## Contents

## Preface xi

## I. Finite-Stage Models

1. Introduction 1
2. A Gambling Model
3. A Stock-Option Model ${ }^{2}$
4. Modular Functions and Monotone Policies
5. Accepting the Best Offer 11
6. A Sequential Allocation Model
7. The Interchange Argument in Sequencing 17 Problems 21 Notes and References 26

## II. Discounted Dynamic Programming

1. Introduction

29
2. The Optimality Equation and Optimal Policy
3. Method of Successive Approximations
4. Policy Improvement

38
5. Solution by Linear Programming
6. Extension to Unbounded Rewards Problems 44 References 48
III. Minimizing Costs-Negative Dynamic Programming

1. Introduction and Some Theoretical Results
2. Optimal Stopping Problems 51
3. Bayesian Sequential Analysis ..... 58
4. Computational Approaches60
5. Optimal Search ..... 63
Problems71
IV. Maximizing Rewards-Positive Dynamic Programming
6. Introduction and Main Theoretical Results ..... 73
. Applications to Gambling Theory ..... 76
7. Computatio 85Notes and References88
V. Average Reward Criterion
8. Introduction and Counterexamples ..... 89
9. Existence of an Optimal Stationary Policy ..... 93
10. Computational Approaches ..... 98Problems103
Notes and References ..... 105
VI. Stochastic Scheduling
. Introduction 107
. Maximizing Finite-Time Returns-Single Processor108
. Minimizing Expected Makespan-Processors in Serie114
11. Maximizing Total Field Life ..... 118
12. A Stochastic Knapsack Model ..... 122
13. A Sequentiai-Assignment Problem ..... 124Problems127
Notes and References ..... 129

## VII. Bandit Processes

1. Introduction
Introduction
uction 131131
2. Mingle-Project Bandit Processes 3. Multiproject Bandit Processes133
3. An Extension and a Nonextension ..... 143
4. Generalizations of the Classical Bandit Problem ..... 145
Problems
Notes and References ..... 151
