:7Þ

Time-dependent upper and lower limits on release and reservoir level are
imposed using

vtðnÞ � vn � vtðnÞ, ð2:8Þ

ltðnÞ � ln � ltðnÞ, ð2:9Þ

rn � 0, ð2:10Þ

for n 2 N and with initial reservoir level given.
Load curtailment is sometimes modeled as an extra thermal unit

having a marginal cost equal to an estimate of the marginal cost of unserved
energy.

In many systems the transmission system limits the opportunities for hydro-
thermal scheduling. There will be cases when transferring more electric energy
from one node of the system to another will not be possible. Electricity flow in
transmission networks is governed by Kirchoff ’s laws and is limited by line
capacities. These physical phenomena must be taken into account when
including transmission constraints in the scheduling problem. Accurate
mathematical representations of these features typically involve nonlinear
and nonconvex equations with phase angles, voltages and power flows.
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For hydro-thermal scheduling, the network constraints are usually linearized,
however, into linearized (DC) power flow (Wood and Wollenberg, 1996). This
problem has been modeled by Gorenstin et al. (1992).

Some schedulers feel more comfortable using deterministic models for this
problem. An important question in this context is what is the value of
stochastic optimization? Starting with Massé (1946), many researchers argue
that the stochastic aspects of the problem are important, and their neglect
should result in some loss. Deterministic solutions will underestimate the true
costs and the risk of spilling water, and deterministic models will not see any
value in waiting with releasing water in order to learn more about future
demand and/or inflow. The degree of cost underestimation depends on the
problem, e.g., Tejada-Guibert et al. (1995) show that it depends, for a given
system, on the demand and the severity of penalties on shortages. Philbrick
and Kitanidis (1999) show that the performance of deterministic solutions is
particularly poor for reservoir systems with limited storage capacity.

The typical horizon for hydro scheduling is a few months to a few years. A
typical length of the first time step ranges from one week to a month. The
hydro scheduling model gives signals to hydro unit commitment via marginal
values of stored water in the reservoirs and/or via total generation during the
first week.

2.4 Short term planning

Hydro unit commitment
In the hydro unit commitment problem the scheduler must determine what

turbine units to run in each time step (hourly or shorter) the next day or week,
and at which output level the running units should generate. Generating
stations may have several turbines each and may be coupled by their location
along the same river system. Turbines incur startup costs and the generation
of each station varies nonlinearly with the volume and with the net head1 of
the hydro discharge. This problem can be formulated as a large mixed-integer
nonlinear programming model with an objective of minimizing cost subject to
meeting a given demand. The cost is measured in terms of the volume of water
used or as the opportunity cost associated with that volume, i.e., using the
marginal values of stored water in each reservoir coming from medium-term
generation planning models. Stochasticity in such models may reside in load,
inflow, unit availability or cost. Of these, load is considered most important,
since it is temperature dependent, and temperature cannot be predicted with a
precision better than a few degrees even just a few hours in advance. Other
factors such as hydro inflow are accurately predictable on such short time
scales. The stochastic hydro unit commitment problem has been studied by
Philpott et al. (2000).

1 The net head is the difference between the height of the water immediately before and immediately

after the power station.
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If the net head varies significantly on short term with upper reservoir
storage level, which is usually the case for small upper reservoirs and/or small
maximum head, there may be significant gains from letting reservoir levels
cycle between high and low levels during the course of the day or week. Such
problems call for global optimization techniques, such as in Feltenmark and
Lindberg (1997). Other complicating issues are time delays from flows leaving
a station to arriving downstream, a delay that may depend on the flow rate.
Further, the generation function is not always concave in discharge, making
the standard approach of replacing it with a piecewise linear function
problematic. Discharge ramping and reservoir level constraints due to
navigational, environmental and recreational requirements add to the
difficulty. To avoid end effects, horizon unit states must be constrained or
valued. In the case of time delays, in-transition flows at the horizon must be
dealt with similarly.

Thermal unit commitment
In contrast to hydro unit commitment, where there are power stations

situated along rivers, the problem here is characterized by higher startup costs
and restrictions preventing thermal stress. When starting up a coal fired unit
there is a time delay before the unit is available for generation. The task is to
find a cost-minimal schedule, and a production level, for each generating unit
over time. The problem is to decide which units will be on/running, and how
much units that are on (committed) will produce. As mentioned above, the
load that is to be met and the availability of the generating units are uncertain
parameters affecting the problem.

This has been modeled as a mixed integer stochastic program and has been
explored by Takriti et al. (1996), Carpentier et al. (1996), Dentcheva and
Römisch (1998) and Caroe and Schultz (1998). See also Gröwe-Kuska et al.
(2002), Nowak and Römisch (2000) and Gollmer et al. (2000).

Having jI j thermal and jJ j hydro plants, the objective is to minimize the
operating costs. Let uin be unit states, i.e., a binary decision variable that
represents whether thermal unit i is running (uin ¼ 1) or not (uin ¼ 0) in state n.
Operating costs consist of fuel cost FCið pin, uinÞ and startup costs SCinðuiÞ for
thermal units. Startup costs may depend on the amount of time the unit was
down before startup. Thus ui is a vector consisting of uin and unit states ui for
one or several predecessor states of n. Hydro plants only contribute to the
objective function with the water value VSðlsÞ at the end of the time horizon T,
where the vector ls ¼ ½fljsgj2J �. This water value function approximates the
objective value for the problem (2.5)–(2.10) with T going to infinity. The
objective function reads:

min
u,p,v

X
n2N

X
i2I

FCið pin, uinÞ þ SCinðuiÞ �
X
s2S

VSðlsÞ: ð2:11Þ
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The local demand �n has to be satisfied in all states:

8 n 2 N :
X
i2I

pin þ
X
j2J

�jvjn � �n, ð2:12Þ

where �jvjn is the generation of hydro unit j. Additional constraints follow
(index i omitted since all constraints are for each unit i): The output of a unit
should be zero if the unit is offline; otherwise it should be between a lower and
an upper bound ( p and p):

8 n 2 N : unp � pn � unp: ð2:13Þ

Further single-unit constraints are minimum up- and down-times and
additional must-on/off constraints. Minimum up- and down-time constraints
are imposed to prevent thermal stress and high maintenance costs due to
excessive unit cycling. Denoting by � the minimum down-time of the unit, the
corresponding constraints are described by the inequalities (temporarily
switching to time subscripts instead of states):

utþ� þ ut�1 � ut � 1, ð2:14Þ

for all � ¼ 1, . . . ,minfT � t, � � 1g. Analogous constraints can be formulated
for describing minimum up-time restrictions, see e.g., Gröwe-Kuska et al.
(2002).

A reserve margin rt � 0 is often imposed via reserve constraints

8 n 2 N :
X
i2I
ðuinpi � pinÞ � rtðnÞ ð2:15Þ

to ensure that the model recommends an on-line capacity that exceeds the
predicted load, giving a ‘spinning reserve’. This is used, particularly in
deterministic models, to avoid an energy imbalance resulting from the
unexpected failure of a generating unit or an unexpected increase in load,
which may cause very costly brownouts or blackouts. Carpentier et al. (1996)
discuss the relationship between spinning reserve in a deterministic model of
the problem compared to a stochastic model without spinning reserve, and
uses rolling horizon optimization to arrive at an optimal level of reserve
margin. The models consider uncertainty in generator availability.

Deterministic approaches
Unit commitment is usually solved as a deterministic large scale mixed

integer program (Sheble and Fahd, 1994). It is therefore interesting to learn
about qualitative differences between stochastic programming solutions of the
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unit commitment problem and deterministic solutions. A priori we can state
that deterministic solutions will be characterized by extensive use of large
plants with high start-up costs, with relatively few starts. SP solutions on the
other hand, will typically use smaller units and will involve more startups of
flexible but possibly high-marginal cost plants such as gas fired units.
Deterministic models will know exactly how much power is needed at any time
and can thus plan to run low fuel cost plants at high output for long periods of
time. The gains that the model sees from such scheduling will outweigh the
high startup costs that typically come with such plants.

In deterministic models, a common approach to the uncertainty regarding
generator failure is to ‘‘derate’’ the units’ maximum generation rate according
to the probability of availability. However, this will underestimate the
expected operations cost and the probability of load being larger than peaking
capacity. Recognizing such operations cost underestimation, a class of models
known as production costing models have been developed (Wood and
Wollenberg, 1996). The purpose of these models is a more accurate estimation
of production costs by simulating and/or optimizing the dispatch of
generation under uncertainty of load and generator outages. Production
costing models are used both in long-term and operations planning. These
models are conceptually not much different from SP-based generation
planning models, in fact, good SP models lessen the need for separate
production costing and reliability models. SP contributions in this class have
been made by e.g., Bloom (1983), Pereira et al. (1987, 1992) and Hobbs and Ji
(1999). See also the review by Hobbs (1995).

Economic dispatch and optimal power flow
Optimal dispatch of power under uncertainty has been considered by e.g.,

Bunn and Paschentis (1986), Gröwe and Römisch (1992) and Gröwe et al.
(1995). The models have a short time horizon, usually a day, with hourly or
finer resolution. The unit commitment schedule (the unit states uin) is regarded
as given, and the problem is to determine a generation schedule (in the pin
variables) that minimizes operating costs (FCið pin, uinÞ) and satisfies the
demand.

Since this problem is near real-time operations, it is meaningful to include
transmission issues. This is considered by Pereira et al. (1987), who solve a
two-stage optimal power flow problem.

2.5 Solution methods and computations

We focus on the modeling process and not the solution methods. However,
most of the SP energy papers focus on the solution method used to solve the
model, not the modeling process itself. Still, there is a relationship between
research on solution methods and model development, because models tend to
be developed only if there is hope of solving the model. Thus, as new solution
algorithms are published, new models are reported solved using twists of the
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state of the art algorithms. Thus solution methods are discussed briefly in this
subsection.

For hydro planning problems, stochastic dynamic programming has been
used for a long time; an early reference is Massé (1946). For surveys see
Yakowitz (1982), Yeh (1985) and Stedinger (1998). These methods have also
been used in unit commitment and expansion planning. However, a well
known problem with these methods is the curse of dimensionality. To use
them, it has been necessary to aggregate and/or decompose the problems
before solving them. An example of this is the aggregation of several hydro
reservoirs and connected power stations into a single equivalent reservoir/
power station pair. Relatively good heuristics have been developed for
supporting the aggregation/de-aggregation approximation process. Important
applications are presented by Terry et al. (1986) and Gjelsvik et al. (1992). A
somewhat different approach for the multireservoir problem, using
decomposition, is presented by Turgeon (1980) and Sherkat et al. (1985).
Still, methods that could handle multidimensional problems having many
state variables, were in demand. In the late 1970s, authors at Stanford
University (Birge, 1985) began experimenting with nested Benders’ decom-
position, and in electricity models this was used and refined by Pereira and
Pinto (1985), Jacobs et al. (1995) and Morton (1996).

This method was able to solve multidimensional state type problems, but
was unable to match SDPs time decomposition abilities with respect to solving
stochastic programs having many stages. Nested Benders’ decomposition
works on a scenario tree whose number of nodes explodes with the number of
stages, and the size of the problem to be solved is proportional to the number
of such nodes. For a comparison of the main algorithms on reservoir
management problems see Archibald et al. (1999).

With this background, the algorithm of Pereira and Pinto (1991) created a
lot of interest in the energy optimization community. Termed stochastic dual
dynamic programming (SDDP), it effectively combines the state-time
decomposition features of dynamic programming and the benefits of nested
Benders’ decomposition. It represents a very important expansion of nested
Benders’ decomposition using two important concepts of cut sharing and
sampling. Commercial software based on this algorithm is in widespread use.2

In a deregulated setting, spot market prices become important as input to
power scheduling models. Assuming the price-taker case, prices are exogenous
and can be treated by ordinary linear stochastic programming.3 Prices are
autocorrelated, so the current price carries information about the likely future
outcomes of price. Thus it must be treated as a state variable, which posts a
problem in SDDP, because the future cost function is no longer convex in all
state variables. (As is well known and probably shown in earlier chapters in

2 The Stanford group under G. B. Dantzig worked out a similar decomposition/sampling algorithm

based on importance sampling approximately at the same time (Dantzig, 1989).
3 Ordinary is meant in contrast to game-theoretic approaches.
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this volume, the recourse cost function, or future cost function, is concave in
changes to objective function coefficients and convex in changes to right hand
side coefficients.) Thus the future cost function can no longer be supported by
cuts. This issue is discussed by Gjelsvik and Wallace (1996), who introduce an
algorithm that can handle stochastic prices by not sharing cuts across price
states. During the course of the algorithm the future cost function (a function
of all state variables) is built for each price state at each stage. Pereira et al.
(2000) approach the issue of stochastic prices causing nonconvex recourse
functions by using a cut classification scheme.

Stochastic unit commitment problems are not yet in daily use, as far as we
know, and for algorithmic work on these stochastic integer problems we refer
to Gröwe-Kuska et al. (2002) and to other chapters in this volume.

3 Electricity in deregulated markets

This section discusses issues related to electricity production under market
conditions. Researchers have studied hydrothermal scheduling, risk manage-
ment, unit commitment and bidding problems in deregulated market settings.
Assumptions on market form, institutional and market design and existence
of derivative markets vary.

At the time of writing, electricity markets are still in transition from the old
regulated regime, motivating the development of hybrid models where there is
both a demand constraint and a wholesale market. The local load is to be met
at each instant, but the producer can choose to serve this load by his own
production capacity or by buying capacity in the market. The producer may
also produce more than the local load, selling the surplus in the market. See
f.ex. Takriti et al. (2000) and Gröwe-Kuska et al. (2002). A hybrid approach
may also be motivated by ‘‘imperfections’’ causing constraints on how much
the company can buy or sell in the wholesale market, or by a significant
difference between the price of buying electricity in the spot market and the
price of selling to the spot market.

3.1 System-wide models

Some models try to capture aspects of the whole electricity system, having
the power price as endogenous variable, i.e., as a result of matching supply
and demand. Examples of such models are MARKAL, MPS, which focuses
on markets with a large share of hydro power, and BALMOREL. Stochastic
programming efforts related to these models are reported by Fragniere and
Haurie (1996), Botnen et al. (1992) and Hindsberger (2003, papers F and G).
These models serve the needs of utility planners and policy makers in that they
can derive scenarios of market prices of electricity. The major advantage of
such models is that they capture the specific aspects of electricity and that the
scenarios generated are consistent with the assumptions underlying analyses
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regarding e.g., future system-wide capacity and emission allowance policies.
These models are all developed for regulated markets. However, they have
become very popular for generating price scenarios in deregulated markets.
The reason is that in perfect markets, price will equal (long term) marginal
cost. A regulated market, as described in Section 2 of this chapter, is normally
based on a policy of efficiency and cost minimization so as to achieve exactly
the same result—price equal to long term marginal cost. Care must be taken,
however, so that the price-scenario generation does not take the form of pure
scenario analysis, that is, a large number of ‘‘What-if ’’-questions on the
external events. That would result in prices of electricity being too low, as each
path of investments would be done under full knowledge of the future,
underestimating the need to invest in (expensive) flexibility. The modern
versions of MARKAL, like the one referenced above and Kanudia and
Loulou (1998), take this into account.

It is also important to remember the setting here. These models can be used
to generate price-scenarios (consistent with external events) for a small market
participant who does not herself affect the market. A policy-maker can view
the price scenarios as the result of her actions, but cannot use them to make
other policy decisions. That would create a logical loop.

These models could of course also have been discussed in the previous
section on regulated markets, as some of them represent long term stochastic
investment models in the light of random demand and emission policies.

3.2 The role of futures markets

The electricity markets are developing into regional commodity markets.
This can be seen in the contract market where there is decreasing use of
complex physical sales contracts and increasing use of standardized financial
contracts. As these derivative markets mature, they will serve an important
role in risk sharing and in giving economic signals to investment and
operations planning.

A common commodity contract is a forward contract, which entitles the
buyer of a contract the difference between the spot price and the agreed
contract price in the settlement period of the contract. In some markets these
contracts are known as contracts for differences (CfDs).

If the commodity can be stored, such as coal, oil and gas, the contract price
will be closely related to storage costs and interest rates, due to the arbitrage
opportunities that would otherwise be present. If futures prices are higher
than current spot prices compounded at the risk free rate plus storage costs,
an arbitrageur can buy a unit of the good (at price S0), finance this with a
bank loan, and short sell a futures contract. The storage costs may include
opportunity costs associated with the operational benefits of having the
commodity immediately available in storage (convenience yield). At the time
of maturity, the arbitrageur sells the good (at ST), pays back the loan
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(�erTS0), pays storage costs (C ) and settles the futures contract (FT � ST ).
The safe future value of this project is

FV ¼ ST � S0 e
rT � C þ FT � ST ¼ FT � S 0e

rT � C:

If this value is positive, the futures price FT is too high compared to
the current spot price since the arbitrageur actually can make money on
this deal. Clearly, this value must be nonpositive in a reasonable model
of price dynamics. Similarly, a speculator holding the commodity in stock
may arbitrage on temporarily reducing his storage by selling a unit of
the commodity and buying a futures contract. This means that the above
future value must be nonnegative, leading to FT ¼ S0 e

rT þ C for commodities
that are stored.

Electricity can to a certain extent be stored as potential energy in reservoirs.
Hydroelectric producers are thus in a position to arbitrage between the spot
and futures markets using their reservoirs, hydro stations and possibly pumps.
If aggregate reservoir capacity is large then such behaviour can be expected to
influence the pricing of electricity futures relative to spot. In many power
systems, however, the aggregate reservoir capacity is low compared to
aggregate system capacity, and the price will be determined by short term
equilibrium of supply and demand for the contract. Supply and demand are
driven by hedging and speculation, where selling hedgers are the producers
and buying hedgers are power marketers and large industry. Speculators take
positions on either side depending on their capacity and willingness to take
risks and their expectations on the future spot price or the future movement of
the contract price.

Regardless of its determination, the contract price represents the current
market value of future delivery of the commodity. This is obviously important
for investment and operational planning. If an electricity company is
considering an investment that will give a certain production capacity
in a future time period, the current value of the revenues coming from the
use of that capacity is given by multiplying the capacity with the forward
price for settlement in the same future period, and discounting to present
using the risk free rate of interest. This is a simple valuation procedure that
will value production resources in a way that is consistent with how the
market prices contracts. Rational decisions based on such valuation will
contribute to maximizing the market value of the firm owning the production
assets.

Valuation of future production is needed in stochastic programming
models in energy. It is what many such SP models are about. These models
are based on describing the uncertainty in the form of scenarios of the spot
price of the commodity. However, basing the scenarios on forecasts of spot
prices will not give a valuation that is consistent with the market. Price
scenarios need to be adjusted for risk in order to give consistent valuation;
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they must be adjusted so that the values of derivatives as calculated in the
scenario tree are the same as can be observed in the market for futures,
options and other contracts.4 Once this adjustment is made, the appropriate
discount interest rate to use is the risk free one, and the SP is now in the
position to value the decision flexibility using a price of risk that is consistent
with the market.

Adjusting for risk is necessary because expected spot prices in future
periods are generally different from forward prices for the same future
periods. This in turn is due to the limited capacity or willingness of speculators
to trade on the mentioned difference, called the risk premium.

This quantity, defined more formally as E½ST � � FT where E½ST � is the
expected spot price at future time T, and FT is the current forward price for
delivery at time T.5

Note that if one makes optimal decisions based on price forecasts (i.e., on
E½ST �), the expected profit is maximized. If one makes decisions based on risk
adjusted prices (i.e., on FT), the value of cash flows is maximized. Thus, one
cannot have profit maximization and shareholder value maximization at the
same time. Only the latter will maximize the value of the firm.

When constructing scenario trees (or more generally, when modeling the
stochastic processes involved) we must therefore make sure that the path of
the expected spot price in the tree matches that of the term structure of futures
prices, and that the path of the standard deviation of price returns in the tree
matches the term structure of volatility (which has to be estimated, see Hull
(2000)). One should possibly also match higher moments and dynamic
properties of commodity prices such as mean reversion. An approach for
scenario generation based on matching such statistical properties is described
by Høyland and Wallace (2001). Alternatively, one may prefer modeling the
stochastic processes as stochastic integrals, i.e., a parametric approach. This
would have the advantage of capturing the theoretical developments in the
financial commodity pricing literature, as in e.g., Schwartz (1997) and Lucia
and Schwartz (2000). In this case, the scenario trees can be built using the
approach of Pflug (2001) or by discretizing the continuous stochastic processes
directly as in Hull (2000).

Example 1. Let us give a very simple example of how market data can be
used to extract useful information for a stochastic program, and in parti-
cular to obtain an understanding of the world in which stochastic programs
operate.

Assume we are facing an uncertain future price for electricity. Assume that
presently, 1 MW delivered in the next period costs 100. In the next period,
we know (e.g., by estimation), that the price for immediate delivery will

4 At least approximately the same. Current market prices will change in the future. See Hull (2000,

Chap. 18.6).
5 This is positive for most commodities most of the time (Hull, 2000).
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increase to 125 or decrease to 70. Each of these cases occurs with a true
probability of 50%. In the next period, our production will be worth 2000 if
prices go up, and 1500 if they go down. Hence, the expected value of our
production, using the true probabilities, is 1750. However, we should note that
100 6¼ 0:5� 125þ 0:5� 70. Let us disregard discounting, and assume that
there is a risk free asset that costs 100 now, and pays 100 in any state in the
next period. We then have two instruments (price of electricity delivered in the
next period and a risk free asset) in a world with two states, and we can set up
the equations for the state prices �1 and �2.

100 ¼ 125�1 þ 70�2

100 ¼ 100�1 þ 100�2

which yields �1 ¼ 0:5455 and �2 ¼ 0:4545. Hence, the market value of our
production equals

0:5455� 2000þ 0:4545� 1500 ¼ 1773,

above its expected value using true probabilities. Someone understanding
markets better could obtain arbitrage by for example buying our produc-
tion for above its expected value (according to the stochastic program),
say for 1751, which should make us happy, and then sell it in the forward
market for its true market value, 1773, to obtain a risk free profit (arbitrage)
of 22.

Again, the purpose of this example is to observe a fact about market values.
To maximize the market value of our electricity production we need to use risk
adjusted probabilities, and not the physically correct ones. Of course, often we
do not know the true ones either, but that is not the point here—the point is
that the relevant probabilities to look for are the risk adjusted ones. And they
are to be found in the market prices of contracts, not in historical spot price
data. This also means that if we use the true probabilities in a stochastic
program, we shall not be maximizing market value, and hence, we open up
our business for speculation based on the true values of risk.

As a theoretical digression, note that transforming a scenario tree, or a
stochastic process with an associated probability measure P, for the true or
forecasted spot price, to a scenario tree matching the term structure of futures
prices and volatility, is equivalent to changing the probability measure into an
equivalent martingale measure Q. The existence and uniqueness of such a
probability measure can be analyzed via stochastic programming by setting up
the problem of hedging a general contingent claim (contract) in the original
(P-measure) scenario tree. This has been done by e.g., Ross (1977), Kreps
(1979), Naik (1995) and King (2002).
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3.3 Energy bidding

The bidding problem can be viewed as a short term optimization problem
in which the market participant offers to buy or sell capacity to the market in
the form of price-quantity pairs for given time intervals that typically are 30
min or one hour long. A market operator collects such bids and calculates
clearing prices and quantities for each node or zone in the network, resulting
in a dispatch for the system. The price clearing process aims at maximizing the
sum of consumer and producer surplus as implied by the bids, subject to
transmission constraints, reserve constraints and possibly other technical
constraints. In sending their bids, individual market participants try to
maximize profits resulting from the dispatch (thus buyers minimize the cost of
buying electricity).

The exact setup regarding market structure and market rules differs from
market to market. The Electricity Pool of England and Wales was the first to
be established, in 1988, and has served as a model for much of
the restructuring worldwide, e.g., in Australia, New Zealand and parts of
Latin America and North America. These countries use a centralized dispatch
and pricing mechanism, called an electricity pool. The second country
to deregulate was Norway in 1991. The Norwegian electricity trade is much
more decentralized and its structure has been adopted by the other Nordic
countries and in some aspects by California. Participation in the organized
markets is voluntary and there is demand-side bidding. This is called a
bilateral market.

Some markets have only a few or even only one round of bidding, and after
these rounds the generator is assigned a generation schedule for the near
future (e.g., for the next 12–36 h). In this situation, after the market operator
has announced the dispatch, the traditional unit commitment models that
include a demand constraint become relevant again. Furthermore, the bidding
problem, i.e., determining optimal bids to send to the market operator,
becomes a nontrivial task that can be supported by optimization models.
Nowak et al. (2000) study this problem and present an integrated stochastic
unit commitment and bidding model.

Neame et al. (1999) consider the bidding problem for a price taker in an
electricity pool type market. The bids are required to be in the form of a
piecewise constant increasing supply curve, i.e., a set of price-quantity pairs. If
the bids could be in any form, price-taking generators maximize their profit by
bidding according to the marginal cost of generation. However, since
marginal cost is not generally a piecewise constant curve having a finite
number of price-quantity pairs, the generator needs to optimize his bid curve.
The authors study this problem and finds, among other things, that it is
nonconvex. For special cases dynamic programming algorithms for
computing the globally optimal bid are presented.

Anderson and Philpott (2002a) consider bidding problems in day-ahead
markets for producers having market power under varying assumptions on
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the allowed smoothness of the bids, and on whether there is uncertainty in
demand only or also in the supply functions offered by competing generators.
An important vehicle in the analysis is the ‘‘market-distribution function’’ �
encapsulating uncertainty in demand and competitor behavior. Let �ðq, pÞ be
the probability of not being fully dispatched by the market operator if
quantity q is offered at price P. The generator is said to be fully dispatched if
the whole offer was knocked down in the auction, i.e., the market operator
declares it will use all of the quantity q offered. The other cases are
those of not being dispatched, and of being partially dispatched if a fraction
of the quantity is cleared. The problem is to find a supply curve
s ¼ ððqðaÞ, pðaÞ, 0 � a � AÞ where qðaÞ is the quantity the generator is
willing to supply at a corresponding price pðaÞ. This curve is assumed
to be continuous with qð�Þ and pð�Þ non-decreasing in the parameter a.
If CðqÞ is the cost associated with generation of q, the payoff resulting
from a dispatch ðq, pÞ is Rðq, pÞ ¼ qp� CðqÞ. If the generator has sold a
quantity Q at price f via physical or financial contracts for delivery in the
period in question, the payoff is Rðq, pÞ ¼ qp� CðqÞ þQð f � pÞ. With a
continuous market distribution function the expected payoff becomes a line
integral given by

VðsÞ ¼

Z
s

Rðq, pÞ d�ðq, pÞ,

see Anderson and Philpott (2002b). With certain (nonrestrictive) differentia-
bility and monotonicity properties for �, the problem can be formulated with
respect to the parameter a as follows:

max

Z A

0

Rðq, pÞ

@�
@q ðq, pÞq

0ðaÞ þ @�

@pðq, pÞp0ðaÞ

" #
da

s:t: 0 � qðaÞ � qM

0 � pðaÞ � pM

q0ðaÞ � 0

p0ðaÞ � 0

where qM is the maximum capacity of the generator and pM is some upper
bound on price. This is a nonlinear optimal control problem, and the authors
analyze its properties and various extensions, for example to the case where
the generator is required to submit piecewise constant bid curves instead of
smooth continuous curves.
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3.4 Scheduling in a market

We first assume that this generation utility is not large enough to be able to
influence electricity prices by changing the amount of generation capacity
offered to the market. The market is liberalized, but not necessarily perfectly
competitive.

We discuss how different classical power generation planning problems
change in the face of liberalization.

Significant changes are necessary in traditional long and mid-term power
scheduling, unit commitment and economic dispatch. Under the price taker
assumption and that the utility does not have to worry about the transmission
constraints, either because transmission is not the utility’s responsibility or
because there is sufficient capacity in the transmission grid, these changes
affect both planning objectives and constraints.

First, the objective of the planning models should now be to maximize
utility profits instead of minimizing overall system costs. The revenues are
(hopefully) greater than the generation costs. From an optimization point of
view, this may not amount to more than multiplying the objective function by
�1 and maximize instead of minimize, but for the management focus the
change is more profound.

Second, the demand constraint in these models becomes superfluous
(except possibly in the very short run). Since utilities no longer have an
obligation to serve demand by using only own generation resources, they now
can use the spot and contract markets (i.e., other companies’ resources) to
meet customer obligations.

Third, reserve constraints, as used in unit commitment, also become
unimportant for the utility. This happens because spinning reserve and other
ancillary services become the responsibility of the system operator rather than
the utilities collectively, or because well-functioning markets for different
levels of reserve develop.

To see why the demand constraint becomes superfluous, consider the
following problem, where et is the net sale (selling minus buying) in the spot
market and �t is the spot market price:

min
u,p,v

X
n2N

Pn ð��nenÞ þ
X
i2I

FCiðpin, uinÞ þ SCinðuiÞ

( )
�
X
s2S

PsVðlsÞ

ð3:1Þ

s:t: 8 n 2 N :
X
i2I

pin þ
X
j2J

vjn � en � �n: ð3:2Þ

This formulation assumes that the cost of buying is the same as the income
of selling the same energy volume. With a significant difference between
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purchase price and sale price, the argument becomes invalid. Due to the
presence of operating ranges ½ p

i
, pi� for each unit, the demand constraint

(3.2) may not be satisfied as an equality in an optimal solution, as one
might expect fromcostminimization.However, this rarelyoccurs inpractice and
we ignore this possibility. If there are no binding constraints on it, the net sale
variable en and (3.2) can be substituted out to give the following model:

min
u,p,v

X
n2N

Pn

X
i2I

FCið pin, uinÞ þ SCinðuiÞ �
X
s2S

PsVðlsÞ

� �n
X
i2I

pin þ
X
j2J

vjn � �n

 !
ð3:3Þ

This is a model that is decomposable; one can solve for each thermal unit
and for each group of hydrologically coupled hydro units independently.

The total implication for the models is that all or most constraints coupling
the different generating units should be removed as the deregulation process is
moving forward. The management is left with a set of decoupled subproblems
for power operation planning, one for each unit or plant, instead of one big
problem with the plants depending on each other to cover demand and
spinning reserve.

In a liberalized market, the following tasks are most important for a
generation utility: Risk management, hydro scheduling, unit commitment and
bidding in the organized markets. In addition, short- and long term market
analyses are important. Forecasting the future development of prices and
other uncertain factors from now to several months or years into the future is
important for trading and risk management. Short term forecasting of prices,
loads and inflows is important for short term operational planning.

Hydro scheduling
Next, we present hydro scheduling. Gjelsvik and Wallace (1996), Fosso

et al. (1999), Pereira et al. (2000) study hydro scheduling assuming perfect
competition. For simplicity, we show a model with a single reservoir. For
cascaded reservoirs, a multi-reservoir formulation is warranted. Since hydro
plants are independent of each other under our assumptions, we omit the
index j.

The release decisions for period t are taken after learning the realization of
the stochastic variables for that period.

Decision variables and parameters for hydro scheduling are measured in
energy units. The problem can be formulated as:

max
X
n2N
ðð1þ �Þ�NtðnÞPn�nvnÞ þ ð1þ �Þ

�NT

X
s2S

PsVðlsÞ ð3:4Þ
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s:t: 8 n 2 N : ln � laðnÞ þ vn þ rn ¼n , ð3:5Þ

8 n 2 N : ltðnÞ � ln � ltðnÞ, ð3:6Þ

8 n 2 : vtðnÞ � vn � vtðnÞ, ð3:7Þ

where ltðnÞ, ltðnÞ, vtðnÞ and vtðnÞ are lower and upper bounding parameters for
reservoir level and discharge, and spill rn � 0. Equation (3.5) is the energy
balance in the reservoir, and (3.6) and (3.7) impose lower and upper bounds
on reservoir level and discharge.

Using deterministic models for hydro scheduling in a market setting will
lead to operating policies that essentially allocates the water to the periods
with the highest prices. As in the case without markets, the spilling risk will be
underestimated and true profit will be overestimated. There will be no extra
release in the fall in case of extra inflow at near maximum reservoir levels, and
no holding back water before the spring flood in case snow melting starts late
and prices skyrocket.

Market power
Operations scheduling in deregulated markets when the operator has

market power is discussed by Scott and Read (1996). Their focus is on
imperfect competition due to the low number of suppliers in New Zealand. In
particular, they develop a hydro scheduling model for a Cournot-type
producer having the contract position as exogenously given. A multistage
stochastic programming algorithm is developed to solve the optimization
problem with a Cournot market equilibrium superimposed on it at each stage.
A similar study by Kelman et al. (2001) reach the same conclusions as Scott
and Read, namely that the more contracts the strategic generators have sold,
the less incentive they have to withhold capacity in order to increase prices. A
major limitation in these analyses is that buying and selling of contracts is in
reality determined simultaneously with production. The players are also
limited in the degree to which they can dynamically anticipate and react to
opponents’ strategies.

Unit commitment
Thermal unit commitment for price takers can be formulated as follows

(index i omitted):

max
u,p

X
n2N
ðPn�npn � FCnðpn, unÞ � SCnðuÞÞ ð3:8Þ

8 n 2 N : unp � pn � unp: ð3:9Þ
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Further, single-unit constraints are minimum up- and down-times and
additional must-on/off constraints as explained in Section 2.

The decomposition that the liberalization induces should have profound
implications for the organization of the utilities: Now each plant manager can
be given responsibility for operating as she thinks is best. She can and should
be supported by planning models that now sensibly only includes local
generating units. Tseng and Barz (2002) consider such stochastic single-unit
commitment problems.

In summary, we propose that generation utilities comprehensively revise
their generation planning models. New models should include (stochastic)
prices instead of using demand constraints and spinning reserve constraints.
The problems become much easier to solve, thanks to the decoupling effects of
the new markets.

3.5 Risk management

Basic financial theory implies that it is not necessary to hedge at the
corporate level, since investors can do that on their own account. In practice,
however, there are ‘‘market imperfections’’ that make the case for risk
management, for example the fact that it is cheaper for a firm to operate in the
power derivatives markets than for individual owners, due to the economy of
scale in the risk management function.

Example 2. Let us illustrate the use of financial instruments on risk manage-
ment to see, in a very simple world, how the instruments can change the risk
picture. In Fig. 7, the first figure shows the distribution of profits from one
unit of production without any financial contracts. Assume next that we sell
50% of our production in the forward market at the expected price of 100.
That results in a new distribution of profits, given in the right-hand part of
Fig. 7. The risk has clearly decreased (even if we are not very specific about
what we mean by risk).

Fig. 7. Distribution of profit without and with a forward contract. The horizontal axis

shows profit for one unit of production, the vertical axis probabilities.
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This example indicates that trading in the forward market will reduce the
risk. But this may not be the case. Assume that we are facing uncertain
production and uncertain prices, as outlined in Table 3.1. The most likely
situations (each having 40% probability) is low production and high prices
(low inflow) or high production and low prices (high inflow). But there are two
other cases, representing the possibility that while we have high inflow to our
reservoirs, the general picture is the reverse. Hence, there is a chance of seeing
low prices and low production at the same time. The same goes for high
production and high prices.

Consider the illustration in Fig. 8. The white set of columns shows the
profit without any financial contracts. Assume next that we sell 100 units of
production (the expected production) in the forward market at a price of 15
(the expected price). The last row in Table 3.1 shows the resulting profit. Each
number is the sum of the income from the forward contract (1500) and sales or
purchases in the ‘‘spot’’ market for what is left or what is missing relative to
our forward contract. The result is the distribution in black in Fig. 8. We see
that the variance has increased, and that most measures of risk will show the
same. In this case, selling the expected production at expected prices increased
the risk.

The purpose of these two examples is simply to illustrate the use of
financial instruments for risk management, and a warning that using
these markets to fix income in the future will not automatically mean reduced
risks.

Table 3.1
Production, prices and probabilities with and without a forward contract

Production 50 150 50 150
Price 10 10 20 20
Probability 10% 40% 40% 10%
Profit without contract 500 1500 1000 3000
Profit with contract 1000 2000 500 2500

Fig. 8. Distribution of profit without and with a forward contract. The horizontal axis

shows total profit, the vertical axis probabilities.
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Mo et al. (2001) and Fleten et al. (2002) suggest that production planning
and contract risk management should be integrated in order to maximize
expected profit at some acceptable level of risk. However, in some
circumstances (no production uncertainty or basis risk) production planning
can be done independently from hedging (separation). So then it is possible to
have a relatively decentralized organization, with local plant managers having
much responsibility, and a centralized treasury department in charge of
overall risk management. The main tasks of such a department are to
speculate and hedge using derivatives in order to satisfy the goals of owners
and top management regarding expected profit and risk. Of course, this
requires that the relevant attitude toward risk must be expressed.

The requirements needed to invoke the separation theorem are not likely to
be met 100% in practice. However, the benefits of a decoupled set of models
and corresponding decentralized organizational units will probably outweigh
the small theoretical gain from integrating production planning and trading.

Another argument for separating risk management is as follows: From
financial theory we know that the market value of any financial contract is
zero at the time it is entered into. This also holds for electricity contracts that
are fairly priced, and consequently, buying a new contract will not change the
market value of the electricity portfolio in question. In particular, buying and
selling a range of contracts that jointly are selected in order to minimize the
risk of a given electricity portfolio, will not alter the market value of that
portfolio. However, operational decisions do change the market value of the
electricity portfolio, and so generation should be allocated in order to achieve
maximal market value. Any production decision that deviates from the value-
maximal strategy will erode value for the owners of the generation utility.
Consequently, a natural setup for the coordination of generation planning and
risk management is to first schedule generation so that market value is
maximized. Second, given this optimal strategy, find a set of contracts (or a
trading strategy) that will minimize the risk of the total portfolio.

We model the risk management problem as follows: Given calculated
(optimal) profit from hydro and thermal generation in each state in the
scenario tree, summed over all plants, dynamically trade in futures and
options in order to minimize some risk measure.

Let �t be the stochastic profit estimated from all generation activities in
period t. This information must be extracted from the optimal objective
function value of hydro and thermal sub-models (3.4). The scenario tree used
for these sub-models is assumed to be identical to the one used for risk
management.

Trading in forward contracts is modeled by the variables fkn, gkn and hkn.
Let fkn, k ¼ 2, . . . ,T , n 2 fN : tðnÞ < kg be the position, measured in energy
units, in state n for a contract with delivery in period k. Negative fkn represent
a short position in product k. Buying and selling forward contracts are
represented by gkn and hkn (both nonnegative). Contract prices are denoted
’kn, and markets are infinitely liquid and perfectly competitive.
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The position accumulated in state n is

fkn ¼ fk,aðnÞ þ gkn � hkn, ð3:10Þ

with the initial forward position given. Contract variables and rebalancing
constraints (3.10) are only defined for relevant states satisfying tðnÞ < k.

Rebalancing decisions are made in each state n, after the realizations of the
random electricity prices for period tðnÞ are known. Transaction costs are
proportional to the trade volume and is TF per unit energy bought or sold.

European-type option contracts can also be included. To conserve space,
the involvement of options in rebalancing, profit measurement and objective is
not shown (see Fleten (2000) for models including options).

Modeling of risk depends on the attitude toward risk in the generation
utility. A simple approach that leads to a piecewise linear model is to minimize
expected shortfall (Kusy and Ziemba, 1986). Shortfall is defined as profit
underperformance relative to some preset profit targets at various periods. Let
�tot

n be the profit to be measured. The exact definition of this profit depends
on how the generation utility defines risk. A possible definition is:

8 n 2 N : �tot
n ¼ �n þ �n ft,aðnÞ

þ
X
k<tðnÞ

½ð’tn � TF Þhkn � ð’kn þ TF Þgkn�, ð3:11Þ

where ft,aðnÞ is the forward position in the product that has delivery in period t,
during the actual delivery period.

Let Cmt be the marginal shortfall cost in segment (piece) m and let snm be
shortfall. The following constraint defines shortfall variables:

�tot
t þ

X
m

smn � Bt, ð3:12Þ

for all states n for which there is a profit target Bt.
LetW be a weight parameter. In order to avoid incurring excess transaction

costs, the objective function maximizes expected profit minus the weight times
expected shortfall:

max
f ,g,h

X
n2N

Pnð1þ rÞ�NtðnÞ �tot
n �W

X
m

Cmtsmn

" #
: ð3:13Þ

This model does not treat physical and financial forward-type contracts
differently. The reason is that with the assumptions we have made, a financial
contract is a perfect substitute for a physical contract. It generates the exact
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same cash flow. Some generation utilities in newly liberalized markets have
physical bilateral sales contracts that have a minimum energy volume that is
very large and whose tariff structure is complex. The market for such
wholesale consumption contracts will quickly become competitive, since small
power marketers can sell such contracts and cover the liability in the spot and
financial markets. The integrality of these contracts (large minimum volume)
will not be a problem either, since one can always add or delete energy volume
by buying or selling additional (physical or financial) contracts. The decision
support tool needed for such bilateral sales contracts is thus not only a
portfolio optimization model, but also a good model for pricing the specialties
(e.g., embedded physical load risk) of the individual contracts. See e.g.,
Thompson (1995) for such an approach applied to take-or-pay contracts.

3.6 Capacity expansion

In a deregulated and well-functioning market, capacity expansion decisions
should be analyzed in view of their profit and market value adding potential,
and not their ability to serve growing demand at minimum cost. As such,
future electricity prices, as opposed to demand, is the central object of
analysis. A lot of work remains to be done on this arena, but as a starting
point the readers are referred to Deng and Oren (2001), who analyze an
investment in a gas-fired power plant using a stochastic dynamic program-
ming model that includes startup costs, operating-dependent efficiency and
ramping constraints.

4 Oil

4.1 Optimal field development

Haugland et al. (1988) discuss an optimization model for an oil field
based on a two-dimensional reservoir model of the same type that is used in
reservoir simulations (but of course much simpler). The goal is to determine
platform capacity, the number of wells (and their placement and timing),
plus the production profile of each well. This way of using the reservoir
simulation equations within an optimization model provides a setting that
spans two different fields of research. This is useful both for quality and
acceptance.

But since the model is deterministic, all aspects of flexibility are gone,
including the postponement of decisions. Jonsbråten (1998a) adds one type of
stochasticity to these models by assuming that future oil prices are random.
He describes them using scenarios. He then solves the resulting stochastic
mixed integer program with scenario aggregation on the continuous variables
and a heuristic for finding feasible integer solutions. He observes what is
expected, namely that as soon as stochasticity is introduced, timing of
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decisions, in order to take into account accumulation of information, becomes
important.

It is clearly possible to expand this type of models to include other types
of randomness. However, we should be aware that gathering of information
about the reservoir (over time) will depend on the actual decisions
made. Stochastic programming for such cases is barely developed. An
initial discussion can be found in Jonsbråten’s doctoral thesis (Jonsbråten,
1998b).

4.2 Scheduling arrivals of tankers at a refinery

This problem originates from Bjørstad et al. (1991), and is interesting as its
randomness is different from what we have seen elsewhere. A refinery is about
to receive a large ship for loading of gasoline for export. For simplicity, we
shall assume that gasoline is characterized by two qualities, namely sulphur
content (the lower, the better) and octane number (the higher, the better).
In reality, there are many other properties, but this is enough for our example.
For the arriving ship, it is known how much gasoline it needs, and there
are given a minimal value for octane number and a maximal value for sulphur
content. At a refinery, gasoline is not stored as final products, but rather
as intermediate components, such as propane, butane etc. These are the results
of the refining process, and are stored in tanks (with limited capacity).
To fulfill an export order, one mixes components from the different tanks, to
achieve a product with the desired properties. It is not always possible
to achieve exactly the boundary values of the qualities, and in such a case it
is a goal to give away as little extra quality as possible. Clearly, if one gives
away very little extra quality in one shipment, one may be left in a situation in
terms of stored components, such that for later shipments the quality
giveaway is very high. Hence, one needs to have a somewhat long view on the
production.

For many refineries, the arrival time of the exporting ships is uncertain.
This is caused mainly by bad weather, but other reasons are of course possible
as well. Hence, although both production of components, and requirements
(quantities and qualities) relating to arriving vessels may be known for some
periods into the future, the very fact that their arrival times are unknown will
cause some concern. Problems may occur both with respect to production (full
tanks because no ship arrived), and the mixing of gasoline for a specific ship,
since production continuously change the qualities of the contents in the
tanks. Even more severe effects occur if ships arrive in an unexpected order.

Assume we look four periods into the future, and that we know that during
those periods three ships will arrive. The model is run when a ship arrives, so
ship 1 is known to arrive in the first period. Figure 9 shows the six possible
arrival sequences, with given estimated probabilities.

The scenario representing what we expect to happen is scenario 2, where
ship A arrives in period 2, and ship B in period 4. This has a probability of 60%.
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This sequence is almost certain, as it is only 5% chance that B arrives before A.
So in a deterministic model, we would clearly use scenario 2.

But let us describe the problem in some detail. When a continous model is
made discrete, as it is here, there is always the need to make assumptions
about the order in which things happen. The assumptions here are:

� No two ships arrive in the same period.
� Gasoline for export is subtracted from the tanks before the production

of the period is added.
� The periods are long enough to finish loading a ship.

In this example, it turns out that if we solve the problem corresponding to
the most likely scenario, we may end up with all sorts of problems later on.
For some scenarios we shall experience serious problems with high giveaways,
tanks that fill up (resulting in stopped production) and orders that cannot be
fulfilled. The optimal solution to the stochastic program takes the future
appropriately into account and avoids these problems. In this case, the
optimal solution is a scenario solution. But as always, this can be determined
only by solving the stochastic program.

4.3 Refinery planning

In addition to the problem outlined above about the arrival of tankers to a
refinery, there will always be interesting problems related to the refining
process itself. Examples of short-term decisions are what qualities to produce
and what tanks to use, medium-term decisions concern which crude oils to
buy when, and of course there are long term investment problems. An
example of a model in this area is Escudero et al. (1999).

Fig. 9. The possible arriving sequence for the three ships over four periods, with given

probabilities.
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5 Gas

5.1 Scheduling of gas fields

Haugen (1993) discusses the following question from the North Sea. Gas
was at the time mostly sold on long term contracts. The income of the
producer depended to a large extent on his ability to meet the contracted
volumes. The market was connected to the offshore gas fields by pipelines.
Some of the fields and pipelines already existed, but new ones had to be
developed to satisfy the demands (i.e., the contracts). A stochastic dynamic
programming model was set up to decide which fields should be developed
when, and which pipelines should be constructed when. Although, as the
author points out, many aspects of such a problem are random, this paper
focuses on resource uncertainty. The uncertainty is described by defining a
production profile, consistent with how that is normally done in the industry,
and then letting the time at peak production be stochastic. The size of the
peak production is a design variable (production capacity of the platform),
while the time spent there is a function of field properties, and hence, random.
Some small examples are given. The main result, apart from the model itself, is
the fact that the author is not able to extract simple decision rules. This is not
a negative result, but shows that the problem is inherently difficult, and that
care must be taken (in the real world) when arguments are made on how to
develop such fields and infrastructure. Simple arguments are very likely to
be false.

5.2 Use of gas storage

In light of the nature of stochastic programs, storage will always be
important. Storage of gas will be a way to solve many different problems of
flexibility. To mention but a few:

� A gas producer has an obligation to deliver certain amounts of gas at
certain points in the network at certain times. He is aware that at times
there are interruptions in his production or transportation systems. By
having storage facilities near the delivery points, he can reduce the
chance of failing to deliver.

� At certain points in the network spot markets for gas exist. For some
producers it is hard to take part in such markets, as it may take them
several days from a decision about increased production is made until
the gas actually reaches the point of spot delivery. A storage facility near
the spot market will make it possible to take part in a potentially
profitable spot market.

� A local distribution company may have as its sole goal to supply
its customers according to their (random) demand at lowest possible
cost. In this case storage can both help buy gas at times when it
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is cheap, as well as supply gas in periods of high demand (typically
cold periods) where there may be problems of delivery (in addi-
tion to high costs). The problems may be caused both by lack of
available gas (limited production capacity) and lack of transportation
capacity.

� Utilities producing electricity from gas will have very similar problems
as above. They can save money as well as secure supply of gas by having
a storage facility.

The storage facility will create both strategic and operational decisions. The
strategic decisions, which normally are the ones interesting from a stochastic
programming point of view, can be such as:

� Building a storage facility—in many ways a classical facility location
problem.

� Renting (part of ) a storage facility. If there are several possibilities, this
is also a kind of facility location problem.

� Investing in equipment determining the speed by which gas can be put
into and removed from storage—by some called deliverability.

There are also more indirect strategic decisions, such as changing
the production capacity of a gas field (changing the number of wells,
for example) to take into account the value of being able to add gas to the
storage at an increased rate also in periods of high production with direct
delivery.

These strategic decisions can show up in many stages of a model. For
example, rental of storage capacity can be updated at times, new contracts can
be entered into, old ones continued or dropped. This way, storage rental turns
into a portfolio problem, where characteristics are geography, deliverability
and size. As always, we should expect that the more flexible is a certain
storage, the more it costs to build or rent.

Operational decisions are more obvious. In combination with purchases,
production or delivery, whichever is the relevant trade, we must optimally use
the storage facilities to maximize profit or minimize costs, whatever is the
objective.

Useful references here are Butler and Dyer (1999), Bopp et al. (1996) and
Takriti et al. (2001).

5.3 Portfolio management of gas contracts

Whether we are selling or buying natural gas, the chance is that we need to
buy or sell the gas on contracts of different types. These may vary in price and
duration. The price difference may stem from differences in forward prices,
such that gas on a one-year contract may cost more or less than gas on a two-
year contact. But the differences may also stem from how the gas price
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depends on other entities, such as oil price, or by special rules on renegotia-
tions of contract details.

In such a picture, we are faced with a portfolio management problem. The
goal may be to buy or sell gas so as to obtain an optimal tradeoff between
expected profit and some measure of risk. Haurie et al. (1992) discuss this
problem for a Canadian producer. The different gas contracts have different
time spans and different rules for how prices are set. They have many different
models. The first is in the spirit of the Markowitz’ mean-variance model, the
last is a stochastic program with recourse. Risk is measured in terms of the
variance of profits.

6 Conclusion

The purpose of this chapter has been to give an introduction to the use of
stochastic programming in energy. Based on the available literature, the focus
has naturally been on electricity production, but we have tried to provide
some pointers also for natural gas (particularly the treatment of contracts)
and oil. The purpose has not been to have a full overview over the literature,
but to provide the reader with pointers to interesting problems and starting
points for reading.

Stochastic programming used in regulated markets, that is, in monopolies,
is a well-established activity. The first articles go far back, and the literature is
enormous. Articles typically mix discussions of models and methods, and very
often the chosen methodology is stochastic dynamic programming (SDP). We
have chosen to base our presentation on models rather than methods, so as to
avoid a split of papers into two arbitrary piles; those that use stochastic
programming (as understood in this handbook) and those that use SDP. For
regulated markets, as that is such a well established field, and since methods
and models are almost always mixed, we have chosen to discuss also
methodology in that section. For deregulated markets, on the other hand, we
have chosen to focus very little on methodology, simply assuming that the
reader will use the rest of this handbook to look for appropriate methodology.
Instead, we have tried to focus on what the new markets may bring us, and
tried to point to relevant theory outside stochastic programming, in particular
market theory and options theory. The deregulated markets have not found
their final forms, so it is impossible to provide the reader with clear-cut
descriptions of where we will end up. Hence, our goal has been to assist and
present ideas.

Many problems in resource management concern situations where our
decisions will change the (conditional) probability distributions. Drilling
exploration wells in an oil or gas field is a good example. As stochastic
programming, as it stands today, cannot treat this case in any good way, we
have chosen to let those problems rest, and mostly focused on problems where
the uncertainty is external to the model at hand.
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