
Welcome to the sixth course of optmiztion city.com! Today, we're going to explore 
something called the "shortest path problem." It's a really interesting concept that 
involves finding the quickest or most efficient route between different places on a 
map. Think of it like finding the fastest way to get from point A to point B. This 
problem comes up in lots of real-life situations, like planning travel routes, organizing 
deliveries, or even just figuring out the shortest way to walk to your friend's house. 
It's like solving a puzzle to find the best path and save time or effort. So, get ready to 
dive into the world of finding the shortest paths, and let's have some fun with it! Let's 
get started! 
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The table of contents includes the following sections: Minimum Cost Flow Problem, 
Shortest Path Problem, Loopless Networks, and Loop Networks. Each section 
explores its respective topic, providing an introduction, key concepts, and examples. 

2 



In the minimum cost flow problem, we want to distribute the same type of product 
from the factory to the sales market efficiently. We know the quantity of products 
produced at each factory and the required quantity at each destination. Instead of 
sending products directly to the destinations, we can send them to distribution 
centers through an intermediate point if needed. However, there are limits on how 
much can be transported on each transportation line. The objective is to minimize 
the cost of transporting the products while meeting the demand. 
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Let's look at a simple example of the minimum cost flow problem using the diagram 
below. The nodes are shown as numbered circles, and the arcs are represented by 
arrows. The arcs have a specific direction, meaning materials or goods can be 
transported from one node to another in that direction. For instance, we can send 
materials from node 1 to node 2, but we cannot send them from node 2 to node 1. 
We use the notation i-j to indicate the arc going from node i to node j. 
 
In the diagram above, each arrow represents a path with a specific capacity and cost 
for transportation. The capacity indicates the maximum amount that can be 
transported along that path, while the cost per unit represents the expense 
associated with each unit of transportation. For instance, in the arrow (2-4), the flow 
can range from 0 to 4 units, and each unit passing through this path costs $2. The 
symbol ∞ indicates that there is no limit on the capacity of that particular path. 
 
Moreover, the numbers in parentheses next to the circles represent the available 
supply and the required demand at each node. In this diagram, node 1 is the starting 
point with a supply of 20 units. Nodes 4 and 5 are the destinations that require 5 and 
15 units respectively, indicated by the negative sign. 
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In the minimum cost flow problem, our objective is to discover the flow pattern that 
incurs the lowest cost. To formulate this problem as a linear programming model, 
let's consider the following notation: 
xij: represents the quantity of units transported from node i to node j using the arc i-j. 
Now, let's present the linear programming model for the minimum cost flow 
problem. 
 
Equations 1 to 5 represent the flow balance equations in the network. Let's consider 
the balance equation at node 1 as an example. 
The equation states that the combined flow leaving node 1 (x12 + x13) should be 
equal to the supply available at node 1, which is 20 units. This ensures that the 
outgoing flow matches the available supply. 
 
Similarly, the balance equation at node 2 indicates that the incoming flow to node 2 
(x12) is equal to the outgoing flow from node 2 (x23 + x24 + x25). This ensures that 
the flow entering and leaving node 2 is properly balanced. 
 
The minimum cost flow model in the network has a unique structure that helps 
determine the solution algorithm. The flow variables, denoted as xij in the balance 
equations, have coefficients of 0, +1, or -1. Additionally, these variables appear 
precisely in two balance equations: once with a coefficient of +1 representing the 
node where the flow originates, and once with a coefficient of -1 representing the  
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node where the flow enters. 
Based on the above characteristics, the general form of the Minimum Cost Flow 
problem can be expressed as follows. 
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The model shown here represents the general form of the minimum cost flow 
problem. However, we can simplify this model into more straightforward forms, 
which are explained below. 
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In the real world, network theory finds practical applications in determining the 
shortest path within a network. In this context, networks consist of areas and regions 
represented as nodes, and the communication paths connecting them are known as 
arcs. Any node within this network can be considered either the starting point or the 
destination. The objective is to identify a path between the origin and the destination 
that results in the shortest distance, known as the shortest path, within the network. 
The networks covered in this course can be categorized into two types: loopless 
networks and loop networks. In the upcoming sections, we will explore each of these 
network types in detail, examining their characteristics, properties, and applications. 
 

7 



Loopless networks are similar to basic networks, but in this case, both nodes can act 
as the origin and destination nodes for movement. 
In the simple shortest path method, computation begins from the origin node (start) 
and continues towards the destination node (end). During this computation, each 
node is assigned a code (m) that represents its shortest distance from the starting 
node. The starting node is assumed to have a number of 1, the end node is numbered 
as n, and the intermediate nodes are sequentially numbered. The algorithm follows 
these steps: 
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Step 1: Start by setting the code of the starting node to zero (m1=0). 
Step 2: Calculate the code of node j (mj) using the following equation: 
mj = min(mk + dij) 
where S is the set of nodes that lead to node j, and dij represents the direct distance 
between node i and node j. 
Step 3: Once the code of the end node is determined, it represents the shortest 
distance between the starting node and the end node in the network. 
Step 4: To find the shortest path, we employ the backtracking method. This means 
that each input arc leading to a node, which determines the code of that node, is part 
of the shortest path. 
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Let's apply the method we just learned to find the shortest path between nodes 1 
and 8 in the given network. The distance between each pair of nodes is indicated on 
the connecting lines. 

10 



Here's how we can find the shortest path between nodes 1 and 8 in the given 
network using the method we discussed. We start by setting the code of node 1 to 
zero (m1=0). 
Next, we calculate the code for node 2 by adding the distance from node 1 to node 2 
(m2=m1+d12=0+4=4). 
Moving on to node 3, since there are two paths to reach it, we need to consider both 
of these paths: 
[Path 1: m3 = m1 + d13 = 0 + 3 = 3] 
[Path 2: m3 = m2 + d23 = 4 + 2 = 6] 
We continue these calculations for the other nodes, following the same process. The 
summarized results can be seen in the figure below. From the figure, we can observe 
that the shortest distance from node 1 to node 8 is 12. 
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In order to determine the shortest path between nodes 1 and 8, we use a method 
called backtracking. This involves checking each node (j) that meets the condition mi 
= mj - dij, which helps us identify the nodes along the shortest path. We start the 
process from the end node and explore the three branches connected to it. 
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Let's Move one the k-th shortest path 
 consider the scenario where a bus driver needs to take passengers from the origin 
city (X) to the destination city (Z) via cities U, V, and W, choosing the shortest route. 
However, during a specific week, there is an obstacle preventing the bus from going 
through city U. In this situation, the bus driver intends to use the second shortest 
route as an alternative. This example highlights the need to determine the second, 
third, or k-th shortest path in certain cases. To find the k-th shortest path, a 
modification is made to the second step of the simple shortest path method. 
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Let's find the 1st, 2nd, and 3rd shortest paths between nodes 1 and 8 in the given 
network. 
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Solution: 
Applying the simple shortest path method, we first obtain the shortest path (which is 
the 1st shortest path) to each node: 
 
Now, let's determine the second and third shortest paths between nodes 1 and 8 
using the backtracking method. There are two possible solutions for the second 
shortest path and one solution for the third shortest path: 
Second Shortest Path: 
Since only one branch enters node 2, there is no second shortest distance between 
nodes 1 and 2. 
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For node 3, we have: 
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Third Shortest Path: 
Similarly, there is no third shortest distance between nodes 1 and 2, as only one 
branch enters node 2. 
For node 3, we have: 
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We can continue this process for the remaining nodes: 
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The second and third shortest paths between nodes 1 and 8 are determined by 
examining the nodes and branches using backtracking. In this case, there are two 
possible answers for the second shortest path and one possible answer for the third 
shortest path. 
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In loop networks, there are arcs that create loops, allowing movement between 
nodes in both forward and backward directions. To find the shortest path in such 
networks, two methods are commonly used: 
Dijkstra's method: 
This method is named after its inventor. In Dijkstra's method, two codes are assigned 
to each node: 
mi: This represents the shortest distance of node i from the origin node up to the 
current step of the algorithm. It is known as the temporary code since the shortest 
distance may be updated in subsequent steps. 
Mi: This represents the shortest distance of node i from the origin node and is 
referred to as the permanent code. Once assigned, this code will not be updated with 
a shorter distance in the following steps. 
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Dijkstra's algorithm can be summarized in the following steps: 
Step 1: Start by assigning a permanent code of zero to the starting node (M1=0). 
Step 2: Assign a temporary code to the nodes adjacent to the nodes that already have 
a permanent code using the following formula: 
Temporary Code of Node j = Minimum of (Temporary Code of Node i + dij) 
Here, dij represents the direct distance from a node i with a permanent code to the 
adjacent node j with a temporary code. If a node already has a temporary code, it is 
compared with the new temporary code, and the smaller value is chosen. Among all 
the nodes with temporary codes, the node with the smallest code is converted to a 
permanent code. The process continues by assigning temporary codes to the nodes 
adjacent to the node with the newly assigned permanent code, and so on. 
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Step 3: Stop the algorithm when the end (destination) node receives a permanent 
code. The value of Mn represents the shortest distance between the end node and 
the start node. 
Step 4: To find the shortest path, use the backtracking method with the following 
relationship: 
Shortest Path from Node i to Node j = Shortest Path from Node i to Node k + Direct 
Distance from Node k to Node j 
This relation helps determine the shortest path by considering the nodes along the 
way. 
To better understand the steps of the algorithm, let's take a look at the following 
example. 
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Let's use Dijkstra's method to find the shortest distance and path between nodes 1 
and 7 in the given network. 
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Here's the solution to finding the shortest distance and path between nodes 1 and 7 
using Dijkstra's method: 
1: We start by assigning a permanent code of zero to node 1, which is the origin of 
movement. 
2: Since node 1 has received a permanent code, we assign temporary codes to its 
adjacent nodes. 
3: Among the temporary codes available so far, the minimum value is 3. Therefore, 
the temporary code of node 2 is converted into a permanent code. 
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4: We assign temporary codes to the nodes adjacent to node 2, which now has a 
permanent code. 
5: Node 4 already had a temporary code of 5, but at this stage, a new temporary code 
of 4 is obtained. Since the new temporary code is smaller, it replaces the previous 
code. 
Step 6: The minimum temporary codes available so far are 4 for node 4. 
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The process continues in this manner, assigning temporary codes and updating them 
accordingly. 
The diagram below summarizes the results of the different steps of the algorithm. 
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To find the shortest path between nodes 1 and 7, we can use backtracking. We follow 
a similar approach as in networks without loops: 
We start by examining the arcs and nodes along the shortest path. 
 
The arc (6,7) is part of the shortest path. 
 
The arcs (4,6) and (3,6) are also part of the shortest paths. 
 
The arc (3,4) is on the shortest path. 
 

33 



The arc (2,4) is included in the shortest path. 
 
Finally, the arc (1,2) is part of the shortest path. 
Therefore, in this network, there are two paths that have the shortest distance 
between nodes 1 and 7. 
The figure below illustrates the shortest paths in the network: 
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The comprehensive shortest path method is a way to find the shortest route in a 
network. Dijkestra's algorithm is a simple method for this, but it has a limitation. It 
only determines the shortest distance between the starting and ending nodes in each 
step of the algorithm. However, with the comprehensive shortest path method, we 
can calculate the shortest path between all nodes in the network. If the network has 
n nodes, we start numbering them from 1 to n, with the starting node as 1 and the 
ending node as n. The rest of the nodes are numbered in ascending order from the 
starting node to the ending node. 
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In this method, we use two matrices: one for distances (D) and another for paths (P). 
The value dij represents the distance between node i and node j, while pij represents 
the path from node i to node j. If there is no direct path between two nodes, we 
consider the distance between them as infinity (∞) and mark the path with a "-" sign. 
It's important to note that the distance from one node to another (dij) may not be 
the same as the distance for the return journey (dji). 
For example, d12 represents the distance from node 1 to node 2. Similarly, p12 
represents the path from node 1 to node 2. 

Type equation here. 
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At each stage (j=1,2,...,n) of the process, we select node j as an intermediary node. 
Then, we calculate the route between any two nodes excluding node j, using this 
intermediary. If the newly calculated distance is shorter than the previous distance, 
we update it with the new value. Otherwise, we keep the previous distance. In 
simpler terms, we transform the matrices Dj-1 and Pj-1 from the (j-1)th step into Dj 
and Pj for the jth step using the following relationships. 
Let me illustrate this with an example to provide further clarification. 
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Example: 
Using the comprehensive shortest path method, find the shortest routes between all 
the nodes in the network shown in the diagram below. 
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Stage 1 (with intermediary node 1): In the matrix, the distance between nodes 2 and 
3 is marked as infinity (∞). However, when we consider the path through 
intermediary node 1, the distance between nodes 2 and 3 becomes 9. Since this 
intermediary path is shorter than the distance in the matrix, we replace it with the 
new value. 
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At this stage, we observe changes in the distance and route between node 2 and 
node 4, as well as between node 3 and node 2. As a result, the matrices for this step 
are updated accordingly. 
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In this step, we observe changes in the distance and route between node 1 and node 
5, node 4 and node 1, node 4 and node 3, node 5 and node 1, and node 5 and node 
4. As a result, the matrices for step 2 can be updated as follows: 
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In step 3, the only change occurs in the distance and path between node 5 and node 
4. Consequently, we can derive the matrices for step 3 as follows: 
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In step 4, the only modification occurs in the distance and path between node 3 and 
node 2. Thus, we can obtain the matrices for step 4 as follows: 
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At this stage, we observe changes in the distance and route between node 2 and 
node 3, as well as between node 4 and node 3. Consequently, the matrices for this 
step, which represent the final matrix, are as follows: 
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The algorithm concludes, and we can obtain the shortest distance between two 
nodes from the D5 matrix. Likewise, we can trace the corresponding path using the 
P5 matrix. For instance, in matrix D5, the shortest distance between node 2 and node 
4 is 9 units. By examining matrix P5, we find that the shortest path from node 2 to 
node 4 includes node 1, and the shortest path from node 1 to node 4 passes through 
node 4 itself 
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You may ask for more exercises to practice what I've learned.  
 
I've got just the thing for you. Check out my website where you'll find a bunch of 
extra exercises to dive into. You'll discover a variety of exercises covering different 
subjects like math, language, and critical thinking. Take a moment to swing by my 
website and explore the exercises waiting for you. They're not only educational but 
also enjoyable. I'm confident they'll help you reinforce what you've learned and gain 
even more confidence. Give it a shot. 

54 



55 


